/* APA Style */.table>thead>tr>th {border-color: black;}/** Remove borders within the table body **/.table>tbody>tr>td {border: none;}/** Add a top border to the table header row **/.table thead tr:first-child {border-top: 2pxsolidblack;}/** Add a bottom border to the table body **/.table tbody tr:last-child {border-bottom: 2pxsolidblack;}/** Make the table header row a normal weight; not bold **/.table th {font-weight: normal;}/** Make the caption italic and black **/.table caption {font-style: italic;color: black;}
kable(MutateHDI::mutate_df_multi_not_dospert(m1),booktabs =TRUE,format ="html",linesep ="",escape =TRUE,col.names =c("Predictor", "Estimate", "HDI (95%)", "ROPE", "Estimate", "HDI (95%)", "ROPE", "Estimate", "HDI (95%)", "ROPE", "Estimate", "HDI (95&)", "ROPE")) %>%kable_styling(full_width =FALSE, latex_options ="scale_down") %>%add_header_above(c("", "SRTB Likelihood"=3, "SRTB Perception"=3, "SRTB Benefit"=3, "SRTB Frequency"=3)) %>%footnote(footnote_as_chunk =TRUE, general ="ROPE equates to percentage in region of practical equivalence. HDI equates to high density interval of the posterior distribution.")
Table 1: Experiment 1 | Bayesian regression of individual SRTB domains as response and dominance, prestige, leadership, and pathlogical narcissism as predictors.
SRTB Likelihood
SRTB Perception
SRTB Benefit
SRTB Frequency
Predictor
Estimate
HDI (95%)
ROPE
Estimate
HDI (95%)
ROPE
Estimate
HDI (95%)
ROPE
Estimate
HDI (95&)
ROPE
Intercept
0.66
0.43, 0.89
0%
0.32
0.03, 0.61
5%
0.36
0.07, 0.65
1%
-0.21
-0.5, 0.07
20%
Dominance
0.38
0.3, 0.47
0%
0.28
0.2, 0.37
0%
0.26
0.18, 0.35
0%
-0.34
-0.46, -0.22
0%
Prestige
-0.01
-0.09, 0.07
100%
0.07
-0.01, 0.15
79%
0.03
-0.06, 0.11
99%
0.06
-0.04, 0.15
84%
Leadership
-0.09
-0.17, -0.01
63%
-0.08
-0.16, 0
66%
-0.06
-0.14, 0.02
86%
0.05
-0.03, 0.13
91%
B-PNI
-0.05
-0.15, 0.05
84%
-0.03
-0.12, 0.05
96%
-0.04
-0.13, 0.04
93%
0.06
-0.04, 0.17
77%
Age
-0.02
-0.02, -0.01
100%
-0.01
-0.02, 0
100%
-0.01
-0.02, 0
100%
0.01
0, 0.01
100%
Gender
-0.26
-0.41, -0.12
0%
-0.11
-0.25, 0.04
47%
-0.16
-0.31, -0.02
18%
0.07
-0.03, 0.16
78%
Note: ROPE equates to percentage in region of practical equivalence. HDI equates to high density interval of the posterior distribution.
Show the code
knitr::include_graphics("../Analysis/t1.jpg")
Figure 1: Experiment 1 | Bayesian regression of individual SRTB domains as response and dominance, prestige, leadership, and pathlogical narcissism as predictors.
Multi model with dopl and pni as predictor variables and interaction terms
kable(MutateHDI::mutate_df_multi_not_dospert(m1_interaction),booktabs =TRUE,format ="html",linesep ="",escape =TRUE,col.names =c("Predictor", "Estimate", "HDI (95%)", "ROPE", "Estimate", "HDI (95%)", "ROPE", "Estimate", "HDI (95%)", "ROPE", "Estimate", "HDI (95&)", "ROPE"))%>%kable_styling(full_width =FALSE, latex_options ="scale_down")%>%add_header_above(c("", "SRTB Risk Likelihood"=3, "SRTB Risk Perception"=3, "SRTB Risk Benefit"=3, "SRTB Risk Frequency"=3)) %>%footnote(footnote_as_chunk =TRUE, general ="ROPE equates to percentage in region of practical equivalence. HDI equates to high density interval of the posterior distribution.")
Table 2: Experiment 1 | Bayesian regression of individual SRTB domains as response and dominance, prestige, leadership, and pathlogical narcissism as predictors with gender interactions.
SRTB Risk Likelihood
SRTB Risk Perception
SRTB Risk Benefit
SRTB Risk Frequency
Predictor
Estimate
HDI (95%)
ROPE
Estimate
HDI (95%)
ROPE
Estimate
HDI (95%)
ROPE
Estimate
HDI (95&)
ROPE
Intercept
0.62
0.38, 0.86
0%
0.28
-0.02, 0.59
9%
0.33
0.03, 0.63
5%
-0.26
-0.55, 0.03
12%
Dominance
0.36
0.28, 0.45
0%
0.29
0.2, 0.37
0%
0.26
0.17, 0.34
0%
-0.49
-0.62, -0.36
0%
Gender
-0.27
-0.41, -0.12
0%
-0.12
-0.27, 0.03
41%
-0.17
-0.32, -0.02
15%
0.06
-0.03, 0.15
81%
Prestige
0.00
-0.09, 0.09
100%
0.06
-0.02, 0.15
81%
0.06
-0.03, 0.15
83%
0.06
-0.04, 0.17
77%
Leadership
-0.06
-0.14, 0.03
87%
-0.05
-0.14, 0.03
88%
-0.06
-0.14, 0.03
85%
0.08
0, 0.17
65%
B-PNI
-0.04
-0.15, 0.07
89%
0.01
-0.08, 0.09
100%
0.01
-0.08, 0.1
100%
0.09
-0.03, 0.2
61%
Age
-0.02
-0.02, -0.01
100%
-0.01
-0.02, 0
100%
-0.01
-0.02, 0
100%
0.01
0, 0.02
100%
Dominance : Gender
0.48
0.45, 0.52
0%
0.49
0.45, 0.53
0%
0.49
0.45, 0.53
0%
0.49
0.45, 0.53
0%
Prestige : Gender
0.08
-0.24, 0.4
45%
0.25
-0.06, 0.56
15%
-0.03
-0.33, 0.28
50%
0.07
-0.23, 0.36
48%
Leadership : Gender
-0.27
-0.61, 0.07
15%
-0.35
-0.69, -0.01
5%
-0.04
-0.37, 0.3
46%
-0.22
-0.53, 0.09
21%
Gender : B-PNI
-0.35
-0.66, -0.05
3%
-0.56
-0.85, -0.26
0%
-0.58
-0.87, -0.3
0%
0.01
-0.27, 0.29
54%
Note: ROPE equates to percentage in region of practical equivalence. HDI equates to high density interval of the posterior distribution.
Show the code
knitr::include_graphics("../Analysis/t2.jpg")
Figure 2: Experiment 1 | Bayesian regression of individual SRTB domains as response and dominance, prestige, leadership, and pathlogical narcissism as predictors with gender interactions.
m1 model comparison
loo comparison
Show the code
m1_comparison <-loo(m1, m1_interaction)
Show the code
m1_comparison
Output of model 'm1':
Computed from 36000 by 194 log-likelihood matrix
Estimate SE
elpd_loo -1066.0 31.7
p_loo 27.1 4.3
looic 2132.0 63.4
------
Monte Carlo SE of elpd_loo is 0.1.
Pareto k diagnostic values:
Count Pct. Min. n_eff
(-Inf, 0.5] (good) 193 99.5% 2456
(0.5, 0.7] (ok) 1 0.5% 609
(0.7, 1] (bad) 0 0.0% <NA>
(1, Inf) (very bad) 0 0.0% <NA>
All Pareto k estimates are ok (k < 0.7).
See help('pareto-k-diagnostic') for details.
Output of model 'm1_interaction':
Computed from 36000 by 194 log-likelihood matrix
Estimate SE
elpd_loo -1108.6 31.8
p_loo 38.1 5.0
looic 2217.3 63.5
------
Monte Carlo SE of elpd_loo is 0.1.
Pareto k diagnostic values:
Count Pct. Min. n_eff
(-Inf, 0.5] (good) 191 98.5% 3863
(0.5, 0.7] (ok) 3 1.5% 579
(0.7, 1] (bad) 0 0.0% <NA>
(1, Inf) (very bad) 0 0.0% <NA>
All Pareto k estimates are ok (k < 0.7).
See help('pareto-k-diagnostic') for details.
Model comparisons:
elpd_diff se_diff
m1 0.0 0.0
m1_interaction -42.7 8.8