Introduction

In this assignment, we answer our research question with help of multiple imputation for the missing values in our dataset.

data_complete <- readRDS("g3_complete_data.rds")
data_incomplete <- readRDS("g3_incomplete_data.rds")

#adding depression score:
data_complete1 <- data_complete %>% mutate(depression_score = dep1 + dep2 + dep3 + dep4 + dep5 + dep6 + dep7 + dep8 + dep9)

data_incomplete1 <- data_incomplete %>% mutate(depression_score = dep1 + dep2 + dep3 + dep4 + dep5 + dep6 + dep7 + dep8 + dep9)

Multiple Imputation

The missing data are multiply imputed:

# default multiple imputation with 10 imps, 20 its: 
imp <- mice(data_incomplete1, m = 10, maxit = 20, seed = 1234567, print = FALSE)

# checking the loggedEvents; due to depression_score:
imp$loggedEvents %>% head()
##   it im             dep   meth              out
## 1  2  3          height    pmm depression_score
## 2  2  3             bmi    pmm depression_score
## 3  2  3         bp_sys2    pmm depression_score
## 4  2  3         bp_dia2    pmm depression_score
## 5  2  6 drink_regularly logreg depression_score
## 6  2  8          weight    pmm depression_score
# looking at the plots from our initial model:
plot(imp)

densityplot(imp)
## Hint: Did you know, an equivalent figure can be created with `ggmice()`?
## For example, to plot a variable named 'my_vrb' from a mids object called 'my_mids', run: 
## 
##     ggmice(my_mids, ggplot2::aes(x = my_vrb, group = .imp)) +
##     ggplot2::geom_density() 
## 
## See amices.org/ggmice for more info.

stripplot(imp)
## Hint: Did you know, an equivalent figure can be created with `ggmice()`?
## For example, to plot a variable named 'my_vrb' from a mids object called 'my_mids', run: 
## 
##     ggmice(my_mids, ggplot2::aes(x = .imp, y = my_vrb)) +
##     ggplot2::geom_jitter() 
## 
## See amices.org/ggmice for more info.

# auto-correlation should ideally be 0, but deviates from that for some variables:
conv <- convergence(imp)
ggplot(conv, aes(x = .it, y = ac)) +
  geom_hline(yintercept = 0, color = "grey", linetype = "dashed") +
  geom_line() + 
  facet_wrap(~vrb, scales = "free") + 
  theme_classic() + 
  labs(x = "Iteration", y = "Auto-correlation")

# potential scale reduction factors are high; ideally they should be 1 for each variable:

ggplot(conv, aes(x = .it, y = psrf)) +
  geom_hline(yintercept = 1, color = "grey", linetype = "dashed") +
  geom_line() + 
  facet_wrap(~vrb, scales = "free") + 
  theme_classic() + 
  labs(x = "Iteration", y = "Potential scale reduction factor")

We have quantified and displayed the non-convergence. Now we try to solve the issue.

Since we added a column for the depression score, which is the sum of all depression scores in a row, we are going to do passive imputation for this variable. To implement passive imputation, we adjust two features of the mice() setup: the method vector: we use the method vector to define the deterministic relations, and the predictor matrix: we adjust the predictor matrix to keep a transformed variable from being used as a predictor of its raw version.

# currently all missing data is treated with pmm:
(method <- imp$method)
##               id              sex              age        ethnicity 
##               ""               ""               ""               "" 
##        education          marital   household_size household_income 
##               ""               ""               ""               "" 
##           weight           height              bmi            pulse 
##            "pmm"            "pmm"            "pmm"               "" 
##          bp_sys1          bp_dia1          bp_sys2          bp_dia2 
##               ""               ""            "pmm"            "pmm" 
##         time_sed  drink_regularly    days_drinking             dep1 
##               ""         "logreg"               ""               "" 
##             dep2             dep3             dep4             dep5 
##            "pmm"            "pmm"               ""            "pmm" 
##             dep6             dep7             dep8             dep9 
##            "pmm"               ""            "pmm"            "pmm" 
## depression_score 
##            "pmm"
# since our data is not MCAR, pmm is mostly fine:
out <- mcar_test(data_incomplete)
out$statistic  # 1448.785
## [1] 1448.785
out$p.value # 1.968048e-10
## [1] 1.968048e-10
# we change the method to implement passive imputation depression_score :
method["depression_score"]<- "~ I(dep1 + dep2 + dep3 + dep4 + dep5 + dep6 + dep7 + dep8 + dep9)"

method
##                                                                  id 
##                                                                  "" 
##                                                                 sex 
##                                                                  "" 
##                                                                 age 
##                                                                  "" 
##                                                           ethnicity 
##                                                                  "" 
##                                                           education 
##                                                                  "" 
##                                                             marital 
##                                                                  "" 
##                                                      household_size 
##                                                                  "" 
##                                                    household_income 
##                                                                  "" 
##                                                              weight 
##                                                               "pmm" 
##                                                              height 
##                                                               "pmm" 
##                                                                 bmi 
##                                                               "pmm" 
##                                                               pulse 
##                                                                  "" 
##                                                             bp_sys1 
##                                                                  "" 
##                                                             bp_dia1 
##                                                                  "" 
##                                                             bp_sys2 
##                                                               "pmm" 
##                                                             bp_dia2 
##                                                               "pmm" 
##                                                            time_sed 
##                                                                  "" 
##                                                     drink_regularly 
##                                                            "logreg" 
##                                                       days_drinking 
##                                                                  "" 
##                                                                dep1 
##                                                                  "" 
##                                                                dep2 
##                                                               "pmm" 
##                                                                dep3 
##                                                               "pmm" 
##                                                                dep4 
##                                                                  "" 
##                                                                dep5 
##                                                               "pmm" 
##                                                                dep6 
##                                                               "pmm" 
##                                                                dep7 
##                                                                  "" 
##                                                                dep8 
##                                                               "pmm" 
##                                                                dep9 
##                                                               "pmm" 
##                                                    depression_score 
## "~ I(dep1 + dep2 + dep3 + dep4 + dep5 + dep6 + dep7 + dep8 + dep9)"
# adjusting the prediction matrix to avoid circularity:
(pm <- imp$predictorMatrix)
##                  id sex age ethnicity education marital household_size
## id                0   1   1         1         1       1              1
## sex               1   0   1         1         1       1              1
## age               1   1   0         1         1       1              1
## ethnicity         1   1   1         0         1       1              1
## education         1   1   1         1         0       1              1
## marital           1   1   1         1         1       0              1
## household_size    1   1   1         1         1       1              0
## household_income  1   1   1         1         1       1              1
## weight            1   1   1         1         1       1              1
## height            1   1   1         1         1       1              1
## bmi               1   1   1         1         1       1              1
## pulse             1   1   1         1         1       1              1
## bp_sys1           1   1   1         1         1       1              1
## bp_dia1           1   1   1         1         1       1              1
## bp_sys2           1   1   1         1         1       1              1
## bp_dia2           1   1   1         1         1       1              1
## time_sed          1   1   1         1         1       1              1
## drink_regularly   1   1   1         1         1       1              1
## days_drinking     1   1   1         1         1       1              1
## dep1              1   1   1         1         1       1              1
## dep2              1   1   1         1         1       1              1
## dep3              1   1   1         1         1       1              1
## dep4              1   1   1         1         1       1              1
## dep5              1   1   1         1         1       1              1
## dep6              1   1   1         1         1       1              1
## dep7              1   1   1         1         1       1              1
## dep8              1   1   1         1         1       1              1
## dep9              1   1   1         1         1       1              1
## depression_score  1   1   1         1         1       1              1
##                  household_income weight height bmi pulse bp_sys1 bp_dia1
## id                              1      1      1   1     1       1       1
## sex                             1      1      1   1     1       1       1
## age                             1      1      1   1     1       1       1
## ethnicity                       1      1      1   1     1       1       1
## education                       1      1      1   1     1       1       1
## marital                         1      1      1   1     1       1       1
## household_size                  1      1      1   1     1       1       1
## household_income                0      1      1   1     1       1       1
## weight                          1      0      1   1     1       1       1
## height                          1      1      0   1     1       1       1
## bmi                             1      1      1   0     1       1       1
## pulse                           1      1      1   1     0       1       1
## bp_sys1                         1      1      1   1     1       0       1
## bp_dia1                         1      1      1   1     1       1       0
## bp_sys2                         1      1      1   1     1       1       1
## bp_dia2                         1      1      1   1     1       1       1
## time_sed                        1      1      1   1     1       1       1
## drink_regularly                 1      1      1   1     1       1       1
## days_drinking                   1      1      1   1     1       1       1
## dep1                            1      1      1   1     1       1       1
## dep2                            1      1      1   1     1       1       1
## dep3                            1      1      1   1     1       1       1
## dep4                            1      1      1   1     1       1       1
## dep5                            1      1      1   1     1       1       1
## dep6                            1      1      1   1     1       1       1
## dep7                            1      1      1   1     1       1       1
## dep8                            1      1      1   1     1       1       1
## dep9                            1      1      1   1     1       1       1
## depression_score                1      1      1   1     1       1       1
##                  bp_sys2 bp_dia2 time_sed drink_regularly days_drinking dep1
## id                     1       1        1               1             1    1
## sex                    1       1        1               1             1    1
## age                    1       1        1               1             1    1
## ethnicity              1       1        1               1             1    1
## education              1       1        1               1             1    1
## marital                1       1        1               1             1    1
## household_size         1       1        1               1             1    1
## household_income       1       1        1               1             1    1
## weight                 1       1        1               1             1    1
## height                 1       1        1               1             1    1
## bmi                    1       1        1               1             1    1
## pulse                  1       1        1               1             1    1
## bp_sys1                1       1        1               1             1    1
## bp_dia1                1       1        1               1             1    1
## bp_sys2                0       1        1               1             1    1
## bp_dia2                1       0        1               1             1    1
## time_sed               1       1        0               1             1    1
## drink_regularly        1       1        1               0             1    1
## days_drinking          1       1        1               1             0    1
## dep1                   1       1        1               1             1    0
## dep2                   1       1        1               1             1    1
## dep3                   1       1        1               1             1    1
## dep4                   1       1        1               1             1    1
## dep5                   1       1        1               1             1    1
## dep6                   1       1        1               1             1    1
## dep7                   1       1        1               1             1    1
## dep8                   1       1        1               1             1    1
## dep9                   1       1        1               1             1    1
## depression_score       1       1        1               1             1    1
##                  dep2 dep3 dep4 dep5 dep6 dep7 dep8 dep9 depression_score
## id                  1    1    1    1    1    1    1    1                1
## sex                 1    1    1    1    1    1    1    1                1
## age                 1    1    1    1    1    1    1    1                1
## ethnicity           1    1    1    1    1    1    1    1                1
## education           1    1    1    1    1    1    1    1                1
## marital             1    1    1    1    1    1    1    1                1
## household_size      1    1    1    1    1    1    1    1                1
## household_income    1    1    1    1    1    1    1    1                1
## weight              1    1    1    1    1    1    1    1                1
## height              1    1    1    1    1    1    1    1                1
## bmi                 1    1    1    1    1    1    1    1                1
## pulse               1    1    1    1    1    1    1    1                1
## bp_sys1             1    1    1    1    1    1    1    1                1
## bp_dia1             1    1    1    1    1    1    1    1                1
## bp_sys2             1    1    1    1    1    1    1    1                1
## bp_dia2             1    1    1    1    1    1    1    1                1
## time_sed            1    1    1    1    1    1    1    1                1
## drink_regularly     1    1    1    1    1    1    1    1                1
## days_drinking       1    1    1    1    1    1    1    1                1
## dep1                1    1    1    1    1    1    1    1                1
## dep2                0    1    1    1    1    1    1    1                1
## dep3                1    0    1    1    1    1    1    1                1
## dep4                1    1    0    1    1    1    1    1                1
## dep5                1    1    1    0    1    1    1    1                1
## dep6                1    1    1    1    0    1    1    1                1
## dep7                1    1    1    1    1    0    1    1                1
## dep8                1    1    1    1    1    1    0    1                1
## dep9                1    1    1    1    1    1    1    0                1
## depression_score    1    1    1    1    1    1    1    1                0
pm <- as.data.frame(pm) #converted to df to change the cells

pm[20:28, 29] <- 0 #changing the values to 0

pm <- as.matrix(pm) #conversion back to matrix

pm
##                  id sex age ethnicity education marital household_size
## id                0   1   1         1         1       1              1
## sex               1   0   1         1         1       1              1
## age               1   1   0         1         1       1              1
## ethnicity         1   1   1         0         1       1              1
## education         1   1   1         1         0       1              1
## marital           1   1   1         1         1       0              1
## household_size    1   1   1         1         1       1              0
## household_income  1   1   1         1         1       1              1
## weight            1   1   1         1         1       1              1
## height            1   1   1         1         1       1              1
## bmi               1   1   1         1         1       1              1
## pulse             1   1   1         1         1       1              1
## bp_sys1           1   1   1         1         1       1              1
## bp_dia1           1   1   1         1         1       1              1
## bp_sys2           1   1   1         1         1       1              1
## bp_dia2           1   1   1         1         1       1              1
## time_sed          1   1   1         1         1       1              1
## drink_regularly   1   1   1         1         1       1              1
## days_drinking     1   1   1         1         1       1              1
## dep1              1   1   1         1         1       1              1
## dep2              1   1   1         1         1       1              1
## dep3              1   1   1         1         1       1              1
## dep4              1   1   1         1         1       1              1
## dep5              1   1   1         1         1       1              1
## dep6              1   1   1         1         1       1              1
## dep7              1   1   1         1         1       1              1
## dep8              1   1   1         1         1       1              1
## dep9              1   1   1         1         1       1              1
## depression_score  1   1   1         1         1       1              1
##                  household_income weight height bmi pulse bp_sys1 bp_dia1
## id                              1      1      1   1     1       1       1
## sex                             1      1      1   1     1       1       1
## age                             1      1      1   1     1       1       1
## ethnicity                       1      1      1   1     1       1       1
## education                       1      1      1   1     1       1       1
## marital                         1      1      1   1     1       1       1
## household_size                  1      1      1   1     1       1       1
## household_income                0      1      1   1     1       1       1
## weight                          1      0      1   1     1       1       1
## height                          1      1      0   1     1       1       1
## bmi                             1      1      1   0     1       1       1
## pulse                           1      1      1   1     0       1       1
## bp_sys1                         1      1      1   1     1       0       1
## bp_dia1                         1      1      1   1     1       1       0
## bp_sys2                         1      1      1   1     1       1       1
## bp_dia2                         1      1      1   1     1       1       1
## time_sed                        1      1      1   1     1       1       1
## drink_regularly                 1      1      1   1     1       1       1
## days_drinking                   1      1      1   1     1       1       1
## dep1                            1      1      1   1     1       1       1
## dep2                            1      1      1   1     1       1       1
## dep3                            1      1      1   1     1       1       1
## dep4                            1      1      1   1     1       1       1
## dep5                            1      1      1   1     1       1       1
## dep6                            1      1      1   1     1       1       1
## dep7                            1      1      1   1     1       1       1
## dep8                            1      1      1   1     1       1       1
## dep9                            1      1      1   1     1       1       1
## depression_score                1      1      1   1     1       1       1
##                  bp_sys2 bp_dia2 time_sed drink_regularly days_drinking dep1
## id                     1       1        1               1             1    1
## sex                    1       1        1               1             1    1
## age                    1       1        1               1             1    1
## ethnicity              1       1        1               1             1    1
## education              1       1        1               1             1    1
## marital                1       1        1               1             1    1
## household_size         1       1        1               1             1    1
## household_income       1       1        1               1             1    1
## weight                 1       1        1               1             1    1
## height                 1       1        1               1             1    1
## bmi                    1       1        1               1             1    1
## pulse                  1       1        1               1             1    1
## bp_sys1                1       1        1               1             1    1
## bp_dia1                1       1        1               1             1    1
## bp_sys2                0       1        1               1             1    1
## bp_dia2                1       0        1               1             1    1
## time_sed               1       1        0               1             1    1
## drink_regularly        1       1        1               0             1    1
## days_drinking          1       1        1               1             0    1
## dep1                   1       1        1               1             1    0
## dep2                   1       1        1               1             1    1
## dep3                   1       1        1               1             1    1
## dep4                   1       1        1               1             1    1
## dep5                   1       1        1               1             1    1
## dep6                   1       1        1               1             1    1
## dep7                   1       1        1               1             1    1
## dep8                   1       1        1               1             1    1
## dep9                   1       1        1               1             1    1
## depression_score       1       1        1               1             1    1
##                  dep2 dep3 dep4 dep5 dep6 dep7 dep8 dep9 depression_score
## id                  1    1    1    1    1    1    1    1                1
## sex                 1    1    1    1    1    1    1    1                1
## age                 1    1    1    1    1    1    1    1                1
## ethnicity           1    1    1    1    1    1    1    1                1
## education           1    1    1    1    1    1    1    1                1
## marital             1    1    1    1    1    1    1    1                1
## household_size      1    1    1    1    1    1    1    1                1
## household_income    1    1    1    1    1    1    1    1                1
## weight              1    1    1    1    1    1    1    1                1
## height              1    1    1    1    1    1    1    1                1
## bmi                 1    1    1    1    1    1    1    1                1
## pulse               1    1    1    1    1    1    1    1                1
## bp_sys1             1    1    1    1    1    1    1    1                1
## bp_dia1             1    1    1    1    1    1    1    1                1
## bp_sys2             1    1    1    1    1    1    1    1                1
## bp_dia2             1    1    1    1    1    1    1    1                1
## time_sed            1    1    1    1    1    1    1    1                1
## drink_regularly     1    1    1    1    1    1    1    1                1
## days_drinking       1    1    1    1    1    1    1    1                1
## dep1                1    1    1    1    1    1    1    1                0
## dep2                0    1    1    1    1    1    1    1                0
## dep3                1    0    1    1    1    1    1    1                0
## dep4                1    1    0    1    1    1    1    1                0
## dep5                1    1    1    0    1    1    1    1                0
## dep6                1    1    1    1    0    1    1    1                0
## dep7                1    1    1    1    1    0    1    1                0
## dep8                1    1    1    1    1    1    0    1                0
## dep9                1    1    1    1    1    1    1    0                0
## depression_score    1    1    1    1    1    1    1    1                0
imp1 <- mice(data_incomplete1,
            m = 10, 
            method = method, 
            predictorMatrix = pm, 
            maxit = 20, 
            seed = 1234567, 
            print = FALSE)


# looking at the plots from our passive imputation model:
plot(imp1)

densityplot(imp1)
## Hint: Did you know, an equivalent figure can be created with `ggmice()`?
## For example, to plot a variable named 'my_vrb' from a mids object called 'my_mids', run: 
## 
##     ggmice(my_mids, ggplot2::aes(x = my_vrb, group = .imp)) +
##     ggplot2::geom_density() 
## 
## See amices.org/ggmice for more info.

stripplot(imp1)
## Hint: Did you know, an equivalent figure can be created with `ggmice()`?
## For example, to plot a variable named 'my_vrb' from a mids object called 'my_mids', run: 
## 
##     ggmice(my_mids, ggplot2::aes(x = .imp, y = my_vrb)) +
##     ggplot2::geom_jitter() 
## 
## See amices.org/ggmice for more info.

#BMI, height, weight could be better. The rest looks good. We add one more pmi for BMI:

method["bmi"] <-  "~ I(weight / (height / 100)^2)"
method
##                                                                  id 
##                                                                  "" 
##                                                                 sex 
##                                                                  "" 
##                                                                 age 
##                                                                  "" 
##                                                           ethnicity 
##                                                                  "" 
##                                                           education 
##                                                                  "" 
##                                                             marital 
##                                                                  "" 
##                                                      household_size 
##                                                                  "" 
##                                                    household_income 
##                                                                  "" 
##                                                              weight 
##                                                               "pmm" 
##                                                              height 
##                                                               "pmm" 
##                                                                 bmi 
##                                    "~ I(weight / (height / 100)^2)" 
##                                                               pulse 
##                                                                  "" 
##                                                             bp_sys1 
##                                                                  "" 
##                                                             bp_dia1 
##                                                                  "" 
##                                                             bp_sys2 
##                                                               "pmm" 
##                                                             bp_dia2 
##                                                               "pmm" 
##                                                            time_sed 
##                                                                  "" 
##                                                     drink_regularly 
##                                                            "logreg" 
##                                                       days_drinking 
##                                                                  "" 
##                                                                dep1 
##                                                                  "" 
##                                                                dep2 
##                                                               "pmm" 
##                                                                dep3 
##                                                               "pmm" 
##                                                                dep4 
##                                                                  "" 
##                                                                dep5 
##                                                               "pmm" 
##                                                                dep6 
##                                                               "pmm" 
##                                                                dep7 
##                                                                  "" 
##                                                                dep8 
##                                                               "pmm" 
##                                                                dep9 
##                                                               "pmm" 
##                                                    depression_score 
## "~ I(dep1 + dep2 + dep3 + dep4 + dep5 + dep6 + dep7 + dep8 + dep9)"
# adjusting the prediction matrix to avoid circularity:
(pm1 <- imp1$predictorMatrix)
##                  id sex age ethnicity education marital household_size
## id                0   1   1         1         1       1              1
## sex               1   0   1         1         1       1              1
## age               1   1   0         1         1       1              1
## ethnicity         1   1   1         0         1       1              1
## education         1   1   1         1         0       1              1
## marital           1   1   1         1         1       0              1
## household_size    1   1   1         1         1       1              0
## household_income  1   1   1         1         1       1              1
## weight            1   1   1         1         1       1              1
## height            1   1   1         1         1       1              1
## bmi               1   1   1         1         1       1              1
## pulse             1   1   1         1         1       1              1
## bp_sys1           1   1   1         1         1       1              1
## bp_dia1           1   1   1         1         1       1              1
## bp_sys2           1   1   1         1         1       1              1
## bp_dia2           1   1   1         1         1       1              1
## time_sed          1   1   1         1         1       1              1
## drink_regularly   1   1   1         1         1       1              1
## days_drinking     1   1   1         1         1       1              1
## dep1              1   1   1         1         1       1              1
## dep2              1   1   1         1         1       1              1
## dep3              1   1   1         1         1       1              1
## dep4              1   1   1         1         1       1              1
## dep5              1   1   1         1         1       1              1
## dep6              1   1   1         1         1       1              1
## dep7              1   1   1         1         1       1              1
## dep8              1   1   1         1         1       1              1
## dep9              1   1   1         1         1       1              1
## depression_score  1   1   1         1         1       1              1
##                  household_income weight height bmi pulse bp_sys1 bp_dia1
## id                              1      1      1   1     1       1       1
## sex                             1      1      1   1     1       1       1
## age                             1      1      1   1     1       1       1
## ethnicity                       1      1      1   1     1       1       1
## education                       1      1      1   1     1       1       1
## marital                         1      1      1   1     1       1       1
## household_size                  1      1      1   1     1       1       1
## household_income                0      1      1   1     1       1       1
## weight                          1      0      1   1     1       1       1
## height                          1      1      0   1     1       1       1
## bmi                             1      1      1   0     1       1       1
## pulse                           1      1      1   1     0       1       1
## bp_sys1                         1      1      1   1     1       0       1
## bp_dia1                         1      1      1   1     1       1       0
## bp_sys2                         1      1      1   1     1       1       1
## bp_dia2                         1      1      1   1     1       1       1
## time_sed                        1      1      1   1     1       1       1
## drink_regularly                 1      1      1   1     1       1       1
## days_drinking                   1      1      1   1     1       1       1
## dep1                            1      1      1   1     1       1       1
## dep2                            1      1      1   1     1       1       1
## dep3                            1      1      1   1     1       1       1
## dep4                            1      1      1   1     1       1       1
## dep5                            1      1      1   1     1       1       1
## dep6                            1      1      1   1     1       1       1
## dep7                            1      1      1   1     1       1       1
## dep8                            1      1      1   1     1       1       1
## dep9                            1      1      1   1     1       1       1
## depression_score                1      1      1   1     1       1       1
##                  bp_sys2 bp_dia2 time_sed drink_regularly days_drinking dep1
## id                     1       1        1               1             1    1
## sex                    1       1        1               1             1    1
## age                    1       1        1               1             1    1
## ethnicity              1       1        1               1             1    1
## education              1       1        1               1             1    1
## marital                1       1        1               1             1    1
## household_size         1       1        1               1             1    1
## household_income       1       1        1               1             1    1
## weight                 1       1        1               1             1    1
## height                 1       1        1               1             1    1
## bmi                    1       1        1               1             1    1
## pulse                  1       1        1               1             1    1
## bp_sys1                1       1        1               1             1    1
## bp_dia1                1       1        1               1             1    1
## bp_sys2                0       1        1               1             1    1
## bp_dia2                1       0        1               1             1    1
## time_sed               1       1        0               1             1    1
## drink_regularly        1       1        1               0             1    1
## days_drinking          1       1        1               1             0    1
## dep1                   1       1        1               1             1    0
## dep2                   1       1        1               1             1    1
## dep3                   1       1        1               1             1    1
## dep4                   1       1        1               1             1    1
## dep5                   1       1        1               1             1    1
## dep6                   1       1        1               1             1    1
## dep7                   1       1        1               1             1    1
## dep8                   1       1        1               1             1    1
## dep9                   1       1        1               1             1    1
## depression_score       1       1        1               1             1    1
##                  dep2 dep3 dep4 dep5 dep6 dep7 dep8 dep9 depression_score
## id                  1    1    1    1    1    1    1    1                1
## sex                 1    1    1    1    1    1    1    1                1
## age                 1    1    1    1    1    1    1    1                1
## ethnicity           1    1    1    1    1    1    1    1                1
## education           1    1    1    1    1    1    1    1                1
## marital             1    1    1    1    1    1    1    1                1
## household_size      1    1    1    1    1    1    1    1                1
## household_income    1    1    1    1    1    1    1    1                1
## weight              1    1    1    1    1    1    1    1                1
## height              1    1    1    1    1    1    1    1                1
## bmi                 1    1    1    1    1    1    1    1                1
## pulse               1    1    1    1    1    1    1    1                1
## bp_sys1             1    1    1    1    1    1    1    1                1
## bp_dia1             1    1    1    1    1    1    1    1                1
## bp_sys2             1    1    1    1    1    1    1    1                1
## bp_dia2             1    1    1    1    1    1    1    1                1
## time_sed            1    1    1    1    1    1    1    1                1
## drink_regularly     1    1    1    1    1    1    1    1                1
## days_drinking       1    1    1    1    1    1    1    1                1
## dep1                1    1    1    1    1    1    1    1                0
## dep2                0    1    1    1    1    1    1    1                0
## dep3                1    0    1    1    1    1    1    1                0
## dep4                1    1    0    1    1    1    1    1                0
## dep5                1    1    1    0    1    1    1    1                0
## dep6                1    1    1    1    0    1    1    1                0
## dep7                1    1    1    1    1    0    1    1                0
## dep8                1    1    1    1    1    1    0    1                0
## dep9                1    1    1    1    1    1    1    0                0
## depression_score    1    1    1    1    1    1    1    1                0
pm1 <- as.data.frame(pm1) #converted to df to change the cells

pm1[9:10, 11] <- 0 #changing the values to 0

pm1 <- as.matrix(pm1) #conversion back to matrix

pm1
##                  id sex age ethnicity education marital household_size
## id                0   1   1         1         1       1              1
## sex               1   0   1         1         1       1              1
## age               1   1   0         1         1       1              1
## ethnicity         1   1   1         0         1       1              1
## education         1   1   1         1         0       1              1
## marital           1   1   1         1         1       0              1
## household_size    1   1   1         1         1       1              0
## household_income  1   1   1         1         1       1              1
## weight            1   1   1         1         1       1              1
## height            1   1   1         1         1       1              1
## bmi               1   1   1         1         1       1              1
## pulse             1   1   1         1         1       1              1
## bp_sys1           1   1   1         1         1       1              1
## bp_dia1           1   1   1         1         1       1              1
## bp_sys2           1   1   1         1         1       1              1
## bp_dia2           1   1   1         1         1       1              1
## time_sed          1   1   1         1         1       1              1
## drink_regularly   1   1   1         1         1       1              1
## days_drinking     1   1   1         1         1       1              1
## dep1              1   1   1         1         1       1              1
## dep2              1   1   1         1         1       1              1
## dep3              1   1   1         1         1       1              1
## dep4              1   1   1         1         1       1              1
## dep5              1   1   1         1         1       1              1
## dep6              1   1   1         1         1       1              1
## dep7              1   1   1         1         1       1              1
## dep8              1   1   1         1         1       1              1
## dep9              1   1   1         1         1       1              1
## depression_score  1   1   1         1         1       1              1
##                  household_income weight height bmi pulse bp_sys1 bp_dia1
## id                              1      1      1   1     1       1       1
## sex                             1      1      1   1     1       1       1
## age                             1      1      1   1     1       1       1
## ethnicity                       1      1      1   1     1       1       1
## education                       1      1      1   1     1       1       1
## marital                         1      1      1   1     1       1       1
## household_size                  1      1      1   1     1       1       1
## household_income                0      1      1   1     1       1       1
## weight                          1      0      1   0     1       1       1
## height                          1      1      0   0     1       1       1
## bmi                             1      1      1   0     1       1       1
## pulse                           1      1      1   1     0       1       1
## bp_sys1                         1      1      1   1     1       0       1
## bp_dia1                         1      1      1   1     1       1       0
## bp_sys2                         1      1      1   1     1       1       1
## bp_dia2                         1      1      1   1     1       1       1
## time_sed                        1      1      1   1     1       1       1
## drink_regularly                 1      1      1   1     1       1       1
## days_drinking                   1      1      1   1     1       1       1
## dep1                            1      1      1   1     1       1       1
## dep2                            1      1      1   1     1       1       1
## dep3                            1      1      1   1     1       1       1
## dep4                            1      1      1   1     1       1       1
## dep5                            1      1      1   1     1       1       1
## dep6                            1      1      1   1     1       1       1
## dep7                            1      1      1   1     1       1       1
## dep8                            1      1      1   1     1       1       1
## dep9                            1      1      1   1     1       1       1
## depression_score                1      1      1   1     1       1       1
##                  bp_sys2 bp_dia2 time_sed drink_regularly days_drinking dep1
## id                     1       1        1               1             1    1
## sex                    1       1        1               1             1    1
## age                    1       1        1               1             1    1
## ethnicity              1       1        1               1             1    1
## education              1       1        1               1             1    1
## marital                1       1        1               1             1    1
## household_size         1       1        1               1             1    1
## household_income       1       1        1               1             1    1
## weight                 1       1        1               1             1    1
## height                 1       1        1               1             1    1
## bmi                    1       1        1               1             1    1
## pulse                  1       1        1               1             1    1
## bp_sys1                1       1        1               1             1    1
## bp_dia1                1       1        1               1             1    1
## bp_sys2                0       1        1               1             1    1
## bp_dia2                1       0        1               1             1    1
## time_sed               1       1        0               1             1    1
## drink_regularly        1       1        1               0             1    1
## days_drinking          1       1        1               1             0    1
## dep1                   1       1        1               1             1    0
## dep2                   1       1        1               1             1    1
## dep3                   1       1        1               1             1    1
## dep4                   1       1        1               1             1    1
## dep5                   1       1        1               1             1    1
## dep6                   1       1        1               1             1    1
## dep7                   1       1        1               1             1    1
## dep8                   1       1        1               1             1    1
## dep9                   1       1        1               1             1    1
## depression_score       1       1        1               1             1    1
##                  dep2 dep3 dep4 dep5 dep6 dep7 dep8 dep9 depression_score
## id                  1    1    1    1    1    1    1    1                1
## sex                 1    1    1    1    1    1    1    1                1
## age                 1    1    1    1    1    1    1    1                1
## ethnicity           1    1    1    1    1    1    1    1                1
## education           1    1    1    1    1    1    1    1                1
## marital             1    1    1    1    1    1    1    1                1
## household_size      1    1    1    1    1    1    1    1                1
## household_income    1    1    1    1    1    1    1    1                1
## weight              1    1    1    1    1    1    1    1                1
## height              1    1    1    1    1    1    1    1                1
## bmi                 1    1    1    1    1    1    1    1                1
## pulse               1    1    1    1    1    1    1    1                1
## bp_sys1             1    1    1    1    1    1    1    1                1
## bp_dia1             1    1    1    1    1    1    1    1                1
## bp_sys2             1    1    1    1    1    1    1    1                1
## bp_dia2             1    1    1    1    1    1    1    1                1
## time_sed            1    1    1    1    1    1    1    1                1
## drink_regularly     1    1    1    1    1    1    1    1                1
## days_drinking       1    1    1    1    1    1    1    1                1
## dep1                1    1    1    1    1    1    1    1                0
## dep2                0    1    1    1    1    1    1    1                0
## dep3                1    0    1    1    1    1    1    1                0
## dep4                1    1    0    1    1    1    1    1                0
## dep5                1    1    1    0    1    1    1    1                0
## dep6                1    1    1    1    0    1    1    1                0
## dep7                1    1    1    1    1    0    1    1                0
## dep8                1    1    1    1    1    1    0    1                0
## dep9                1    1    1    1    1    1    1    0                0
## depression_score    1    1    1    1    1    1    1    1                0
imp2 <- mice(data_incomplete1,
            m = 10, 
            method = method, 
            predictorMatrix = pm1, 
            maxit = 20, 
            seed = 1234567, 
            print = FALSE)




# Checking if the deterministic definition of depression score is maintained in the imputed data:
xyplot(imp1, depression_score ~  I(dep1 + dep2 + dep3 + dep4 + dep5 + dep6 + dep7 + dep8 + dep9), ylab="Imputed depression score", xlab="Calculated depression score")
## Hint: Did you know, an equivalent figure can be created with `ggmice()`?
## For example, to plot 2 variables named 'my_x' and 'my_y' from a mids object called 'my_mids', run: 
## 
##     ggmice(my_mids, ggplot2::aes(x = my_x, y = my_y)) +
##     ggplot2::geom_point() 
## 
## See amices.org/ggmice for more info.

# Checking if the deterministic definition of BMI is maintained in the imputed data:
xyplot(imp2, bmi ~ I(weight / (height / 100)^2), ylab="Imputed BMI", xlab="Calculated BMI")
## Hint: Did you know, an equivalent figure can be created with `ggmice()`?
## For example, to plot 2 variables named 'my_x' and 'my_y' from a mids object called 'my_mids', run: 
## 
##     ggmice(my_mids, ggplot2::aes(x = my_x, y = my_y)) +
##     ggplot2::geom_point() 
## 
## See amices.org/ggmice for more info.

# looking at the plots from our model with 2 passive imputations:
plot(imp2) #convergence is better now: also good for bmi, height, weight

densityplot(imp2) #plausibility
## Hint: Did you know, an equivalent figure can be created with `ggmice()`?
## For example, to plot a variable named 'my_vrb' from a mids object called 'my_mids', run: 
## 
##     ggmice(my_mids, ggplot2::aes(x = my_vrb, group = .imp)) +
##     ggplot2::geom_density() 
## 
## See amices.org/ggmice for more info.

stripplot(imp2) #plausibility
## Hint: Did you know, an equivalent figure can be created with `ggmice()`?
## For example, to plot a variable named 'my_vrb' from a mids object called 'my_mids', run: 
## 
##     ggmice(my_mids, ggplot2::aes(x = .imp, y = my_vrb)) +
##     ggplot2::geom_jitter() 
## 
## See amices.org/ggmice for more info.

# checking the default prediction matrix to find correlating variables: BMI (and height + weight) correlate with depression_score (and two blood pressure variables and household income correlate with BMI). Since it does not include a correlation between age and depression_score, as we have in our research question, we stick to keeping all variables, except the ones removed to avoid circularity from passive imputation. In other words, we stick with the predictor matrix in imp2 due to its fit with our research question.
(pred <- quickpred(data_incomplete1))
##                  id sex age ethnicity education marital household_size
## id                0   0   0         0         0       0              0
## sex               0   0   0         0         0       0              0
## age               0   0   0         0         0       0              0
## ethnicity         0   0   0         0         0       0              0
## education         0   0   0         0         0       0              0
## marital           0   0   0         0         0       0              0
## household_size    0   0   0         0         0       0              0
## household_income  0   0   0         0         0       0              0
## weight            0   1   1         1         1       0              1
## height            0   1   0         1         1       0              1
## bmi               0   1   1         0         0       0              0
## pulse             0   0   0         0         0       0              0
## bp_sys1           0   0   0         0         0       0              0
## bp_dia1           0   0   0         0         0       0              0
## bp_sys2           0   1   1         0         1       0              1
## bp_dia2           0   1   1         0         0       0              0
## time_sed          0   0   0         0         0       0              0
## drink_regularly   0   1   0         0         0       0              0
## days_drinking     0   0   0         0         0       0              0
## dep1              0   0   0         0         0       0              0
## dep2              0   1   0         0         0       0              0
## dep3              0   1   0         0         1       0              0
## dep4              0   0   0         0         0       0              0
## dep5              0   1   1         0         1       1              0
## dep6              0   1   0         0         0       0              0
## dep7              0   0   0         0         0       0              0
## dep8              0   0   0         0         1       1              0
## dep9              0   0   0         0         1       0              1
## depression_score  0   1   0         0         1       1              0
##                  household_income weight height bmi pulse bp_sys1 bp_dia1
## id                              0      0      0   0     0       0       0
## sex                             0      0      0   0     0       0       0
## age                             0      0      0   0     0       0       0
## ethnicity                       0      0      0   0     0       0       0
## education                       0      0      0   0     0       0       0
## marital                         0      0      0   0     0       0       0
## household_size                  0      0      0   0     0       0       0
## household_income                0      0      0   0     0       0       0
## weight                          0      0      1   1     1       1       1
## height                          1      1      0   0     0       0       1
## bmi                             0      1      1   0     1       1       1
## pulse                           0      0      0   0     0       0       0
## bp_sys1                         0      0      0   0     0       0       0
## bp_dia1                         0      0      0   0     0       0       0
## bp_sys2                         0      1      0   1     1       1       1
## bp_dia2                         0      1      1   1     1       1       1
## time_sed                        0      0      0   0     0       0       0
## drink_regularly                 1      0      1   0     0       0       0
## days_drinking                   0      0      0   0     0       0       0
## dep1                            0      0      0   0     0       0       0
## dep2                            1      0      1   1     1       0       0
## dep3                            1      1      1   1     1       0       0
## dep4                            0      0      0   0     0       0       0
## dep5                            1      1      1   1     1       0       0
## dep6                            1      0      1   1     0       0       0
## dep7                            0      0      0   0     0       0       0
## dep8                            1      0      0   0     1       0       0
## dep9                            0      0      0   0     0       0       0
## depression_score                1      1      1   1     1       0       0
##                  bp_sys2 bp_dia2 time_sed drink_regularly days_drinking dep1
## id                     0       0        0               0             0    0
## sex                    0       0        0               0             0    0
## age                    0       0        0               0             0    0
## ethnicity              0       0        0               0             0    0
## education              0       0        0               0             0    0
## marital                0       0        0               0             0    0
## household_size         0       0        0               0             0    0
## household_income       0       0        0               0             0    0
## weight                 1       1        1               0             0    0
## height                 0       1        1               1             1    0
## bmi                    1       1        1               0             0    1
## pulse                  0       0        0               0             0    0
## bp_sys1                0       0        0               0             0    0
## bp_dia1                0       0        0               0             0    0
## bp_sys2                0       1        0               0             1    0
## bp_dia2                1       0        0               0             1    0
## time_sed               0       0        0               0             0    0
## drink_regularly        0       0        0               0             1    1
## days_drinking          0       0        0               0             0    0
## dep1                   0       0        0               0             0    0
## dep2                   0       0        0               0             1    1
## dep3                   0       0        0               0             1    1
## dep4                   0       0        0               0             0    0
## dep5                   0       0        0               0             1    1
## dep6                   0       0        0               0             1    1
## dep7                   0       0        0               0             0    0
## dep8                   0       0        0               0             0    1
## dep9                   0       0        1               0             0    1
## depression_score       0       0        0               0             1    1
##                  dep2 dep3 dep4 dep5 dep6 dep7 dep8 dep9 depression_score
## id                  0    0    0    0    0    0    0    0                0
## sex                 0    0    0    0    0    0    0    0                0
## age                 0    0    0    0    0    0    0    0                0
## ethnicity           0    0    0    0    0    0    0    0                0
## education           0    0    0    0    0    0    0    0                0
## marital             0    0    0    0    0    0    0    0                0
## household_size      0    0    0    0    0    0    0    0                0
## household_income    0    0    0    0    0    0    0    0                0
## weight              1    1    0    1    0    0    0    0                1
## height              0    0    0    1    0    1    0    0                1
## bmi                 1    1    1    1    0    1    0    0                1
## pulse               0    0    0    0    0    0    0    0                0
## bp_sys1             0    0    0    0    0    0    0    0                0
## bp_dia1             0    0    0    0    0    0    0    0                0
## bp_sys2             0    0    0    0    1    0    0    0                0
## bp_dia2             0    0    0    0    1    0    0    0                0
## time_sed            0    0    0    0    0    0    0    0                0
## drink_regularly     0    0    0    0    0    0    0    0                0
## days_drinking       0    0    0    0    0    0    0    0                0
## dep1                0    0    0    0    0    0    0    0                0
## dep2                0    1    1    1    1    1    1    1                1
## dep3                1    0    1    1    1    1    1    1                1
## dep4                0    0    0    0    0    0    0    0                0
## dep5                1    1    1    0    1    1    1    1                1
## dep6                1    1    1    1    0    1    1    1                1
## dep7                0    0    0    0    0    0    0    0                0
## dep8                1    1    1    1    1    1    0    1                1
## dep9                1    1    1    1    1    1    1    0                1
## depression_score    1    1    1    1    1    1    1    1                0

Analysis and pooling

With our chosen multiple imputation model, we will now do analysis for our research question and pool the results.

# analysis for each imp to see if age is a predictor for depression score:
fit <- with(imp2, lm(depression_score ~ age))

# results:
fit
## call :
## with.mids(data = imp2, expr = lm(depression_score ~ age))
## 
## call1 :
## mice(data = data_incomplete1, m = 10, method = method, predictorMatrix = pm1, 
##     maxit = 20, printFlag = FALSE, seed = 1234567)
## 
## nmis :
##               id              sex              age        ethnicity 
##                0                0                0                0 
##        education          marital   household_size household_income 
##                0                0                0                0 
##           weight           height              bmi            pulse 
##              150               96              222                0 
##          bp_sys1          bp_dia1          bp_sys2          bp_dia2 
##                0                0              100              100 
##         time_sed  drink_regularly    days_drinking             dep1 
##                0               50                0                0 
##             dep2             dep3             dep4             dep5 
##               75               75                0               75 
##             dep6             dep7             dep8             dep9 
##               75                0               40               81 
## depression_score 
##              177 
## 
## analyses :
## [[1]]
## 
## Call:
## lm(formula = depression_score ~ age)
## 
## Coefficients:
## (Intercept)          age  
##      4.3210      -0.0154  
## 
## 
## [[2]]
## 
## Call:
## lm(formula = depression_score ~ age)
## 
## Coefficients:
## (Intercept)          age  
##     4.33318     -0.01783  
## 
## 
## [[3]]
## 
## Call:
## lm(formula = depression_score ~ age)
## 
## Coefficients:
## (Intercept)          age  
##     4.14071     -0.01319  
## 
## 
## [[4]]
## 
## Call:
## lm(formula = depression_score ~ age)
## 
## Coefficients:
## (Intercept)          age  
##     4.18988     -0.01393  
## 
## 
## [[5]]
## 
## Call:
## lm(formula = depression_score ~ age)
## 
## Coefficients:
## (Intercept)          age  
##     4.22247     -0.01408  
## 
## 
## [[6]]
## 
## Call:
## lm(formula = depression_score ~ age)
## 
## Coefficients:
## (Intercept)          age  
##     4.21945     -0.01402  
## 
## 
## [[7]]
## 
## Call:
## lm(formula = depression_score ~ age)
## 
## Coefficients:
## (Intercept)          age  
##     4.23324     -0.01284  
## 
## 
## [[8]]
## 
## Call:
## lm(formula = depression_score ~ age)
## 
## Coefficients:
## (Intercept)          age  
##     4.27384     -0.01596  
## 
## 
## [[9]]
## 
## Call:
## lm(formula = depression_score ~ age)
## 
## Coefficients:
## (Intercept)          age  
##     4.14297     -0.01315  
## 
## 
## [[10]]
## 
## Call:
## lm(formula = depression_score ~ age)
## 
## Coefficients:
## (Intercept)          age  
##     4.22587     -0.01533
fit$analyses[[1]] %>% summary()
## 
## Call:
## lm(formula = depression_score ~ age)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.013 -3.351 -1.805  1.176 20.203 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  4.32100    0.69700   6.199 1.19e-09 ***
## age         -0.01540    0.01491  -1.033    0.302    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.788 on 498 degrees of freedom
## Multiple R-squared:  0.002137,   Adjusted R-squared:  0.0001333 
## F-statistic: 1.067 on 1 and 498 DF,  p-value: 0.3022
fit$analyses[[2]] %>% coef()
## (Intercept)         age 
##  4.33318014 -0.01783068
# pooling the results and checking them:
poolFit <- pool(fit)
summary(poolFit)
##          term    estimate  std.error  statistic       df      p.value
## 1 (Intercept)  4.23026217 0.68210600  6.2017665 488.3516 1.190560e-09
## 2         age -0.01457293 0.01460972 -0.9974816 485.7817 3.190274e-01