Assignment 6: 06, 10
library(ISLR)
## Warning: package 'ISLR' was built under R version 4.1.3
library(boot)
set.seed(1)
possible_combos = rep(NA, 10)
for (i in 1:10) { # k fold = 10
glm.fit = glm(wage~poly(age, i), data = Wage)
possible_combos[i] = cv.glm(Wage, glm.fit, K = 10)$delta[2]
}
plot(1:10, possible_combos, xlab = "Degree", ylab = "Cross Validation Error", type = "l", pch = 20, lwd = 2, ylim =c(1590, 1700))
min.point = min(possible_combos)
sd.points = sd(possible_combos)
deg.min = which.min(possible_combos)
abline(h = min.point + .2 * sd.points, col = "blue", lty = "dashed")
abline(h = min.point - .2 * sd.points, col = "blue", lty = "dashed")
legend("topright", ".2 SD deveation line", lty = "dashed", col = "red")
points(deg.min, possible_combos[deg.min], col = "blue", cex =2, pch = 19)
We obtain the minimum test MSE at degree 9. However, the cv plot with SD
lines shows that d = 3 is approximatly the smalles degree given a
reasonably small CV error
Lets work on the anova:
fit.1 = lm(wage~poly(age, 1), data=Wage)
fit.2 = lm(wage~poly(age, 2), data=Wage)
fit.3 = lm(wage~poly(age, 3), data=Wage)
fit.4 = lm(wage~poly(age, 4), data=Wage)
fit.5 = lm(wage~poly(age, 5), data=Wage)
fit.6 = lm(wage~poly(age, 6), data=Wage)
fit.7 = lm(wage~poly(age, 7), data=Wage)
fit.8 = lm(wage~poly(age, 8), data=Wage)
fit.9 = lm(wage~poly(age, 9), data=Wage)
fit.10 = lm(wage~poly(age, 10), data=Wage)
anova(fit.1, fit.2, fit.3, fit.4, fit.5, fit.6, fit.7, fit.8, fit.9, fit.10)
## Analysis of Variance Table
##
## Model 1: wage ~ poly(age, 1)
## Model 2: wage ~ poly(age, 2)
## Model 3: wage ~ poly(age, 3)
## Model 4: wage ~ poly(age, 4)
## Model 5: wage ~ poly(age, 5)
## Model 6: wage ~ poly(age, 6)
## Model 7: wage ~ poly(age, 7)
## Model 8: wage ~ poly(age, 8)
## Model 9: wage ~ poly(age, 9)
## Model 10: wage ~ poly(age, 10)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 2998 5022216
## 2 2997 4793430 1 228786 143.7638 < 2.2e-16 ***
## 3 2996 4777674 1 15756 9.9005 0.001669 **
## 4 2995 4771604 1 6070 3.8143 0.050909 .
## 5 2994 4770322 1 1283 0.8059 0.369398
## 6 2993 4766389 1 3932 2.4709 0.116074
## 7 2992 4763834 1 2555 1.6057 0.205199
## 8 2991 4763707 1 127 0.0796 0.777865
## 9 2990 4756703 1 7004 4.4014 0.035994 *
## 10 2989 4756701 1 3 0.0017 0.967529
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Based on this information, all polynomials above degree 3 are insignificant at 1 significant level
Make a plot of resulting polynomial fit to the data:
plot(wage~age, data=Wage, col="darkgrey")
agelims = range(Wage$age)
age.grid = seq(from=agelims[1], to=agelims[2])
lm.fit = lm(wage~poly(age, 3), data=Wage)
lm.pred = predict(lm.fit, data.frame(age=age.grid))
lines(age.grid, lm.pred, col="blue", lwd=2)
Settled with 10 cuts
cuts = rep(NA, 10)
for( i in 2:10){
Wage$age.cut = cut(Wage$age, i)
lm.fit = glm(wage ~ age.cut, data = Wage)
cuts[i] = cv.glm(Wage, lm.fit, K = 10)$delta[2]
}
plot(2:10, cuts[-1], xlab="Number of cuts", ylab="CV error", type="l", pch=20, lwd=2)
deg.min = which.min(cuts)
points(deg.min, cuts[deg.min], col = "blue", cex =2, pch = 19)
Test error for the CV appears to be the lowest at 8 cuts.
Now: Lets train the data with step function at cut 8
lm.fit = glm(wage ~cut(age, 8), data = Wage)
agelims = range(Wage$age)
age.grid = seq(from = agelims[1], to = agelims[2])
lm.pred = predict(lm.fit, data.frame(age = age.grid))
plot(wage ~age, data = Wage, col = "darkgrey")
lines(age.grid, lm.pred, col = "Blue", lwd =2)
Slay.
# Train Test Split
set.seed(1)
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.1.3
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(leaps)
## Warning: package 'leaps' was built under R version 4.1.3
#make this example reproducible
set.seed(1)
#create ID column
Default = as.data.frame(College)
Default$id <- 1:nrow(Default)
#use 70% of dataset as training set and 30% as test set
train <- Default %>% dplyr::sample_frac(0.70)
test <- dplyr::anti_join(Default, train, by = 'id')
# fitting
reg.fit = regsubsets(Outstate ~., data = train, nvmax = 17, method = "forward")
reg.summary = summary(reg.fit)
par(mfrow = c(1, 3))
plot(reg.summary$cp, xlab = "Number of Variables", ylab = "Cp", type = "l")
min.cp = min(reg.summary$cp)
std.cp = sd(reg.summary$cp)
abline(h = min.cp + 0.2 * std.cp, col = "blue", lty = 2)
abline(h = min.cp - 0.2 * std.cp, col = "blue", lty = 2)
plot(reg.summary$bic, xlab = "Number of Variables", ylab = "BIC", type = "l")
min.bic = min(reg.summary$bic)
std.bic = sd(reg.summary$bic)
abline(h = min.bic + 0.2 * std.bic, col = "blue", lty = 2)
abline(h = min.bic - 0.2 * std.bic, col = "blue", lty = 2)
plot(reg.summary$adjr2, xlab = "Number of Variables", ylab = "Adjusted R2",
type = "l", ylim = c(0.4, 0.84))
max.adjr2 = max(reg.summary$adjr2)
std.adjr2 = sd(reg.summary$adjr2)
abline(h = max.adjr2 + 0.2 * std.adjr2, col = "blue", lty = 2)
abline(h = max.adjr2 - 0.2 * std.adjr2, col = "blue", lty = 2)
The Cp, BIC, and adjuster r^2 yield different results. The blue lines demonstrate 0.2 SD from the optimum. It appears, that from all of these graphs, a size of 6 is the min of size for the subset within .2 SD.
Thus, 6 is the best subset size.
reg.fit = regsubsets(Outstate ~ ., data = College, method = "forward")
regnames = coef(reg.fit, id = 6)
names(regnames)
## [1] "(Intercept)" "PrivateYes" "Room.Board" "PhD" "perc.alumni"
## [6] "Expend" "Grad.Rate"
library(gam)
## Warning: package 'gam' was built under R version 4.1.3
## Loading required package: splines
## Loading required package: foreach
## Warning: package 'foreach' was built under R version 4.1.3
## Loaded gam 1.22-1
gam.fit = gam(Outstate ~ Private + s(Room.Board, df = 2) + s(PhD, df = 2) + s(perc.alumni, df = 2) + s(Expend, df = 5) + s(Grad.Rate, df = 2), data = train)
# plotting the 6 additive models
par(mfrow = c(2, 3))
plot(gam.fit, se = T, col = "blue")
gam.pred = predict(gam.fit, test)
gam.err = mean((test$Outstate - gam.pred)^2)
gam.err
## [1] 3176107
gam.tss = mean((test$Outstate - mean(test$Outstate))^2)
test.rss = 1 - gam.err/gam.tss
test.rss
## [1] 0.7707912
We obtain a test R^2 of .77 using GAM with 6 predictors. Thus, about 77% of the variance can be explained by the predictors.
summary(gam.fit)
##
## Call: gam(formula = Outstate ~ Private + s(Room.Board, df = 2) + s(PhD,
## df = 2) + s(perc.alumni, df = 2) + s(Expend, df = 5) + s(Grad.Rate,
## df = 2), data = train)
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -7568.91 -1135.11 72.18 1263.47 7875.88
##
## (Dispersion Parameter for gaussian family taken to be 3625458)
##
## Null Deviance: 9263945675 on 543 degrees of freedom
## Residual Deviance: 1917866878 on 528.9999 degrees of freedom
## AIC: 9776.894
##
## Number of Local Scoring Iterations: NA
##
## Anova for Parametric Effects
## Df Sum Sq Mean Sq F value Pr(>F)
## Private 1 2414263354 2414263354 665.919 < 2.2e-16 ***
## s(Room.Board, df = 2) 1 1720068079 1720068079 474.442 < 2.2e-16 ***
## s(PhD, df = 2) 1 617485163 617485163 170.319 < 2.2e-16 ***
## s(perc.alumni, df = 2) 1 464768186 464768186 128.196 < 2.2e-16 ***
## s(Expend, df = 5) 1 752411278 752411278 207.536 < 2.2e-16 ***
## s(Grad.Rate, df = 2) 1 100320529 100320529 27.671 2.092e-07 ***
## Residuals 529 1917866878 3625458
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Anova for Nonparametric Effects
## Npar Df Npar F Pr(F)
## (Intercept)
## Private
## s(Room.Board, df = 2) 1 3.3157 0.06918 .
## s(PhD, df = 2) 1 0.6590 0.41728
## s(perc.alumni, df = 2) 1 0.9819 0.32220
## s(Expend, df = 5) 4 27.1965 < 2e-16 ***
## s(Grad.Rate, df = 2) 1 1.6590 0.19830
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
By analyzing the anova for non-parametric effects, we see that there is a non-linear relationship between Out of state tuition, and Expend. There is also a moderately strong non-linear relationship between response and Graduation Rate, Room Board, and PhD.