BRVM
is an R package that provides real-time data from
the BRVM (“Regional Securities Exchange SA” call Bourse Régionale des
Valeurs Mobilières in french). As a goal, we want to facilitate access
to data for all users of the R programming language. This package
includes a variety of data accessible just by function call.
BRVM
est un package R qui permet d’obtenir des données à
temps réel de la BRVM (Bourse Régionale des Valeurs Mobilières). Comme
objectif, nous voulons faciliter l’accès aux données à tous les
utilisateurs du langage de programmation R. Ce package comporte une
diversité de données accessibles juste par appel de fonction.
You can install the development version of BRVM from github with:
# github dev version
## We can use devtools
# install.packages("devtools")
devtools::install_github("Koffi-Fredysessie/BRVM")
# Or use remotes
# install.packages("remotes")
remotes::install_github("Koffi-Fredysessie/BRVM")
Since the size of the readme is huge due to the charts, you can visit the html version of the readme on RPubs
library(BRVM)
It receives no argument and returns BRVM tickers information such as its full name, sector and country.
library(knitr)
library(kableExtra)
tickers <- BRVM_ticker_desc()
kable(tickers, "html") %>%
kable_styling(bootstrap_options = "striped")
Ticker | Company name | Sector | Country |
---|---|---|---|
ABJC | SERVAIR ABIDJAN COTE D’IVOIRE | DISTRIBUTION | IVORY COAST |
BICC | BICI COTE D’IVOIRE | FINANCE | IVORY COAST |
BNBC | BERNABE COTE D’IVOIRE | DISTRIBUTION | IVORY COAST |
BOAB | BANK OF AFRICA BENIN | FINANCE | BENIN |
BOABF | BANK OF AFRICA BURKINA FASO | FINANCE | BURKINA FASO |
BOAC | BANK OF AFRICA COTE D’IVOIRE | FINANCE | IVORY COAST |
BOAM | BANK OF AFRICA MALI | FINANCE | MALI |
BOAN | BANK OF AFRICA NIGER | FINANCE | NIGER |
BOAS | BANK OF AFRICA SENEGAL | FINANCE | SENEGAL |
CABC | SICABLE COTE D’IVOIRE | INDUSTRY | IVORY COAST |
CBIBF | CORIS BANK INTERNATIONAL BURKINA FASO | FINANCE | BURKINA FASO |
CFAC | CFAO MOTORS COTE D’IVOIRE | DISTRIBUTION | IVORY COAST |
CIEC | CIE COTE D’IVOIRE | PUBLIC SERVICE | IVORY COAST |
ECOC | ECOBANK COTE D’IVOIRE | FINANCE | IVORY COAST |
ETIT | Ecobank Transnational Incorporated TOGO | FINANCE | TOGO |
FTSC | FILTISAC COTE D’IVOIRE | INDUSTRY | IVORY COAST |
NEIC | NEI-CEDA COTE D’IVOIRE | INDUSTRY | IVORY COAST |
NSBC | NSIA BANQUE COTE D’IVOIRE | FINANCE | IVORY COAST |
NTLC | NESTLE COTE D’IVOIRE | INDUSTRY | IVORY COAST |
ONTBF | ONATEL BURKINA FASO | PUBLIC SERVICE | BURKINA FASO |
ORAC | ORANGE COTE D’IVOIRE | PUBLIC SERVICE | IVORY COAST |
ORGT | ORAGROUP TOGO | FINANCE | TOGO |
PALC | PALM COTE D’IVOIRE | AGRICULTURE | IVORY COAST |
PRSC | TRACTAFRIC MOTORS COTE D’IVOIRE | DISTRIBUTION | IVORY COAST |
SAFC | SAFCA COTE D’IVOIRE | FINANCE | IVORY COAST |
SCRC | SUCRIVOIRE COTE D’IVOIRE | AGRICULTURE | IVORY COAST |
SDCC | SODE COTE D’IVOIRE | PUBLIC SERVICE | IVORY COAST |
SDSC | BOLLORE TRANSPORT & LOGISTICS COTE D’IVOIRE | TRANSPORT | IVORY COAST |
SEMC | CROWN SIEM COTE D’IVOIRE | INDUSTRY | IVORY COAST |
SGBC | SOCIETE GENERALE COTE D’IVOIRE | FINANCE | IVORY COAST |
SHEC | VIVO ENERGY COTE D’IVOIRE | DISTRIBUTION | IVORY COAST |
SIBC | SOCIETE IVOIRIENNE DE BANQUE COTE D’IVOIRE | FINANCE | IVORY COAST |
SICC | SICOR COTE D’IVOIRE | AGRICULTURE | IVORY COAST |
SIVC | AIR LIQUIDE COTE D’IVOIRE | INDUSTRY | IVORY COAST |
SLBC | SOLIBRA COTE D’IVOIRE | INDUSTRY | IVORY COAST |
SMBC | SMB COTE D’IVOIRE | INDUSTRY | IVORY COAST |
SNTS | SONATEL SENEGAL | PUBLIC SERVICE | SENEGAL |
SOGC | SOGB COTE D’IVOIRE | AGRICULTURE | IVORY COAST |
SPHC | SAPH COTE D’IVOIRE | AGRICULTURE | IVORY COAST |
STAC | SETAO COTE D’IVOIRE | OTHER | IVORY COAST |
STBC | SITAB COTE D’IVOIRE | INDUSTRY | IVORY COAST |
SVOC | MOVIS COTE D’IVOIRE | TRANSPORT | IVORY COAST |
TTLC | TOTAL COTE D’IVOIRE | DISTRIBUTION | IVORY COAST |
TTLS | TOTAL SENEGAL | DISTRIBUTION | SENEGAL |
TTRC | TRITURAF Ste en Liquid | INDUSTRY | IVORY COAST |
UNLC | UNILEVER COTE D’IVOIRE | INDUSTRY | IVORY COAST |
UNXC | UNIWAX COTE D’IVOIRE | INDUSTRY | IVORY COAST |
It receives no argument and returns a table of updated data (with as table header: indexes, previous closing, closing, change (%), Year to Date Change) on all the indices available on the BRVM exchange.
library(rvest)
library(stringr)
library(knitr)
library(kableExtra)
the_index <- BRVM_index()
kable(the_index, "html") %>%
kable_styling(bootstrap_options = "striped")
Indexes | Previous closing | Closing | Change (%) | Year to Date Change |
---|---|---|---|---|
BRVM-30 | 102.46 | 102.26 | -0.20 | 0.00 |
BRVM - AGRICULTURE | 286.67 | 286.08 | -0.21 | -0.66 |
BRVM - OTHER SECTOR | 1357.27 | 1295.58 | -4.55 | -7.32 |
BRVM - COMPOSITE | 203.53 | 203.38 | -0.07 | 0.85 |
BRVM - DISTRIBUTION | 367.26 | 366.75 | -0.14 | 0.69 |
BRVM - FINANCE | 77.33 | 77.31 | -0.03 | -0.66 |
BRVM - INDUSTRY | 97.06 | 98.00 | 0.97 | 0.92 |
BRVM - PRESTIGE | 106.49 | 106.18 | -0.29 | 0.00 |
BRVM - PRINCIPAL | 96.23 | 96.41 | 0.19 | 0.00 |
BRVM - PUBLIC SERVICES | 485.48 | 484.25 | -0.25 | 2.23 |
BRVM - TRANSPORT | 357.22 | 356.02 | -0.34 | 0.35 |
This function will get data of the companies listed on the BVRM exchange through the Rich Bourse site. The function takes in a single parameter of .symbol(which represents the “Ticker”. The function will auto-format the tickers you input into all upper case by using toupper() and will next make sure that the ticker passed is inside of a google spreadsheet of allowed tickers.
library(lubridate)
library(rlang)
library(httr2)
library(dplyr)
library(stringr)
#' Displaying data of SONATEL Senegal stock
BRVM_get(.symbol = "snts")
#> [1] "SNTS"
#> # A tibble: 251 × 6
#> Date Open High Low Close Volume
#> <date> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 2022-03-25 15595 15900 15500 15900 13128
#> 2 2022-03-28 15895 15900 15505 15505 2107
#> 3 2022-03-29 15515 15800 15500 15600 33932
#> 4 2022-03-30 15600 15895 15600 15895 516
#> 5 2022-03-31 15700 15900 15600 15800 10671
#> 6 2022-04-01 15700 15800 15600 15650 5542
#> 7 2022-04-04 15655 15775 15655 15775 126
#> 8 2022-04-05 15775 15775 15660 15750 25792
#> 9 2022-04-06 15800 15895 15750 15800 7436
#> 10 2022-04-07 15800 15900 15750 15900 1265
#> # … with 241 more rows
symbols <- c("BiCc","XOM","SlbC") # We use here three tickers
data_tbl <- BRVM_get(.symbol = symbols, .from = "2020-01-01", .to = Sys.Date() - 1)
#> [1] "BICC" "SLBC"
# display the first two tens elements of the table
head(data_tbl, 20)
#> # A tibble: 20 × 7
#> Date Open High Low Close Volume Ticker
#> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 2020-01-10 6500 6500 6500 6500 24 BICC
#> 2 2020-01-13 6370 6500 6370 6500 29 BICC
#> 3 2020-01-14 6495 6495 6495 6495 10 BICC
#> 4 2020-01-29 6010 6010 6010 6010 24 BICC
#> 5 2020-01-30 6000 6000 6000 6000 50 BICC
#> 6 2020-02-04 5800 5800 5800 5800 12 BICC
#> 7 2020-02-07 5650 5650 5650 5650 5 BICC
#> 8 2020-02-10 5500 5500 5500 5500 5 BICC
#> 9 2020-02-14 5300 5300 5300 5300 9 BICC
#> 10 2020-02-17 4910 4910 4910 4910 210 BICC
#> 11 2020-02-18 4910 4910 4910 4910 50 BICC
#> 12 2020-02-20 4895 4895 4895 4895 5 BICC
#> 13 2020-02-21 4895 4895 4890 4890 13 BICC
#> 14 2020-02-25 4525 4525 4525 4525 16 BICC
#> 15 2020-02-26 4435 4435 4430 4430 21 BICC
#> 16 2020-02-27 4345 4760 4335 4760 1809 BICC
#> 17 2020-03-03 4745 4750 4745 4750 11 BICC
#> 18 2020-03-05 4700 4700 4700 4700 5 BICC
#> 19 2020-03-06 4695 4695 4695 4695 6 BICC
#> 20 2020-03-11 4345 4450 4345 4450 135 BICC
# display the two tens of the last elements of the table
tail(data_tbl, 20)
#> # A tibble: 20 × 7
#> Date Open High Low Close Volume Ticker
#> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 2023-01-30 75865 75865 75865 75865 1 SLBC
#> 2 2023-02-07 81550 81550 81550 81550 1 SLBC
#> 3 2023-02-09 85000 85000 85000 85000 2 SLBC
#> 4 2023-02-10 85000 85000 85000 85000 2 SLBC
#> 5 2023-02-13 85000 85000 85000 85000 1 SLBC
#> 6 2023-02-14 79000 79000 79000 79000 2 SLBC
#> 7 2023-02-15 80000 80000 79000 79000 2 SLBC
#> 8 2023-02-17 78000 78000 78000 78000 5 SLBC
#> 9 2023-02-21 80000 80000 80000 80000 5 SLBC
#> 10 2023-02-23 80000 80000 80000 80000 18 SLBC
#> 11 2023-02-24 80000 80000 80000 80000 6 SLBC
#> 12 2023-02-27 80000 80000 80000 80000 98 SLBC
#> 13 2023-02-28 80000 80000 80000 80000 11 SLBC
#> 14 2023-03-02 80000 80000 80000 80000 11 SLBC
#> 15 2023-03-08 80000 80000 80000 80000 2 SLBC
#> 16 2023-03-09 80000 80000 80000 80000 2 SLBC
#> 17 2023-03-13 80005 80005 80000 80000 12 SLBC
#> 18 2023-03-14 80000 80000 80000 80000 1 SLBC
#> 19 2023-03-20 80000 80000 80000 80000 3 SLBC
#> 20 2023-03-21 80000 80000 80000 80000 4 SLBC
This function will get data of the companies listed on the BVRM exchange through the sikafinance site. The function takes in a single parameter of ticker and will auto-format the tickers you input into all upper case by using toupper()
** NB : There is a small difference between the BRVM_get and BRVM_get1 functions. * With BRVM_get it is only possible to download tickers’ daily data. * But with BRVM_get1, you can download daily, weekly, monthly, annual tickers’ data, indices and even market capitalization.
library(lubridate)
library(rlang)
library(httr2)
library(dplyr)
library(stringr)
#' Displaying data of SONATEL Senegal stock
BRVM_get1("snts")
#> [1] "We obtained SNTS data from 2022-12-26 to 2023-03-24"
#> # A tibble: 65 × 5
#> Date Open High Low Close
#> <date> <int> <int> <int> <int>
#> 1 2022-12-26 15000 15600 15000 15600
#> 2 2022-12-27 15400 15500 15400 15500
#> 3 2022-12-28 15400 15450 15400 15450
#> 4 2022-12-29 15395 15450 15395 15450
#> 5 2022-12-30 15435 15435 15200 15200
#> 6 2023-01-02 15195 15395 15195 15395
#> 7 2023-01-03 15390 15390 15375 15375
#> 8 2023-01-04 15295 15295 15280 15280
#> 9 2023-01-05 15265 15265 15160 15160
#> 10 2023-01-06 15100 15100 15000 15000
#> # … with 55 more rows
# Get daily data of all indexes
all_ind <- BRVM_get1("ALL INDEXES", Period = 0, from = "2020-01-04", to = "2023-03-24")
#> [1] "We obtained BRVM10 data from 2019-12-26 to 2023-01-04"
#> [1] "We obtained BRVMAG data from 2019-12-26 to 2023-03-24"
#> [1] "We obtained BRVMC data from 2019-12-26 to 2023-03-24"
#> [1] "We obtained BRVMAS data from 2019-12-26 to 2023-03-24"
#> [1] "We obtained BRVMDI data from 2019-12-26 to 2023-03-24"
#> [1] "We obtained BRVMFI data from 2019-12-26 to 2023-03-24"
#> [1] "We obtained BRVMIN data from 2019-12-26 to 2023-03-24"
#> [1] "We obtained BRVMSP data from 2019-12-26 to 2023-03-24"
#> [1] "We obtained BRVMTR data from 2019-12-26 to 2023-03-24"
#> [1] "We obtained BRVMPR data from 2023-01-01 to 2023-03-24"
#> [1] "We obtained BRVMPA data from 2023-01-04 to 2023-03-24"
#> [1] "We obtained BRVM30 data from 2023-01-01 to 2023-03-24"
#> [1] "We obtained CAPIB data from 2020-01-02 to 2023-03-24"
# display the first two tens elements of the table
head(all_ind, 20)
#> # A tibble: 20 × 7
#> Date Open High Low Close Volume Ticker
#> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 2022-12-26 169. 169. 169. 169. 0 BRVM10
#> 2 2022-12-27 169. 169. 169. 169. 0 BRVM10
#> 3 2022-12-28 167. 167. 167. 167. 0 BRVM10
#> 4 2022-12-29 167. 167. 167. 167. 0 BRVM10
#> 5 2022-12-30 166. 166. 166. 166. 0 BRVM10
#> 6 2023-01-02 166. 166. 166. 166. 0 BRVM10
#> 7 2023-01-03 166. 166. 166. 166. 0 BRVM10
#> 8 2023-01-04 166. 166. 166. 166. 0 BRVM10
#> 9 2022-09-26 163. 163. 163. 163. 0 BRVM10
#> 10 2022-09-27 162. 162. 162. 162. 0 BRVM10
#> 11 2022-09-28 162. 162. 162. 162. 0 BRVM10
#> 12 2022-09-29 163. 163. 163. 163. 0 BRVM10
#> 13 2022-09-30 164. 164. 164. 164. 0 BRVM10
#> 14 2022-10-03 162. 162. 162. 162. 0 BRVM10
#> 15 2022-10-04 162. 162. 162. 162. 0 BRVM10
#> 16 2022-10-05 161. 161. 161. 161. 0 BRVM10
#> 17 2022-10-06 161. 161. 161. 161. 0 BRVM10
#> 18 2022-10-07 161. 161. 161. 161. 0 BRVM10
#> 19 2022-10-10 160. 160. 160. 160. 0 BRVM10
#> 20 2022-10-11 160. 160. 160. 160. 0 BRVM10
# display the two tens of the last elements of the table
tail(all_ind, 20)
#> # A tibble: 20 × 7
#> Date Open High Low Close Volume Ticker
#> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 2020-02-26 4281311 4281311 4281311 4281311 0 CAPIB
#> 2 2020-02-27 4314933 4314933 4314933 4314933 0 CAPIB
#> 3 2020-02-28 4346515 4346515 4346515 4346515 0 CAPIB
#> 4 2020-03-02 4424073 4424073 4424073 4424073 0 CAPIB
#> 5 2020-03-03 4379647 4379647 4379647 4379647 0 CAPIB
#> 6 2020-03-04 4369550 4369550 4369550 4369550 0 CAPIB
#> 7 2020-03-05 4342229 4342229 4342229 4342229 0 CAPIB
#> 8 2020-03-06 4359879 4359879 4359879 4359879 0 CAPIB
#> 9 2020-03-09 4338293 4338293 4338293 4338293 0 CAPIB
#> 10 2020-03-10 4357221 4357221 4357221 4357221 0 CAPIB
#> 11 2020-03-11 4332656 4332656 4332656 4332656 0 CAPIB
#> 12 2020-03-12 4318096 4318096 4318096 4318096 0 CAPIB
#> 13 2020-03-13 4318112 4318112 4318112 4318112 0 CAPIB
#> 14 2020-03-16 4285184 4285184 4285184 4285184 0 CAPIB
#> 15 2020-03-17 4301727 4301727 4301727 4301727 0 CAPIB
#> 16 2020-03-18 4288582 4288582 4288582 4288582 0 CAPIB
#> 17 2020-03-19 4207231 4207231 4207231 4207231 0 CAPIB
#> 18 2020-03-20 4209788 4209788 4209788 4209788 0 CAPIB
#> 19 2020-03-23 4154445 4154445 4154445 4154445 0 CAPIB
#> 20 2020-03-24 4144325 4144325 4144325 4144325 0 CAPIB
# To get yearly data
yearly_data <- BRVM_get1(c("brvmtr", "BiCc", "BOAS"), Period = 365 )
# display the first two tens elements of the table
head(yearly_data, 20)
#> # A tibble: 20 × 6
#> Date Open High Low Close Ticker
#> <date> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 2003-03-31 74.0 88.6 73.6 88.6 BRVMTR
#> 2 2004-01-02 88.6 89.2 72.9 89.2 BRVMTR
#> 3 2005-01-03 89.2 107. 70.7 104. BRVMTR
#> 4 2006-01-02 104. 158. 104. 153. BRVMTR
#> 5 2007-01-02 153. 275. 149. 249. BRVMTR
#> 6 2008-01-02 249. 386. 226. 296. BRVMTR
#> 7 2009-01-02 275. 296. 227. 236. BRVMTR
#> 8 2010-01-04 236. 259. 224. 238. BRVMTR
#> 9 2011-01-03 238. 249. 204. 239 BRVMTR
#> 10 2012-01-02 239 349. 201. 349. BRVMTR
#> 11 2013-01-02 349. 794. 339. 789. BRVMTR
#> 12 2014-01-02 789. 1213. 601. 1213. BRVMTR
#> 13 2015-01-02 1213. 1525. 653. 1525. BRVMTR
#> 14 2016-01-04 1525. 1525. 1216. 1432. BRVMTR
#> 15 2017-01-02 1432. 1433. 764. 1203. BRVMTR
#> 16 2018-01-02 1114. 1193. 966. 966. BRVMTR
#> 17 2019-06-03 403. 429. 311. 367. BRVMTR
#> 18 2020-01-01 367. 475. 292. 379. BRVMTR
#> 19 2021-01-04 376. 622. 325 622. BRVMTR
#> 20 2022-01-03 667. 667. 295. 342. BRVMTR
# display the two tens of the last elements of the table
tail(yearly_data, 20)
#> # A tibble: 20 × 6
#> Date Open High Low Close Ticker
#> <date> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 2014-01-02 5650 7848 5650 7800 BICC
#> 2 2015-01-02 8385 10750 7800 10100 BICC
#> 3 2016-01-04 10000 10700 8566 9890 BICC
#> 4 2017-01-05 9750 10000 6440 8490 BICC
#> 5 2018-01-02 8700 8750 3795 7900 BICC
#> 6 2019-01-04 7550 7550 3710 6800 BICC
#> 7 2020-01-01 6800 6890 2855 6680 BICC
#> 8 2021-01-04 6680 7525 4280 7400 BICC
#> 9 2022-01-03 7250 7250 5550 6850 BICC
#> 10 2023-01-02 6500 6850 5785 6300 BICC
#> 11 2014-12-10 1613 3225 1613 3225 BOAS
#> 12 2015-01-02 3370 4300 2900 3950 BOAS
#> 13 2016-01-04 3700 4101 2000 2350 BOAS
#> 14 2017-01-02 2325 3875 2035 2500 BOAS
#> 15 2018-01-02 2400 3250 1700 2020 BOAS
#> 16 2019-01-02 1900 2000 1500 1545 BOAS
#> 17 2020-01-01 1550 1700 1295 1495 BOAS
#> 18 2021-01-04 1480 2750 1340 2350 BOAS
#> 19 2022-01-03 2350 2780 2200 2450 BOAS
#> 20 2023-01-02 2580 2585 2175 2175 BOAS
It receives no argument and returns the name of all indexes available on BRVM Stock Exchange.
BRVM.index()
#> [1] "BRVMAG" "BRVMC" "BRVMAS" "BRVMDI" "BRVMFI" "BRVMIN" "BRVMSP" "BRVMTR"
#> [9] "BRVMPR" "BRVMPA" "BRVM30"
This function will take in the name of sector(s) and returns data for companies belonging to that/those sector(s)
# Get informations about brvm sectors like other and agriculture sectors
BRVM_bySector(.sectors = c("Other", "Agriculture"))
#> [1] "There is 1 company that belongs to Other's sector"
#> # A tibble: 1 × 6
#> Ticker Volume `Previous price` Open Close `Change (%)`
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 STAC 10972 1050 1050 1050 -4.55
#> [1] "There are 5 companies that belong to Agriculture's sector"
#> # A tibble: 5 × 6
#> Ticker Volume `Previous price` Open Close `Change (%)`
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 PALC 3171 10900 10850 10945 0.41
#> 2 SCRC 776 685 650 685 -0.72
#> 3 SICC 8 5945 5945 5945 -7.47
#> 4 SOGC 205 5700 5650 5650 -0.88
#> 5 SPHC 20 5000 5000 4995 -0.1
#> # A tibble: 6 × 8
#> Ticker `Company name` Volume Previous p…¹ Open Close Chang…² Sector
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 STAC SETAO COTE D'IVOIRE 10972 1050 1050 1050 -4.55 Other
#> 2 PALC PALM COTE D'IVOIRE 3171 10900 10850 10945 0.41 Agric…
#> 3 SCRC SUCRIVOIRE COTE D'IVOIRE 776 685 650 685 -0.72 Agric…
#> 4 SICC SICOR COTE D'IVOIRE 8 5945 5945 5945 -7.47 Agric…
#> 5 SOGC SOGB COTE D'IVOIRE 205 5700 5650 5650 -0.88 Agric…
#> 6 SPHC SAPH COTE D'IVOIRE 20 5000 5000 4995 -0.1 Agric…
#> # … with abbreviated variable names ¹`Previous price`, ²`Change (%)`
This function receives as input a day of the week (working day) and returns the official quotation revews of that day. * .weekday : A quoted date, ie. “2022-01-31” or “2022/01/31”. The date must be in ymd format “YYYY-MM-DD” or “YYYY/MM/DD”. Must not be a weekend or a holiday.
library(formattable)
library(httr)
library(lubridate)
library(rvest)
library(stringr)
library(timeDate)
# The BOC of 2022-02-23
BRVM_stock_market("2022-02-23")
Ticker | Equity | Volume | Value | Previous price | Open | Close | Change (%) | Annual change (%) | Reference price | Low | High | Net Income | Date | Compartment | Yield Net (%) | PER |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
INDUSTRY SECTOR | -4.85% | NA | ||||||||||||||
CABC | SICABLE CI | 517 | 665880 | 1225 | 1225 | 1225 | 0 | 20.69 | 1225 | 1000 | 1030 | 133.00 | 02/08/2021 | 1er | 10.86 | 6.22 |
FTSC | FILTISAC CI | 840 | 1343210 | 1560 | 1600 | 1600 | -2.5 | -7.14 | 1600 | 17020 | 19780 | 235.00 | 31/08/2021 | 1er | 14.69 | 6.35 |
NEIC | NEI-CEDA CI | 10866 | 8915565 | 880 | 875 | 850 | -7.37 | 40.80 | 950 | 33 | 37 | 9.00 | 28/06/2021 | 1er | 0.00 | 15.14 |
NTLC | NESTLE CI | 207 | 1168515 | 5645 | 5640 | 5645 | -0.09 | 22.58 | 5650 | 1850 | 2140 | 363.67 | 30/07/2021 | 2eme | 6.44 | 5.97 |
SEMC | CROWN SIEM CI | 602 | 445980 | 730 | 750 | 750 | 2.74 | -1.96 | 730 | 12835 | 14915 | 14.40 | 28/12/2021 | 2eme | 1.97 | 24.97 |
SIVC | AIR LIQUIDE CI | 1549 | 1255650 | 925 | 900 | 860 | -7.03 | -3.91 | 925 | 3980 | 4620 | 63.00 | 29/09/2020 | 1er | 0.00 | 0.00 |
SLBC | SOLIBRA CI | 167700 | 160000 | 167700 | 4.81 | 7.50 | 160000 | 115625 | 134375 | 2736.00 | 03/08/2021 | 1er | 1.71 | 15.03 | ||
SMBC | SMB CI | 144 | 1069980 | 7495 | 7495 | 7495 | 4.83 | 8.62 | 7150 | 7770 | 9030 | 810.00 | 15/07/2021 | 1er | 11.33 | 5.93 |
STBC | SITAB CI | 111 | 961900 | 5800 | 5800 | 5800 | 0 | -6.15 | 5800 | 72150 | 83850 | 445.12 | 22/07/2021 | 1er | 7.52 | 12.19 |
TTRC | TRITURAF CI | 0 | 490 | NC | NC | 0 | 0.00 | 490 | 455 | 525 | 1440.00 | 19/07/2019 | 2eme | 0.00 | 0.00 | |
UNLC | UNILEVER CI | 0 | 0 | 4850 | NC | NC | 0 | -0.82 | 4850 | 7865 | 9135 | 1233.00 | 09/07/2020 | 2eme | 0.00 | 0.00 |
UNXC | UNIWAX CI | 808 | 1683980 | 2085 | 2085 | 2085 | -0.24 | 4.25 | 2090 | 3885 | 4515 | 18.00 | 16/08/2021 | 2eme | 0.86 | 117.28 |
TOTAL | 15644 | 17510660 | NA | |||||||||||||
PUBLIC SERVICES SECTOR | -6.94% | NA | ||||||||||||||
CIEC | CIE CI | 4192 | 8773320 | 2095 | 2100 | 2095 | -0.24 | 10.55 | 2100 | 1840 | 1695 | 153.16 | 25/07/2021 | 1er | 7.96 | 7.27 |
ONTBF | ONATEL BF | 1238 | 5221520 | 4240 | 4210 | 4240 | 0.71 | 7.48 | 4210 | 6245 | 7255 | 399.56 | 01/06/2021 | 1er | 9.49 | 9.22 |
SDCC | SODECI | 1285 | 4897025 | 4050 | 4100 | 3750 | -7.41 | -12.69 | 4050 | 39775 | 46225 | 337.50 | 27/08/2021 | 1er | 8.33 | 8.46 |
SNTS | SONATEL SN | 17445 | 255870465 | 14650 | 14650 | 14650 | 0 | 4.83 | 14650 | 20305 | 23595 | 1225.00 | 21/05/2021 | 1er | 8.36 | 7.28 |
TOTAL | 24160 | 274762330 | NA | |||||||||||||
FINANCE SECTOR | -16.09% | NA | ||||||||||||||
BICC | BICICI | 1275 | 7901650 | 6200 | 6200 | 6010 | -3.06 | -18.78 | 6200 | 7865 | 6090 | 50.00 | 15/07/2021 | 1er | 0.81 | 22.12 |
BOAB | BOA BENIN | 3524 | 21132470 | 5995 | 5995 | 5995 | -0.08 | 13.11 | 6000 | 6475 | 5100 | 436.00 | 20/05/2021 | 1er | 7.27 | 9.14 |
BOABF | BOA BURKINA FASO | 307 | 1903400 | 6200 | 6195 | 6200 | 0 | 0.00 | 6200 | 6750 | 4900 | 370.00 | 03/05/2021 | 1er | 5.97 | 7.75 |
BOAC | BOA CI | 143 | 772200 | 5490 | 5490 | 5400 | -1.64 | -7.77 | 5490 | 3885 | 4495 | 315.00 | 12/05/2021 | 1er | 5.74 | 7.72 |
BOAM | BOA MALI | 342 | 481920 | 1430 | 1400 | 1450 | 1.4 | -2.36 | 1430 | 21645 | 3060 | 1er | 0.00 | 49.53 | ||
BOAN | BOA NIGER | 571 | 3399875 | 6015 | 6000 | 6015 | 0.25 | 17.94 | 6000 | 3610 | 4600 | 429.66 | 06/05/2021 | 1er | 7.16 | 10.51 |
BOAS | BOA SENEGAL | 867 | 2145825 | 2475 | 2475 | 2475 | 0.2 | 5.32 | 2470 | 2270 | 2495 | 161.01 | 06/07/2021 | 1er | 6.52 | 7.73 |
CBIBF | CORIS BANK INTERNATIONAL BF | 282 | 2909300 | 10800 | 10250 | 10800 | 0 | 2.86 | 10800 | 8605 | 2495 | 1er | 3.76 | 10.05 | ||
ECOC | ECOBANK CI | 7784 | 33865535 | 4500 | 4500 | 4500 | -2.07 | -5.96 | 4595 | 14800 | 189 | 1er | 6.40 | 8.43 | ||
ETIT | ECOBANK TRANSNATIONAL INCORPORATED (ETI TG) | 248019 | 5129708 | 20 | 20 | 20 | 0 | 11.11 | 20 | 23 | 22 | 1.21 | 28/04/2021 | 1er | 0.00 | 1.87 |
NSBC | NSIA BANQUE CI | 335 | 1926200 | 5750 | 5750 | 5750 | 0 | -7.03 | 5750 | 14800 | 189 | 1er | 1.35 | 19.75 | ||
ORGT | ORAGROUP TG | 982 | 3829065 | 3900 | 3900 | 3900 | -4.06 | -6.92 | 4065 | 14800 | 189 | 1er | 1.46 | 29.89 | ||
SAFC | SAFCA CI | 132 | 131340 | 1160 | 1160 | 1075 | -7.33 | 26.47 | 1160 | 5740 | 5740 | 23.04 | 29/07/2021 | 1er | 0.00 | 0.00 |
SGBC | SGCI | 534 | 6885855 | 6885855 | 13105 | 12995 | -0.84 | 22.65 | 13105 | 11990 | 11840 | 368.30 | 30/06/2021 | 1er | 2.81 | 6.05 |
SIBC | SIB CI | 3339 | 13466125 | 3955 | 3955 | 4000 | 1.14 | 0.38 | 3955 | 14800 | 189 | 1er | 9.10 | 6.53 | ||
TOTAL | 268436 | 105880468 | NA | |||||||||||||
TRANSPORT SECTOR | 0.00% | NA | ||||||||||||||
SDSC | BOLLORE TRANSPORT & LOGISTICS CI | 45 | 113000 | 2500 | 2400 | 2500 | 0 | -2.72 | 2550 | 3935 | 3695 | 100.00 | 11/08/2021 | 1er | 4.00 | 10.11 |
SVOC | MOVIS CI | 0 | 0 | 2395 | NC | NC | 0 | 0.00 | 2395 | 2965 | 2900 | 270.00 | 23/07/2021 | 2eme | 0.00 | 0.00 |
TOTAL | 45 | 113000 | NA | |||||||||||||
AGRICULTURE SECTOR | -12.42% | NA | ||||||||||||||
PALC | PALM CÔTE D’IVOIRE | 1310 | 11723360 | 9420 | 9295 | 8900 | -0.16 | 34.76 | 9435 | 5250 | 4800 | 1236.34 | 31/08/2021 | 2eme | 1.09 | 41.42 |
SCRC | SUCRIVOIRE CI | 11629 | 11117870 | 1015 | 1075 | 1015 | -7.31 | 5.73 | 1095 | 735 | 1005 | 1er | 3.70 | 12.00 | ||
SICC | SICOR CI | 4 | 21500 | 5320 | 5500 | 5000 | -6.02 | -2.34 | 5320 | 3655 | 3530 | 1919.00 | 25/09/2020 | 1er | 0.00 | 3.23 |
SOGC | SOGB CI | 517 | 2810115 | 5500 | 5495 | 5500 | 0.09 | 10.00 | 5495 | 3795 | 2900 | 541.81 | 21/07/2021 | 1er | 4.55 | 15.51 |
SPHC | SAPH CI | 1169 | 5962125 | 5150 | 5145 | 5150 | 0.98 | -0.87 | 5100 | 2740 | 2800 | 132.30 | 24/08/2021 | 1er | 2.59 | 17.46 |
TOTAL | 14629 | 31634970 | NA | |||||||||||||
DISTRIBUTION SECTOR | -1.84% | NA | ||||||||||||||
ABJC | SERVAIR ABIDJAN CI | 1000 | 1643825 | 1650 | 1640 | 1650 | -5.44 | -5.71 | 1745 | 1148 | 1005 | 164.96 | 30/09/2020 | 1er | 0.00 | 0.00 |
BNBC | BERNABE CI | 1088 | 2615160 | 2395 | 2395 | 2500 | 4.38 | 14.94 | 2395 | 576 | 1200 | 45.00 | 30/09/2019 | 1er | 0.00 | 25.18 |
CFAC | CFAO MOTORS CI | 198 | 232590 | 1160 | 1160 | 1200 | 0 | -2.52 | 1160 | 605 | 430 | 22.15 | 15/07/2021 | 2eme | 1.91 | 55.67 |
PRSC | TRACTAFRIC MOTORS CI | 252 | 1158140 | 4600 | 4600 | 4600 | 0 | 9.52 | 4600 | 10 | 2800 | 162.90 | 02/09/2021 | 1er | 3.54 | 25.28 |
SHEC | VIVO ENERGY CI | 158 | 147150 | 925 | 925 | 925 | -0.54 | 7.56 | 930 | 1172 | 585 | 63.90 | 26/11/2020 | 2eme | 6.80 | 0.00 |
TTLC | TOTAL CI | 8600 | 18586860 | 2160 | 2200 | 2160 | 0 | 2.86 | 2160 | 1961 | 1475 | 109.31 | 27/09/2021 | 1er | 5.06 | 17.78 |
TTLS | TOTAL SN | 1648 | 3486710 | 2095 | 2100 | 2095 | -0.24 | 6.08 | 2100 | 1634 | 1445 | 223.60 | 30/09/2021 | 1er | 10.65 | 11.28 |
TOTAL | 12944 | 27870435 | NA | |||||||||||||
OTHER SECTOR | -7.48% | NA | ||||||||||||||
STAC | SETAO CI | 6517 | 10304135 | 1805 | 1670 | 1670 | -7.48 | 147.26 | 1805 | 281 | 565 | 2eme | 3.66 | 10.45 | ||
TOTAL | 6517 | 10304135 | NA | |||||||||||||
TOTAL - Equities market | 342375 | 468075998 | NA |
This function will get Ticker(s) data and then plot it.
library(highcharter)
library(lubridate)
library(rlang)
library(httr2)
library(dplyr)
library(stringr)
library(xts)
BRVM_plot("BICC") # The default colors for the up and down are green and red respectively.
#> [1] "BICC"
#You can specify your color like `BRVM_plot("boas", up.col = "blue", down.col = "pink")` for example
#It is also possible to plot stock data chart for more than one ticker
#Let's plot BICC, ETIT and BOAM stock data
BRVM_plot(c("BICC","ETIT", "BOAM"))
#> [1] "BICC" "ETIT" "BOAM"
It receives the ticker of a company listed on the BRVM stock exchange, Turn to upper case the input by using toupper() and returns informations about the company’s RSI, Beta, Closing price, etc. .
library(knitr)
library(kableExtra)
# Get informations such us beta, RSI, Closing, Valorisation, etc. of Bank Of Africa Senegal
inform <- BRVM_company_info("BOAS")
kable(inform, "html") %>%
kable_styling(bootstrap_options = "striped")
Informations | Values |
---|---|
Volume (titres) | 2 618 |
Volume (XOF ) | 5 694 150 |
Ouverture | 2 175 |
Plus haut | 2 175 |
Plus bas | 2 175 |
Clôture veille | 2 175 |
Beta 1 an | 0,11 |
RSI | 27,66 |
Capital échangé | 0,01% |
Valorisation | 52 200 MXOF |
- BRVM_cap() : receives no argument and returns informations about BRVM capitalization
library(knitr)
library(kableExtra)
capit_ <- BRVM_cap()
#> [1] "Make sure you have an active internet connection"
kable(capit_, "html") %>%
kable_styling(bootstrap_options = "striped")
x |
---|
Make sure you have an active internet connection |
- BRVM_company_rank() : returns companies rank from the BRVM Bourse exchange according to their daily change (variation).
library(knitr)
library(kableExtra)
comp.rank <- BRVM_company_rank() #Get companies rank
comp.rank <- comp.rank%>%
arrange(desc(percent_change)) #Describe in decreasing order
kable(comp.rank, "html")%>%
kable_styling(bootstrap_options = "striped")
ticker | company_name | percent_change | rank |
---|---|---|---|
SEMC | CROWN SIEM COTE D’IVOIRE | 7.14 | 1.0 |
NEIC | NEI-CEDA COTE D’IVOIRE | 6.98 | 2.0 |
PRSC | TRACTAFRIC MOTORS COTE D’IVOIRE | 6.90 | 3.0 |
BOAC | BANK OF AFRICA COTE D’IVOIRE | 2.97 | 4.0 |
NTLC | NESTLE COTE D’IVOIRE | 2.79 | 5.0 |
BOAB | BANK OF AFRICA BENIN | 1.13 | 6.0 |
NSBC | NSIA BANQUE COTE D’IVOIRE | 0.81 | 7.0 |
BOAN | BANK OF AFRICA NIGER | 0.73 | 8.0 |
PALC | PALM COTE D’IVOIRE | 0.41 | 9.0 |
ORAC | ORANGE COTE D’IVOIRE | 0.21 | 10.0 |
BICC | BICI COTE D’IVOIRE | 0.00 | 19.0 |
BOABF | BANK OF AFRICA BURKINA FASO | 0.00 | 19.0 |
BOAS | BANK OF AFRICA SENEGAL | 0.00 | 19.0 |
CBIBF | CORIS BANK INTERNATIONAL BURKINA FASO | 0.00 | 19.0 |
CFAC | CFAO MOTORS COTE D’IVOIRE | 0.00 | 19.0 |
ETIT | Ecobank Transnational Incorporated TOGO | 0.00 | 19.0 |
FTSC | FILTISAC COTE D’IVOIRE | 0.00 | 19.0 |
SHEC | VIVO ENERGY COTE D’IVOIRE | 0.00 | 19.0 |
SIVC | AIR LIQUIDE COTE D’IVOIRE | 0.00 | 19.0 |
SLBC | SOLIBRA COTE D’IVOIRE | 0.00 | 19.0 |
SMBC | SMB COTE D’IVOIRE | 0.00 | 19.0 |
STBC | SITAB COTE D’IVOIRE | 0.00 | 19.0 |
SVOC | MOVIS COTE D’IVOIRE | 0.00 | 19.0 |
TTLC | TOTAL COTE D’IVOIRE | 0.00 | 19.0 |
TTRC | TRITURAF Ste en Liquid | 0.00 | 19.0 |
UNLC | UNILEVER COTE D’IVOIRE | 0.00 | 19.0 |
UNXC | UNIWAX COTE D’IVOIRE | 0.00 | 19.0 |
SDCC | SODE COTE D’IVOIRE | -0.10 | 28.5 |
SPHC | SAPH COTE D’IVOIRE | -0.10 | 28.5 |
ORGT | ORAGROUP TOGO | -0.18 | 30.0 |
ECOC | ECOBANK COTE D’IVOIRE | -0.20 | 31.0 |
SIBC | SOCIETE IVOIRIENNE DE BANQUE COTE D’IVOIRE | -0.30 | 32.0 |
SDSC | BOLLORE TRANSPORT & LOGISTICS COTE D’IVOIRE | -0.34 | 33.0 |
ABJC | SERVAIR ABIDJAN COTE D’IVOIRE | -0.38 | 34.5 |
BOAM | BANK OF AFRICA MALI | -0.38 | 34.5 |
ONTBF | ONATEL BURKINA FASO | -0.44 | 36.0 |
CIEC | CIE COTE D’IVOIRE | -0.47 | 37.0 |
BNBC | BERNABE COTE D’IVOIRE | -0.50 | 38.0 |
SNTS | SONATEL SENEGAL | -0.63 | 39.0 |
SCRC | SUCRIVOIRE COTE D’IVOIRE | -0.72 | 40.0 |
SOGC | SOGB COTE D’IVOIRE | -0.88 | 41.0 |
SAFC | SAFCA COTE D’IVOIRE | -1.04 | 42.0 |
SGBC | SOCIETE GENERALE COTE D’IVOIRE | -1.07 | 43.0 |
CABC | SICABLE COTE D’IVOIRE | -2.40 | 44.0 |
TTLS | TOTAL SENEGAL | -2.93 | 45.0 |
STAC | SETAO COTE D’IVOIRE | -4.55 | 46.0 |
SICC | SICOR COTE D’IVOIRE | -7.47 | 47.0 |
- BRVM_direction(“.up_or_down”) : will take in ‘Up’ or ‘Down’ and returns respectively n results for the top or flop ranking of the BRVM tickers.
library(knitr)
library(kableExtra)
# Rank in increasing order the price of shares listed on the BRVM according to daily variations.
brvm_down <- BRVM_direction("Down")
kable(brvm_down, "html") %>%
kable_styling(bootstrap_options = "striped")
Symbole | Nom | Variation (%) |
---|---|---|
SICC | SICOR COTE D’IVOIRE | -7.47 |
STAC | SETAO COTE D’IVOIRE | -4.55 |
TTLS | TOTAL SENEGAL | -2.93 |
CABC | SICABLE COTE D’IVOIRE | -2.40 |
SGBC | SOCIETE GENERALE COTE D’IVOIRE | -1.07 |
SAFC | SAFCA COTE D’IVOIRE | -1.04 |
SOGC | SOGB COTE D’IVOIRE | -0.88 |
SCRC | SUCRIVOIRE COTE D’IVOIRE | -0.72 |
SNTS | SONATEL SENEGAL | -0.63 |
BNBC | BERNABE COTE D’IVOIRE | -0.50 |
CIEC | CIE COTE D’IVOIRE | -0.47 |
ONTBF | ONATEL BURKINA FASO | -0.44 |
ABJC | SERVAIR ABIDJAN COTE D’IVOIRE | -0.38 |
BOAM | BANK OF AFRICA MALI | -0.38 |
SDSC | BOLLORE TRANSPORT & LOGISTICS COTE D’IVOIRE | -0.34 |
SIBC | SOCIETE IVOIRIENNE DE BANQUE COTE D’IVOIRE | -0.30 |
ECOC | ECOBANK COTE D’IVOIRE | -0.20 |
ORGT | ORAGROUP TOGO | -0.18 |
SDCC | SODE COTE D’IVOIRE | -0.10 |
SPHC | SAPH COTE D’IVOIRE | -0.10 |
BICC | BICI COTE D’IVOIRE | 0.00 |
BOABF | BANK OF AFRICA BURKINA FASO | 0.00 |
BOAS | BANK OF AFRICA SENEGAL | 0.00 |
CBIBF | CORIS BANK INTERNATIONAL BURKINA FASO | 0.00 |
CFAC | CFAO MOTORS COTE D’IVOIRE | 0.00 |
ETIT | Ecobank Transnational Incorporated TOGO | 0.00 |
FTSC | FILTISAC COTE D’IVOIRE | 0.00 |
SHEC | VIVO ENERGY COTE D’IVOIRE | 0.00 |
SIVC | AIR LIQUIDE COTE D’IVOIRE | 0.00 |
SLBC | SOLIBRA COTE D’IVOIRE | 0.00 |
SMBC | SMB COTE D’IVOIRE | 0.00 |
STBC | SITAB COTE D’IVOIRE | 0.00 |
SVOC | MOVIS COTE D’IVOIRE | 0.00 |
TTLC | TOTAL COTE D’IVOIRE | 0.00 |
TTRC | TRITURAF Ste en Liquid | 0.00 |
UNLC | UNILEVER COTE D’IVOIRE | 0.00 |
UNXC | UNIWAX COTE D’IVOIRE | 0.00 |
ORAC | ORANGE COTE D’IVOIRE | 0.21 |
PALC | PALM COTE D’IVOIRE | 0.41 |
BOAN | BANK OF AFRICA NIGER | 0.73 |
NSBC | NSIA BANQUE COTE D’IVOIRE | 0.81 |
BOAB | BANK OF AFRICA BENIN | 1.13 |
NTLC | NESTLE COTE D’IVOIRE | 2.79 |
BOAC | BANK OF AFRICA COTE D’IVOIRE | 2.97 |
PRSC | TRACTAFRIC MOTORS COTE D’IVOIRE | 6.90 |
NEIC | NEI-CEDA COTE D’IVOIRE | 6.98 |
SEMC | CROWN SIEM COTE D’IVOIRE | 7.14 |
- BRVM_rank : receives “top” or “flop” and a number ‘n’ and returns table of companies classification
top_or_flop : Choose between “top” or “flop”
n : is the number of companies in the classification
#To get top 15
BRVM_rank("top", 15)
#> # A tibble: 15 × 3
#> Ticker Name `Change (%)`
#> <chr> <chr> <dbl>
#> 1 SEMC CROWN SIEM COTE D'IVOIRE 7.14
#> 2 NEIC NEI-CEDA COTE D'IVOIRE 6.98
#> 3 PRSC TRACTAFRIC MOTORS COTE D'IVOIRE 6.9
#> 4 BOAC BANK OF AFRICA COTE D'IVOIRE 2.97
#> 5 NTLC NESTLE COTE D'IVOIRE 2.79
#> 6 BOAB BANK OF AFRICA BENIN 1.13
#> 7 NSBC NSIA BANQUE COTE D'IVOIRE 0.81
#> 8 BOAN BANK OF AFRICA NIGER 0.73
#> 9 PALC PALM COTE D'IVOIRE 0.41
#> 10 ORAC ORANGE COTE D'IVOIRE 0.21
#> 11 BICC BICI COTE D'IVOIRE 0
#> 12 BOABF BANK OF AFRICA BURKINA FASO 0
#> 13 BOAS BANK OF AFRICA SENEGAL 0
#> 14 CBIBF CORIS BANK INTERNATIONAL BURKINA FASO 0
#> 15 CFAC CFAO MOTORS COTE D'IVOIRE 0
#To get flop 5
BRVM_rank("flop", 5)
#> # A tibble: 5 × 3
#> Ticker Name `Change (%)`
#> <chr> <chr> <dbl>
#> 1 SICC SICOR COTE D'IVOIRE -7.47
#> 2 STAC SETAO COTE D'IVOIRE -4.55
#> 3 TTLS TOTAL SENEGAL -2.93
#> 4 CABC SICABLE COTE D'IVOIRE -2.4
#> 5 SGBC SOCIETE GENERALE COTE D'IVOIRE -1.07
- company_traded_val(“company”) : receives one company listed on the BRVM stock exchange, Turn to upper case the input by using toupper() and returns informations about the company’s traded value
company_traded_val("ontbf") # Traded value of ONATEL BURKINA FASO
#> [1] "1 133 865"
Authors :
Creator : Koffi Frederic Sessie
cph (Copyright Holder) : Koffi Frederic Sessie
License : MIT 2023, BRVM authors. All rights reserved.