Neural Networks

Introduction

Note: In this lab, we’ll go over two neural network examples. These are simple one or two hidden layer networks, and the main purpose of the exercise is to demonstrate how to build the networks and what options are available to modify these. We’ll also walk through tuning these simple networks.

##Set Working Directory
setwd("~/Desktop/University of Utah PhD /Course Work/Spring 2023 Semester/GEOG6160 - Spatial Modeling/Labs/lab08/")

##Required Libraries
library(mlr3verse) #loads the entire mlr3 package family
## Loading required package: mlr3
library(dplyr) #data manipulation
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(GGally) ##ggplot extension for plotting correlation matrices
## Loading required package: ggplot2
## Registered S3 method overwritten by 'GGally':
##   method from   
##   +.gg   ggplot2
library(ggplot2) ##data visualization
library(RColorBrewer) ##colorpalettes

Neural Network Regression

Note: We’ll start with an example of using a neural network for a regression task. The data are taken from a Kaggle competition and are based on a set of 77 breakfast cereals. A description of the data is given in the appendix. The last field in the file (rating) is the outcome variable that we will build the network for.

## Read in the data

data = read.csv("../datafiles/cereals.csv")

## Look at the header
head(data)
##                        name mfr type calories protein fat sodium fiber carbo
## 1                 100% Bran   N    C       70       4   1    130  10.0   5.0
## 2         100% Natural Bran   Q    C      120       3   5     15   2.0   8.0
## 3                  All-Bran   K    C       70       4   1    260   9.0   7.0
## 4 All-Bran with Extra Fiber   K    C       50       4   0    140  14.0   8.0
## 5            Almond Delight   R    C      110       2   2    200   1.0  14.0
## 6   Apple Cinnamon Cheerios   G    C      110       2   2    180   1.5  10.5
##   sugars potass vitamins shelf weight cups rating
## 1      6    280       25     3      1 0.33  68.40
## 2      8    135        0     3      1 1.00  33.98
## 3      5    320       25     3      1 0.33  59.43
## 4      0    330       25     3      1 0.50  93.70
## 5      8     -1       25     3      1 0.75  34.38
## 6     10     70       25     1      1 0.75  29.51
## Subset the numeric features for the modeling
## The outcome variable is "rating"

mydat = data %>%
  select(rating, calories, protein, fat, sodium, fiber)

## Check
head(mydat)
##   rating calories protein fat sodium fiber
## 1  68.40       70       4   1    130  10.0
## 2  33.98      120       3   5     15   2.0
## 3  59.43       70       4   1    260   9.0
## 4  93.70       50       4   0    140  14.0
## 5  34.38      110       2   2    200   1.0
## 6  29.51      110       2   2    180   1.5
## Correlation Plot

ggcorr(data = mydat,
       label = TRUE,
       nbreaks = 6,
       palette ="RdBu")

## Histogram for cereal rating
ggplot(data = mydat, aes(x = rating)) +
  geom_histogram(aes(y = after_stat(density)),
                 binwidth = 5,
                 fill = "dodgerblue3",
                 color = "black") +
  geom_density(col = "red",
               linetype = 1) +
  theme_bw()

Neural Network in mlr3

Note: Regression neural networks are provided in mlr3 from the nnet package (regr.nnet).

As the network uses weighted sums of the input features, it’s important that none of these are on very different scales. The easiest way to avoid this is to scale all variables to approximately the same range. The scaling we use here is a min-max transformation or normalization (i.e. each variable is converted to a 0-1 range). This transformation is given by the following equation.

We do this in three steps:

  1. First calculate the maximum then minimum value for each variable using the apply() function.
  2. Then we use these to scale the data - effectively setting the smallest value of each variable to 0, the highest value to 1
  3. Lastly, we make a new dataset that combines these scaled values with the output (rating)
##MinMax Normalization

## Set a vector with all of the feature/variable names
feature_names = c("calories", "protein", "fat", "sodium", "fiber")

## Calculate and apply the maximum values 
## Margin selects either rows (1) or columns (2)
maxs = apply(X = mydat[ , feature_names], 
             MARGIN = 2,
             FUN = max)

## Calculate and apply the minimum values 
mins = apply(mydat[ , feature_names],
             MARGIN = 2,
             FUN = min)

## Scale the data - setting the smallest value as 0 and the highest to 1
scaled_features = as.data.frame(scale(mydat[ , feature_names],
                                      center = mins,
                                      scale = maxs - mins))

## Combine the scaled data with the rating
scaled_data = data.frame(rating = mydat$rating,
                         scaled_features)


## Check
dim(scaled_data)
## [1] 77  6
head(scaled_data)
##   rating  calories protein fat   sodium      fiber
## 1  68.40 0.1818182     0.6 0.2 0.406250 0.71428571
## 2  33.98 0.6363636     0.4 1.0 0.046875 0.14285714
## 3  59.43 0.1818182     0.6 0.2 0.812500 0.64285714
## 4  93.70 0.0000000     0.6 0.0 0.437500 1.00000000
## 5  34.38 0.5454545     0.2 0.4 0.625000 0.07142857
## 6  29.51 0.5454545     0.2 0.4 0.562500 0.10714286

Now we’ll go through the usual steps of defining our task, performance metric and resampling strategy first.

Note that we use the scaled data to create the task, and that we create an outer resampler using k-fold cross-validation, to allow tuning later.

## Create the cereal task
## Reminder our target is the cereal rating

cereal_task = TaskRegr$new(id = "cereal",
                           backend = scaled_data,
                           target = "rating")
## Use the RMSE as our performance measure
msr_rmse = msr("regr.rmse")
## k-fold cross validation strategy
## 5 folds
rsmp_outer = rsmp("cv",
                  folds = 5)

Before building the neural network, we’ll test a simple linear model to give us a baseline performance score, and to allow us to judge whether a neural network represents an improvement.

## Using a simple linear regression learner to test
lrn_lm = lrn("regr.lm")

Initial cross-validation

## Initial run of our linear models via cross validation
cereal_lm = resample(task = cereal_task,
                     learner = lrn_lm,
                     resampling = rsmp_outer,
                     store_models = TRUE)
## INFO  [10:30:53.027] [mlr3] Applying learner 'regr.lm' on task 'cereal' (iter 1/5)
## INFO  [10:30:53.052] [mlr3] Applying learner 'regr.lm' on task 'cereal' (iter 2/5)
## INFO  [10:30:53.061] [mlr3] Applying learner 'regr.lm' on task 'cereal' (iter 3/5)
## INFO  [10:30:53.067] [mlr3] Applying learner 'regr.lm' on task 'cereal' (iter 4/5)
## INFO  [10:30:53.073] [mlr3] Applying learner 'regr.lm' on task 'cereal' (iter 5/5)
## Initial RMSE score for our linear model run
cereal_lm$aggregate(msr_rmse)
## regr.rmse 
##  6.208639

Note: Now we’ll set up a neural network learner. Note that we can specify here the number of nodes in the hidden layer. We’ll start with 3 nodes to give us a simple model. Note that we specify this directly in the setup of the learner.

## Setup the neural network learner
## size = 3 is the number of nodes in the hidden layer (the next layer after the input/feature layer)
lrn_nn = lrn("regr.nnet",
             size = 3)
## Initial Neural Network Run
cereal_nn = resample(task = cereal_task,
                     learner = lrn_nn,
                     resampling = rsmp_outer,
                     store_models = TRUE)
## INFO  [10:30:53.118] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/5)
## # weights:  22
## initial  value 109691.129282 
## final  value 8733.951056 
## converged
## INFO  [10:30:53.125] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/5)
## # weights:  22
## initial  value 130268.979153 
## final  value 13434.235028 
## converged
## INFO  [10:30:53.136] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/5)
## # weights:  22
## initial  value 130709.380986 
## final  value 12603.749236 
## converged
## INFO  [10:30:53.143] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 4/5)
## # weights:  22
## initial  value 126064.441278 
## iter  10 value 2266.358110
## iter  20 value 1361.812223
## iter  30 value 1124.954492
## iter  40 value 1042.095052
## iter  50 value 963.015243
## iter  60 value 951.414054
## iter  70 value 895.506921
## iter  80 value 817.741084
## iter  90 value 815.239610
## iter 100 value 815.153424
## final  value 815.153424 
## stopped after 100 iterations
## INFO  [10:30:53.151] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 5/5)
## # weights:  22
## initial  value 123704.942224 
## iter  10 value 5900.534627
## iter  20 value 2879.868461
## iter  30 value 2523.651660
## iter  40 value 2168.818620
## iter  50 value 2109.775465
## iter  60 value 2103.964153
## iter  70 value 2101.633341
## iter  80 value 2100.599119
## iter  90 value 2100.381508
## final  value 2100.354694 
## converged
## RMSE
cereal_nn$aggregate(msr_rmse)
## regr.rmse 
##  11.26956

Our RMSE for this step is 11.2695644. Let’s see if increasing the number of hidden nodes to 5 and the number of learning iterations will improve this:

## Increase the number of hidden nodes to 5
lrn_nn = lrn("regr.nnet",
             size = 5)

## Re-run the models
cereal_nn = resample(task = cereal_task,
                     learner = lrn_nn,
                     resampling = rsmp_outer,
                     store_models = TRUE)
## INFO  [10:30:53.195] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/5)
## # weights:  36
## initial  value 118488.719848 
## iter  10 value 3553.038128
## iter  20 value 2423.636520
## iter  30 value 2245.340078
## iter  40 value 2115.456412
## iter  50 value 1868.084185
## iter  60 value 1748.292920
## iter  70 value 1654.556202
## iter  80 value 1645.679434
## iter  90 value 1635.283813
## iter 100 value 1631.884641
## final  value 1631.884641 
## stopped after 100 iterations
## INFO  [10:30:53.203] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/5)
## # weights:  36
## initial  value 114234.177183 
## iter  10 value 6984.670107
## iter  20 value 4081.937397
## iter  30 value 3061.851765
## iter  40 value 2078.764949
## iter  50 value 1960.031518
## iter  60 value 1933.389901
## iter  70 value 1927.931163
## iter  80 value 1926.776365
## iter  90 value 1926.666499
## iter 100 value 1926.591191
## final  value 1926.591191 
## stopped after 100 iterations
## INFO  [10:30:53.210] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/5)
## # weights:  36
## initial  value 125497.170753 
## iter  10 value 5089.068770
## iter  20 value 2465.534543
## iter  30 value 1680.768387
## iter  40 value 1046.823709
## iter  50 value 973.410794
## iter  60 value 917.892725
## iter  70 value 871.824609
## iter  80 value 856.561265
## iter  90 value 853.831830
## iter 100 value 845.438930
## final  value 845.438930 
## stopped after 100 iterations
## INFO  [10:30:53.218] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 4/5)
## # weights:  36
## initial  value 136493.478662 
## iter  10 value 8809.151378
## iter  20 value 4128.083586
## iter  30 value 3953.836937
## iter  40 value 3635.719031
## iter  50 value 2558.283676
## iter  60 value 2103.710445
## iter  70 value 1985.672070
## iter  80 value 1968.691793
## iter  90 value 1964.904869
## iter 100 value 1964.597681
## final  value 1964.597681 
## stopped after 100 iterations
## INFO  [10:30:53.225] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 5/5)
## # weights:  36
## initial  value 125959.617974 
## iter  10 value 2904.348040
## iter  20 value 1084.096688
## iter  30 value 888.360080
## iter  40 value 866.928380
## iter  50 value 865.157326
## iter  60 value 863.646561
## iter  70 value 833.566823
## iter  80 value 797.673694
## iter  90 value 780.583145
## iter 100 value 768.747924
## final  value 768.747924 
## stopped after 100 iterations
## RMSE
cereal_nn$aggregate(msr_rmse)
## regr.rmse 
##  10.98426

Note: There is no improvement over our previous models.

Tuning Neural Networks

Let’s now tune the model to see if we can choose the optimal value for this parameter. First, let’s check the available parameters for regr.nnet:

lrn_nn$param_set
## <ParamSet>
##            id    class lower upper nlevels        default value
##  1:      Hess ParamLgl    NA    NA       2          FALSE      
##  2:   MaxNWts ParamInt     1   Inf     Inf           1000      
##  3:       Wts ParamUty    NA    NA     Inf <NoDefault[3]>      
##  4:    abstol ParamDbl  -Inf   Inf     Inf          1e-04      
##  5:  censored ParamLgl    NA    NA       2          FALSE      
##  6: contrasts ParamUty    NA    NA     Inf                     
##  7:     decay ParamDbl  -Inf   Inf     Inf              0      
##  8:      mask ParamUty    NA    NA     Inf <NoDefault[3]>      
##  9:     maxit ParamInt     1   Inf     Inf            100      
## 10: na.action ParamUty    NA    NA     Inf <NoDefault[3]>      
## 11:      rang ParamDbl  -Inf   Inf     Inf            0.7      
## 12:    reltol ParamDbl  -Inf   Inf     Inf          1e-08      
## 13:      size ParamInt     0   Inf     Inf              3     5
## 14:      skip ParamLgl    NA    NA       2          FALSE      
## 15:    subset ParamUty    NA    NA     Inf <NoDefault[3]>      
## 16:     trace ParamLgl    NA    NA       2           TRUE

Note: In addition to the number of neurons (size), we’ll also tune the number of iterations (maxit) and the learning decay rate (decay). Next, load the paradox library, and define the parameter space that we will explore:

## Load paradox library for working with parameter spaces and algorithms
library(paradox)
## Tuning the following parameters
## size - number of neurons
## maxit - number of iterations
## decay - learning decay rate

tune_ps = ParamSet$new(list(
  ParamInt$new("size", lower = 1, upper = 10),
  ParamInt$new("maxit", lower = 50, upper = 500),
  ParamDbl$new("decay", lower = 0, upper = 1e-4)
))

## Check
tune_ps
## <ParamSet>
##       id    class lower upper nlevels        default value
## 1:  size ParamInt     1 1e+01      10 <NoDefault[3]>      
## 2: maxit ParamInt    50 5e+02     451 <NoDefault[3]>      
## 3: decay ParamDbl     0 1e-04     Inf <NoDefault[3]>

Note: We will use a random search strategy to select values of the parameters to test

## Tuner setup
tuner = tnr("random_search")

We’ll define a stopping condition. We’ll run this for 20 iterations here (20 parameter values). This is a relatively low number to explore a three dimensional parameter space, in practice you would want to increase this (or use a different search strategy).

## Set this for 20 iterations
evals = trm("evals",
            n_evals = 20)

Lastly, we’ll set up an inner cross-validation strategy for the tuning process. We’ll use the same k-fold strategy as above, but with k=3:

Please see the image below for the difference between outer and inner resampling:

[]resampling.png

## Cross Validation
## 3 folds

rsmp_inner = rsmp("cv",
                  folds = 3)

Build the autotuner!

## AutoTuner

at_nn = AutoTuner$new(tuner = tuner,
                      learner = lrn_nn,
                      resampling = rsmp_inner,
                      measure = msr_rmse,
                      search_space = tune_ps,
                      terminator = evals)

And finally(!), run the resample function with this. This will run for a little while as it is building 3 * 5 * 20 models.

## Reproducability?
set.seed(1)

## Resample Re-run

cereal_nn = resample(task = cereal_task,
                       learner = at_nn,
                       resampling = rsmp_outer,
                       store_models = TRUE)
## INFO  [10:30:53.302] [mlr3] Applying learner 'regr.nnet.tuned' on task 'cereal' (iter 1/5)
## INFO  [10:30:53.326] [bbotk] Starting to optimize 3 parameter(s) with '<OptimizerRandomSearch>' and '<TerminatorEvals> [n_evals=20, k=0]'
## INFO  [10:30:53.334] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:53.342] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:53.345] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  29
## initial  value 81285.592193 
## iter  10 value 1772.589334
## iter  20 value 838.465321
## iter  30 value 571.671898
## iter  40 value 451.041076
## iter  50 value 431.229282
## iter  60 value 397.996825
## iter  70 value 394.550448
## iter  80 value 392.851724
## iter  90 value 392.113585
## iter 100 value 389.595091
## iter 110 value 262.769002
## iter 120 value 159.013351
## iter 130 value 128.360777
## iter 140 value 104.850728
## iter 150 value 100.014668
## iter 160 value 96.578528
## iter 170 value 96.060748
## iter 180 value 85.631589
## iter 190 value 69.964037
## iter 200 value 68.353368
## iter 210 value 68.204235
## iter 220 value 68.019877
## iter 230 value 67.994372
## iter 240 value 67.984598
## iter 250 value 67.903133
## iter 260 value 67.246528
## iter 270 value 60.480830
## iter 280 value 54.671571
## iter 290 value 51.574170
## iter 300 value 43.905395
## final  value 42.594821 
## stopped after 304 iterations
## INFO  [10:30:53.353] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  29
## initial  value 91669.483096 
## iter  10 value 2277.811685
## iter  20 value 1703.369824
## iter  30 value 1130.550577
## iter  40 value 1055.247472
## iter  50 value 1054.298604
## iter  60 value 1048.209426
## iter  70 value 1012.750947
## iter  80 value 690.538226
## iter  90 value 607.646266
## iter 100 value 596.985029
## iter 110 value 573.750128
## iter 120 value 573.261708
## iter 130 value 573.244968
## iter 140 value 573.149444
## iter 150 value 573.125406
## iter 160 value 573.120564
## iter 170 value 571.654217
## iter 180 value 552.742174
## iter 190 value 490.377882
## iter 200 value 457.992080
## iter 210 value 347.150919
## iter 220 value 282.228730
## iter 230 value 257.510276
## iter 240 value 253.458826
## iter 250 value 253.385431
## iter 260 value 253.374515
## iter 270 value 253.353971
## iter 280 value 253.227849
## iter 290 value 253.126681
## iter 300 value 253.099225
## final  value 253.072465 
## stopped after 304 iterations
## INFO  [10:30:53.362] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  29
## initial  value 73061.311497 
## iter  10 value 1711.418334
## iter  20 value 1345.075050
## iter  30 value 1248.769867
## iter  40 value 1233.390147
## iter  50 value 1223.946736
## iter  60 value 1176.764471
## iter  70 value 1000.765332
## iter  80 value 733.793238
## iter  90 value 649.933085
## iter 100 value 643.183050
## iter 110 value 634.484536
## iter 120 value 634.358663
## iter 130 value 634.346412
## iter 140 value 634.041822
## iter 150 value 632.945214
## iter 160 value 631.419878
## iter 170 value 600.541643
## iter 180 value 560.306184
## iter 190 value 544.189218
## iter 200 value 538.407897
## iter 210 value 494.186551
## iter 220 value 295.746024
## iter 230 value 222.490375
## iter 240 value 207.376118
## iter 250 value 197.781582
## iter 260 value 183.274444
## iter 270 value 181.742159
## iter 280 value 179.978550
## iter 290 value 179.349752
## iter 300 value 178.769334
## final  value 178.597784 
## stopped after 304 iterations
## INFO  [10:30:53.370] [mlr3] Finished benchmark
## INFO  [10:30:53.381] [bbotk] Result of batch 1:
## INFO  [10:30:53.382] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:53.382] [bbotk]     4   304 5.779849e-05   16.7903        0      0            0.011
## INFO  [10:30:53.382] [bbotk]                                 uhash
## INFO  [10:30:53.382] [bbotk]  e084670f-f698-4758-a3b3-5dd91e8d8518
## INFO  [10:30:53.384] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:53.395] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:53.398] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  43
## initial  value 86197.330319 
## iter  10 value 4106.025060
## iter  20 value 2654.001316
## iter  30 value 2380.263942
## iter  40 value 1739.458439
## iter  50 value 1274.144283
## iter  60 value 1207.234058
## iter  70 value 1198.806041
## iter  80 value 1197.300747
## iter  90 value 1196.490870
## iter 100 value 1194.670741
## iter 110 value 1161.518806
## iter 120 value 1015.371271
## iter 130 value 545.781659
## iter 140 value 501.423481
## iter 150 value 477.197489
## iter 160 value 463.965450
## iter 170 value 408.165108
## iter 180 value 399.984957
## iter 190 value 396.120357
## iter 200 value 391.780415
## iter 210 value 376.253667
## iter 220 value 371.088090
## iter 230 value 366.218411
## iter 240 value 357.893506
## iter 250 value 345.107166
## iter 260 value 338.337608
## iter 270 value 336.855580
## iter 280 value 336.418563
## iter 290 value 336.364983
## iter 300 value 336.276588
## iter 310 value 336.222377
## iter 320 value 335.929128
## iter 330 value 335.110089
## iter 340 value 334.671460
## iter 350 value 334.248814
## iter 360 value 333.164693
## iter 370 value 332.248413
## iter 380 value 331.739002
## iter 390 value 331.176408
## iter 400 value 331.079974
## iter 410 value 330.175527
## iter 420 value 328.847216
## iter 430 value 326.538279
## iter 440 value 325.331868
## iter 450 value 325.252851
## iter 460 value 325.237896
## final  value 325.150928 
## stopped after 468 iterations
## INFO  [10:30:53.409] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  43
## initial  value 98145.076495 
## iter  10 value 5035.468530
## iter  20 value 874.016052
## iter  30 value 389.150240
## iter  40 value 317.309482
## iter  50 value 275.118821
## iter  60 value 249.227835
## iter  70 value 238.642991
## iter  80 value 198.221448
## iter  90 value 177.026075
## iter 100 value 156.794054
## iter 110 value 146.883354
## iter 120 value 140.753541
## iter 130 value 137.113728
## iter 140 value 135.710541
## iter 150 value 134.768150
## iter 160 value 133.753924
## iter 170 value 86.651458
## iter 180 value 69.758318
## iter 190 value 63.054599
## iter 200 value 59.868611
## iter 210 value 58.428259
## iter 220 value 56.990806
## iter 230 value 56.538092
## iter 240 value 56.139441
## iter 250 value 56.001030
## iter 260 value 54.254192
## iter 270 value 53.865423
## iter 280 value 53.076067
## iter 290 value 45.491469
## iter 300 value 41.798062
## iter 310 value 40.316163
## iter 320 value 39.173742
## iter 330 value 39.040208
## iter 340 value 38.940575
## iter 350 value 38.905533
## iter 360 value 38.900306
## iter 370 value 38.891853
## iter 380 value 38.849875
## iter 390 value 38.819731
## iter 400 value 38.770772
## iter 410 value 38.721003
## iter 420 value 38.675202
## iter 430 value 38.406373
## iter 440 value 38.185233
## iter 450 value 38.172842
## iter 460 value 38.131817
## final  value 38.104474 
## stopped after 468 iterations
## INFO  [10:30:53.421] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  43
## initial  value 74664.131278 
## iter  10 value 1732.282232
## iter  20 value 676.437661
## iter  30 value 440.952878
## iter  40 value 385.998222
## iter  50 value 364.830531
## iter  60 value 353.993359
## iter  70 value 345.860258
## iter  80 value 339.565967
## iter  90 value 329.767449
## iter 100 value 320.498406
## iter 110 value 298.683387
## iter 120 value 291.327727
## iter 130 value 270.430499
## iter 140 value 227.820348
## iter 150 value 178.523376
## iter 160 value 141.531739
## iter 170 value 128.856842
## iter 180 value 126.071939
## iter 190 value 125.270138
## iter 200 value 122.407595
## iter 210 value 118.235217
## iter 220 value 107.169472
## iter 230 value 98.153415
## iter 240 value 87.663012
## iter 250 value 76.106455
## iter 260 value 70.125370
## iter 270 value 69.769576
## iter 280 value 67.753426
## iter 290 value 57.142835
## iter 300 value 54.777564
## iter 310 value 51.647002
## iter 320 value 40.655951
## iter 330 value 40.495326
## iter 340 value 40.389942
## iter 350 value 40.208909
## iter 360 value 40.202754
## iter 370 value 40.193911
## iter 380 value 40.086231
## iter 390 value 39.776330
## iter 400 value 39.166397
## iter 410 value 36.158278
## iter 420 value 34.894125
## iter 430 value 33.298226
## iter 440 value 32.131163
## iter 450 value 31.273628
## iter 460 value 30.417389
## final  value 30.027328 
## stopped after 468 iterations
## INFO  [10:30:53.431] [mlr3] Finished benchmark
## INFO  [10:30:53.442] [bbotk] Result of batch 2:
## INFO  [10:30:53.443] [bbotk]  size maxit       decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:53.443] [bbotk]     6   468 1.10067e-05  9.428385        0      0            0.021
## INFO  [10:30:53.443] [bbotk]                                 uhash
## INFO  [10:30:53.443] [bbotk]  d913d25c-d683-4e93-a502-c8326360a5ff
## INFO  [10:30:53.445] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:53.451] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:53.454] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  22
## initial  value 83147.921417 
## iter  10 value 3084.852175
## iter  20 value 2768.597434
## iter  30 value 2011.413585
## iter  40 value 844.404279
## iter  50 value 732.460336
## iter  60 value 701.907342
## iter  70 value 684.508501
## iter  80 value 426.032755
## iter  90 value 327.298203
## iter 100 value 283.743482
## iter 110 value 277.112382
## iter 120 value 276.210080
## iter 130 value 275.038836
## iter 140 value 273.918550
## iter 150 value 272.938842
## iter 160 value 272.727184
## final  value 272.726685 
## converged
## INFO  [10:30:53.461] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  22
## initial  value 92247.920097 
## iter  10 value 6131.130217
## iter  20 value 1230.359474
## iter  30 value 897.377351
## iter  40 value 762.891249
## iter  50 value 745.316322
## iter  60 value 725.038367
## iter  70 value 645.326137
## iter  80 value 643.985977
## iter  90 value 643.625145
## final  value 643.623618 
## converged
## INFO  [10:30:53.468] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  22
## initial  value 71801.983886 
## iter  10 value 4700.083011
## iter  20 value 2404.262008
## iter  30 value 1357.784625
## iter  40 value 1263.986549
## iter  50 value 1132.881627
## iter  60 value 898.819666
## iter  70 value 676.708779
## iter  80 value 650.237116
## iter  90 value 650.000503
## iter 100 value 647.454430
## iter 110 value 625.763486
## iter 120 value 438.237795
## iter 130 value 379.919324
## iter 140 value 343.321670
## iter 150 value 336.710647
## iter 160 value 330.865777
## final  value 325.637231 
## stopped after 168 iterations
## INFO  [10:30:53.475] [mlr3] Finished benchmark
## INFO  [10:30:53.486] [bbotk] Result of batch 3:
## INFO  [10:30:53.486] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:53.486] [bbotk]     3   168 4.543677e-05  7.957372        0      0            0.008
## INFO  [10:30:53.486] [bbotk]                                 uhash
## INFO  [10:30:53.486] [bbotk]  59c9ff32-1ce2-4f9f-88a7-8995ace5af17
## INFO  [10:30:53.488] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:53.495] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:53.497] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  50
## initial  value 82722.701572 
## iter  10 value 10227.724882
## iter  20 value 2387.162455
## iter  30 value 1415.865247
## iter  40 value 1215.058009
## iter  50 value 1195.157331
## iter  60 value 1190.131709
## iter  70 value 1076.325051
## iter  80 value 567.377964
## iter  90 value 554.276020
## iter 100 value 508.493877
## iter 110 value 502.322311
## iter 120 value 501.625830
## iter 130 value 496.979577
## iter 140 value 489.378832
## iter 150 value 487.177005
## iter 160 value 486.731608
## iter 170 value 486.680080
## iter 180 value 486.555838
## iter 190 value 485.404606
## iter 200 value 479.279964
## iter 210 value 335.268467
## iter 220 value 314.655258
## iter 230 value 313.048145
## iter 240 value 312.111076
## iter 250 value 308.358713
## iter 260 value 300.402960
## iter 270 value 265.772823
## iter 280 value 252.735153
## iter 290 value 242.243034
## iter 300 value 212.861688
## iter 310 value 159.064233
## iter 320 value 145.338921
## iter 330 value 137.499077
## iter 340 value 127.096027
## iter 350 value 117.948273
## iter 360 value 116.629304
## iter 370 value 115.410530
## final  value 114.219164 
## stopped after 378 iterations
## INFO  [10:30:53.508] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  50
## initial  value 91116.578861 
## iter  10 value 6025.417098
## iter  20 value 3421.449875
## iter  30 value 2024.997338
## iter  40 value 1253.317117
## iter  50 value 1058.014501
## iter  60 value 1054.880728
## iter  70 value 1054.361044
## iter  80 value 1053.508658
## iter  90 value 1040.487237
## iter 100 value 904.634926
## iter 110 value 901.171948
## iter 120 value 901.004027
## iter 130 value 899.412742
## iter 140 value 829.061082
## iter 150 value 617.384019
## iter 160 value 538.262594
## iter 170 value 465.051750
## iter 180 value 429.858251
## iter 190 value 403.339973
## iter 200 value 362.290201
## iter 210 value 353.650235
## iter 220 value 346.818967
## iter 230 value 341.588111
## iter 240 value 335.253364
## iter 250 value 332.112576
## iter 260 value 316.151087
## iter 270 value 264.940632
## iter 280 value 232.305546
## iter 290 value 227.804662
## iter 300 value 223.882795
## iter 310 value 219.825672
## iter 320 value 217.804694
## iter 330 value 216.220047
## iter 340 value 209.481089
## iter 350 value 193.734485
## iter 360 value 160.303216
## iter 370 value 146.135115
## final  value 131.428802 
## stopped after 378 iterations
## INFO  [10:30:53.519] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  50
## initial  value 72135.336828 
## iter  10 value 1649.756517
## iter  20 value 981.864348
## iter  30 value 662.632347
## iter  40 value 468.618101
## iter  50 value 430.604096
## iter  60 value 416.174147
## iter  70 value 411.799209
## iter  80 value 394.544919
## iter  90 value 386.319241
## iter 100 value 386.146989
## iter 110 value 386.055673
## iter 120 value 385.772835
## iter 130 value 380.518725
## iter 140 value 376.781915
## iter 150 value 367.363469
## iter 160 value 347.951656
## iter 170 value 285.529108
## iter 180 value 280.308324
## iter 190 value 279.414114
## iter 200 value 278.931632
## iter 210 value 278.107766
## iter 220 value 277.814080
## iter 230 value 275.524490
## iter 240 value 274.863475
## iter 250 value 274.757214
## iter 260 value 274.720067
## iter 270 value 274.688220
## iter 280 value 274.616064
## iter 290 value 274.357260
## iter 300 value 273.681393
## iter 310 value 272.045825
## iter 320 value 271.337108
## iter 330 value 261.123057
## iter 340 value 252.482351
## iter 350 value 243.828047
## iter 360 value 240.968710
## iter 370 value 239.868980
## final  value 238.094801 
## stopped after 378 iterations
## INFO  [10:30:53.529] [mlr3] Finished benchmark
## INFO  [10:30:53.544] [bbotk] Result of batch 4:
## INFO  [10:30:53.544] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:53.544] [bbotk]     7   378 4.424152e-05    13.751        0      0            0.019
## INFO  [10:30:53.544] [bbotk]                                 uhash
## INFO  [10:30:53.544] [bbotk]  c4107be0-2b01-436f-97c7-a52836b87bc8
## INFO  [10:30:53.546] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:53.553] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:53.555] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  71
## initial  value 79442.370655 
## iter  10 value 1001.327302
## iter  20 value 349.922128
## iter  30 value 213.375081
## iter  40 value 107.051244
## iter  50 value 90.662812
## iter  60 value 81.158660
## iter  70 value 65.355342
## iter  80 value 49.770440
## iter  90 value 34.492765
## iter 100 value 32.638289
## iter 110 value 31.690064
## iter 120 value 31.226720
## iter 130 value 30.874901
## iter 140 value 30.551430
## iter 150 value 30.046182
## iter 160 value 29.113240
## iter 170 value 28.426126
## iter 180 value 27.842485
## iter 190 value 27.402920
## iter 200 value 26.964425
## iter 210 value 26.789491
## iter 220 value 26.721821
## iter 230 value 26.552321
## iter 240 value 26.470213
## iter 250 value 26.305805
## final  value 26.224998 
## stopped after 252 iterations
## INFO  [10:30:53.566] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  71
## initial  value 94196.566579 
## iter  10 value 9390.770562
## iter  20 value 2591.917393
## iter  30 value 2206.227500
## iter  40 value 1644.086103
## iter  50 value 1087.744168
## iter  60 value 1057.821418
## iter  70 value 1056.374223
## iter  80 value 1054.939786
## iter  90 value 1048.208950
## iter 100 value 834.626405
## iter 110 value 610.879044
## iter 120 value 590.086722
## iter 130 value 575.798407
## iter 140 value 573.782840
## iter 150 value 573.705020
## iter 160 value 573.684828
## iter 170 value 573.454076
## iter 180 value 570.969975
## iter 190 value 485.336591
## iter 200 value 298.259748
## iter 210 value 261.116274
## iter 220 value 257.859919
## iter 230 value 257.116673
## iter 240 value 256.289364
## iter 250 value 249.093434
## final  value 248.145272 
## stopped after 252 iterations
## INFO  [10:30:53.577] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  71
## initial  value 70839.832362 
## iter  10 value 990.456207
## iter  20 value 505.658899
## iter  30 value 321.144117
## iter  40 value 244.008905
## iter  50 value 179.282632
## iter  60 value 97.935214
## iter  70 value 70.700169
## iter  80 value 49.403724
## iter  90 value 30.625218
## iter 100 value 24.667967
## iter 110 value 17.177037
## iter 120 value 7.467747
## iter 130 value 5.019371
## iter 140 value 4.130203
## iter 150 value 4.005431
## iter 160 value 3.969153
## iter 170 value 3.882741
## iter 180 value 3.734694
## iter 190 value 3.314338
## iter 200 value 3.005458
## iter 210 value 2.867537
## iter 220 value 2.655056
## iter 230 value 2.476982
## iter 240 value 2.411260
## iter 250 value 2.287482
## final  value 2.267439 
## stopped after 252 iterations
## INFO  [10:30:53.588] [mlr3] Finished benchmark
## INFO  [10:30:53.599] [bbotk] Result of batch 5:
## INFO  [10:30:53.600] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:53.600] [bbotk]    10   252 9.609525e-05  11.31472        0      0            0.018
## INFO  [10:30:53.600] [bbotk]                                 uhash
## INFO  [10:30:53.600] [bbotk]  a32ea275-f4c1-4371-bccc-f98a15c30276
## INFO  [10:30:53.601] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:53.608] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:53.610] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  43
## initial  value 81090.528703 
## iter  10 value 5048.511498
## iter  20 value 2627.185699
## iter  30 value 2604.446946
## iter  40 value 1888.500242
## iter  50 value 1267.824571
## iter  60 value 1200.293918
## iter  70 value 1189.224698
## iter  80 value 1187.636111
## iter  90 value 1186.916452
## iter 100 value 1130.107849
## iter 110 value 467.665377
## iter 120 value 370.906749
## iter 130 value 362.898197
## iter 140 value 358.985665
## iter 150 value 319.964880
## iter 160 value 223.266506
## iter 170 value 216.109766
## iter 180 value 196.157052
## iter 190 value 192.678683
## iter 200 value 185.997463
## iter 210 value 183.303588
## iter 220 value 183.024821
## iter 230 value 182.475632
## iter 240 value 176.387080
## iter 250 value 170.125071
## iter 260 value 169.363465
## iter 270 value 167.825601
## iter 280 value 157.603860
## iter 290 value 136.528436
## iter 300 value 102.472494
## iter 310 value 92.619013
## iter 320 value 72.803117
## iter 330 value 58.339557
## iter 340 value 51.528382
## iter 350 value 49.837027
## iter 360 value 48.780991
## iter 370 value 47.834613
## iter 380 value 47.352203
## iter 390 value 46.010803
## iter 400 value 45.223975
## iter 410 value 44.333897
## iter 420 value 43.560470
## iter 430 value 43.368043
## iter 440 value 43.288911
## final  value 42.992351 
## stopped after 445 iterations
## INFO  [10:30:53.622] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  43
## initial  value 95060.166345 
## iter  10 value 2635.149949
## iter  20 value 2168.434208
## iter  30 value 1719.745589
## iter  40 value 1105.816949
## iter  50 value 1055.882490
## iter  60 value 1055.666523
## iter  70 value 1054.799465
## iter  80 value 1046.500797
## iter  90 value 674.001695
## iter 100 value 608.037228
## iter 110 value 582.028163
## iter 120 value 573.741802
## iter 130 value 573.612491
## iter 140 value 573.539706
## iter 150 value 572.565518
## iter 160 value 568.209084
## iter 170 value 512.116374
## iter 180 value 366.629711
## iter 190 value 296.900535
## iter 200 value 260.302525
## iter 210 value 154.590295
## iter 220 value 76.689890
## iter 230 value 64.529332
## iter 240 value 56.949615
## iter 250 value 56.306235
## iter 260 value 53.100085
## iter 270 value 48.844308
## iter 280 value 43.957502
## iter 290 value 41.611837
## iter 300 value 38.279016
## iter 310 value 35.858760
## iter 320 value 30.957684
## iter 330 value 30.533558
## iter 340 value 30.503691
## iter 350 value 30.232572
## iter 360 value 29.955606
## iter 370 value 29.730245
## iter 380 value 29.141131
## iter 390 value 28.289370
## iter 400 value 26.983520
## iter 410 value 25.119834
## iter 420 value 24.043211
## iter 430 value 23.503757
## iter 440 value 22.132216
## final  value 21.264995 
## stopped after 445 iterations
## INFO  [10:30:53.634] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  43
## initial  value 75236.091877 
## iter  10 value 3210.767873
## iter  20 value 1134.278210
## iter  30 value 667.816808
## iter  40 value 467.459439
## iter  50 value 402.380981
## iter  60 value 392.236568
## iter  70 value 386.372576
## iter  80 value 361.688885
## iter  90 value 334.008396
## iter 100 value 321.303034
## iter 110 value 302.083421
## iter 120 value 225.087334
## iter 130 value 200.709437
## iter 140 value 184.777657
## iter 150 value 177.300356
## iter 160 value 175.757342
## iter 170 value 172.537231
## iter 180 value 171.678210
## iter 190 value 171.388421
## iter 200 value 170.248140
## iter 210 value 161.826556
## iter 220 value 160.073320
## iter 230 value 159.293435
## iter 240 value 157.663967
## iter 250 value 155.638422
## iter 260 value 155.150618
## iter 270 value 154.436658
## iter 280 value 153.857036
## iter 290 value 144.630382
## iter 300 value 136.287385
## iter 310 value 130.644135
## iter 320 value 128.636995
## iter 330 value 124.844855
## iter 340 value 120.944534
## iter 350 value 118.637639
## iter 360 value 118.193843
## iter 370 value 117.180514
## iter 380 value 114.444758
## iter 390 value 110.392031
## iter 400 value 107.484297
## iter 410 value 104.720781
## iter 420 value 102.412767
## iter 430 value 101.021141
## iter 440 value 98.508121
## final  value 98.210877 
## stopped after 445 iterations
## INFO  [10:30:53.644] [mlr3] Finished benchmark
## INFO  [10:30:53.655] [bbotk] Result of batch 6:
## INFO  [10:30:53.656] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:53.656] [bbotk]     6   445 9.973919e-05  13.12515        0      0            0.021
## INFO  [10:30:53.656] [bbotk]                                 uhash
## INFO  [10:30:53.656] [bbotk]  344a6ab6-95ca-48f3-ab23-1d08648fb1f1
## INFO  [10:30:53.657] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:53.664] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:53.666] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  50
## initial  value 82756.480961 
## iter  10 value 853.779156
## iter  20 value 251.444297
## iter  30 value 126.156621
## iter  40 value 97.631947
## iter  50 value 61.717581
## iter  60 value 50.604929
## iter  70 value 35.413754
## iter  80 value 31.205785
## iter  90 value 30.136694
## iter 100 value 29.494060
## iter 110 value 28.955692
## iter 120 value 28.572088
## iter 130 value 28.251116
## iter 140 value 27.967493
## iter 150 value 27.842235
## iter 160 value 27.202565
## iter 170 value 25.703954
## iter 180 value 23.419348
## iter 190 value 22.289446
## final  value 21.694078 
## stopped after 199 iterations
## INFO  [10:30:53.679] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  50
## initial  value 99766.883531 
## iter  10 value 1216.348503
## iter  20 value 720.265605
## iter  30 value 440.626877
## iter  40 value 360.007788
## iter  50 value 249.184302
## iter  60 value 200.866802
## iter  70 value 167.045874
## iter  80 value 153.513849
## iter  90 value 150.468964
## iter 100 value 145.425357
## iter 110 value 137.667714
## iter 120 value 130.680681
## iter 130 value 98.611929
## iter 140 value 87.427062
## iter 150 value 86.182057
## iter 160 value 85.578835
## iter 170 value 78.676887
## iter 180 value 75.139341
## iter 190 value 71.048005
## final  value 69.827126 
## stopped after 199 iterations
## INFO  [10:30:53.688] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  50
## initial  value 74708.990177 
## iter  10 value 1769.195221
## iter  20 value 1028.783713
## iter  30 value 783.741943
## iter  40 value 521.836730
## iter  50 value 439.318855
## iter  60 value 399.551813
## iter  70 value 376.485167
## iter  80 value 290.301005
## iter  90 value 234.194956
## iter 100 value 220.268844
## iter 110 value 211.084198
## iter 120 value 207.813818
## iter 130 value 205.087589
## iter 140 value 203.762626
## iter 150 value 202.353018
## iter 160 value 201.545180
## iter 170 value 201.205869
## iter 180 value 199.691054
## iter 190 value 199.071549
## final  value 198.619346 
## stopped after 199 iterations
## INFO  [10:30:53.696] [mlr3] Finished benchmark
## INFO  [10:30:53.707] [bbotk] Result of batch 7:
## INFO  [10:30:53.708] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:53.708] [bbotk]     7   199 8.622045e-05  10.86371        0      0            0.018
## INFO  [10:30:53.708] [bbotk]                                 uhash
## INFO  [10:30:53.708] [bbotk]  40fa12d1-3a3b-458f-9470-3ba3f6ec96b9
## INFO  [10:30:53.709] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:53.716] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:53.719] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  36
## initial  value 81488.644759 
## iter  10 value 3733.698364
## iter  20 value 1778.441696
## iter  30 value 1301.525676
## iter  40 value 1208.653644
## iter  50 value 1192.986955
## iter  60 value 1189.864641
## iter  70 value 1189.746032
## iter  80 value 1178.379585
## iter  90 value 1169.317957
## iter 100 value 845.118655
## iter 110 value 538.158314
## iter 120 value 482.061113
## iter 130 value 451.682855
## iter 140 value 428.071035
## iter 150 value 410.303033
## iter 160 value 403.298147
## iter 170 value 402.455747
## iter 180 value 401.467394
## iter 190 value 399.827229
## iter 200 value 395.582710
## iter 210 value 393.792939
## iter 220 value 392.950359
## iter 230 value 390.450996
## iter 240 value 389.519110
## iter 250 value 388.824323
## final  value 388.127546 
## stopped after 257 iterations
## INFO  [10:30:53.727] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  36
## initial  value 90710.856785 
## iter  10 value 9389.071533
## iter  20 value 1978.273786
## iter  30 value 1154.345322
## iter  40 value 1055.751769
## iter  50 value 1055.646182
## iter  60 value 1053.152741
## iter  70 value 1024.406832
## iter  80 value 648.177396
## iter  90 value 625.975290
## iter 100 value 598.758022
## iter 110 value 575.327067
## iter 120 value 573.888909
## iter 130 value 573.803380
## iter 140 value 573.777109
## iter 150 value 573.669098
## iter 160 value 573.341806
## iter 170 value 571.745094
## iter 180 value 532.026183
## iter 190 value 517.735296
## iter 200 value 507.960102
## iter 210 value 506.437834
## iter 220 value 504.617642
## iter 230 value 503.705293
## iter 240 value 503.700883
## iter 250 value 503.688933
## final  value 503.591271 
## stopped after 257 iterations
## INFO  [10:30:53.736] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  36
## initial  value 70631.257076 
## iter  10 value 4495.482127
## iter  20 value 2448.706595
## iter  30 value 2021.779394
## iter  40 value 1216.534579
## iter  50 value 856.992696
## iter  60 value 696.864466
## iter  70 value 656.612424
## iter  80 value 636.780871
## iter  90 value 614.046876
## iter 100 value 602.757236
## iter 110 value 586.261302
## iter 120 value 580.121202
## iter 130 value 564.835963
## iter 140 value 557.411219
## iter 150 value 555.355153
## iter 160 value 554.802632
## iter 170 value 554.247228
## iter 180 value 554.093959
## iter 190 value 553.530252
## iter 200 value 552.894922
## iter 210 value 552.793481
## iter 220 value 552.725692
## iter 230 value 552.656873
## iter 240 value 552.650860
## iter 250 value 552.649902
## final  value 552.648300 
## stopped after 257 iterations
## INFO  [10:30:53.744] [mlr3] Finished benchmark
## INFO  [10:30:53.754] [bbotk] Result of batch 8:
## INFO  [10:30:53.755] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:53.755] [bbotk]     5   257 8.446055e-05  7.535631        0      0            0.012
## INFO  [10:30:53.755] [bbotk]                                 uhash
## INFO  [10:30:53.755] [bbotk]  96aab44c-ffff-4529-8e74-eddc48295752
## INFO  [10:30:53.757] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:53.763] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:53.766] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  64
## initial  value 85665.386576 
## iter  10 value 7251.194591
## iter  20 value 2382.607352
## iter  30 value 1950.377113
## iter  40 value 1294.839217
## iter  50 value 1199.302301
## iter  60 value 1188.159319
## iter  70 value 1187.146704
## iter  80 value 1186.046067
## iter  90 value 1163.268666
## iter 100 value 981.483831
## iter 110 value 570.431792
## iter 120 value 537.329171
## iter 130 value 521.305467
## iter 140 value 504.532884
## iter 150 value 489.910235
## iter 160 value 488.769382
## iter 170 value 488.622312
## iter 180 value 488.071647
## iter 190 value 488.013934
## iter 200 value 487.973054
## iter 210 value 487.923570
## iter 220 value 487.701787
## iter 230 value 467.990947
## iter 240 value 413.782113
## iter 250 value 395.240893
## iter 260 value 357.067397
## iter 270 value 349.133488
## iter 280 value 348.305264
## iter 290 value 347.713777
## iter 300 value 345.088086
## iter 310 value 320.820123
## iter 320 value 279.895429
## iter 330 value 268.506226
## iter 340 value 260.969355
## iter 350 value 259.160701
## final  value 258.480380 
## stopped after 354 iterations
## INFO  [10:30:53.779] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  64
## initial  value 91306.828416 
## iter  10 value 1774.909542
## iter  20 value 770.942773
## iter  30 value 678.391958
## iter  40 value 634.352625
## iter  50 value 623.231705
## iter  60 value 559.437580
## iter  70 value 504.567077
## iter  80 value 491.042748
## iter  90 value 465.027003
## iter 100 value 393.487498
## iter 110 value 366.160653
## iter 120 value 353.903441
## iter 130 value 345.024306
## iter 140 value 339.707931
## iter 150 value 337.808747
## iter 160 value 337.568163
## iter 170 value 337.342092
## iter 180 value 332.378952
## iter 190 value 305.285469
## iter 200 value 276.709274
## iter 210 value 271.655610
## iter 220 value 269.006836
## iter 230 value 267.813738
## iter 240 value 264.278521
## iter 250 value 248.857421
## iter 260 value 227.144885
## iter 270 value 226.026468
## iter 280 value 221.713048
## iter 290 value 218.462372
## iter 300 value 209.800102
## iter 310 value 193.863416
## iter 320 value 192.483102
## iter 330 value 189.150944
## iter 340 value 184.947891
## iter 350 value 181.986300
## final  value 181.381046 
## stopped after 354 iterations
## INFO  [10:30:53.791] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  64
## initial  value 76030.469242 
## iter  10 value 1440.751587
## iter  20 value 900.837585
## iter  30 value 502.655546
## iter  40 value 384.491111
## iter  50 value 236.167648
## iter  60 value 173.874182
## iter  70 value 145.588170
## iter  80 value 127.568922
## iter  90 value 118.444426
## iter 100 value 110.142095
## iter 110 value 104.930467
## iter 120 value 100.353341
## iter 130 value 92.855096
## iter 140 value 91.922868
## iter 150 value 87.133062
## iter 160 value 71.677878
## iter 170 value 58.990648
## iter 180 value 55.897802
## iter 190 value 55.151609
## iter 200 value 53.941270
## iter 210 value 47.665315
## iter 220 value 40.747138
## iter 230 value 36.525824
## iter 240 value 32.560238
## iter 250 value 28.377623
## iter 260 value 26.389032
## iter 270 value 26.223039
## iter 280 value 25.962746
## iter 290 value 23.567179
## iter 300 value 21.429114
## iter 310 value 20.637331
## iter 320 value 20.390108
## iter 330 value 20.117454
## iter 340 value 19.786209
## iter 350 value 19.587138
## final  value 19.454948 
## stopped after 354 iterations
## INFO  [10:30:53.802] [mlr3] Finished benchmark
## INFO  [10:30:53.817] [bbotk] Result of batch 9:
## INFO  [10:30:53.817] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:53.817] [bbotk]     9   354 4.414787e-05  15.63984        0      0            0.024
## INFO  [10:30:53.817] [bbotk]                                 uhash
## INFO  [10:30:53.817] [bbotk]  728ffcff-1d7b-4d5b-8a7a-f0ac9c7957a5
## INFO  [10:30:53.819] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:53.826] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:53.828] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  15
## initial  value 83526.008415 
## iter  10 value 2573.422157
## iter  20 value 2380.271636
## iter  30 value 2076.736706
## iter  40 value 2074.196190
## iter  50 value 2074.145376
## iter  60 value 2074.082637
## iter  70 value 2074.005287
## iter  80 value 2073.130821
## iter  90 value 2047.710482
## iter 100 value 2019.406243
## iter 110 value 2011.156829
## iter 120 value 1982.801946
## iter 130 value 1657.622055
## final  value 1657.622055 
## stopped after 130 iterations
## INFO  [10:30:53.835] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  15
## initial  value 90525.235738 
## final  value 9387.456289 
## converged
## INFO  [10:30:53.841] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  15
## initial  value 71063.769970 
## iter  10 value 1461.969272
## iter  20 value 828.400309
## iter  30 value 768.494570
## iter  40 value 756.161310
## iter  50 value 751.768268
## iter  60 value 722.109933
## iter  70 value 620.495764
## iter  80 value 618.273241
## iter  90 value 617.241615
## iter 100 value 617.232784
## iter 110 value 617.227217
## iter 120 value 616.839356
## iter 130 value 616.537813
## final  value 616.537813 
## stopped after 130 iterations
## INFO  [10:30:53.847] [mlr3] Finished benchmark
## INFO  [10:30:53.858] [bbotk] Result of batch 10:
## INFO  [10:30:53.859] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:53.859] [bbotk]     2   130 9.173569e-05  11.67235        0      0            0.004
## INFO  [10:30:53.859] [bbotk]                                 uhash
## INFO  [10:30:53.859] [bbotk]  beeb57b4-ff7e-4970-869b-43092e30de08
## INFO  [10:30:53.861] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:53.867] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:53.870] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  43
## initial  value 79636.133558 
## iter  10 value 5245.247203
## iter  20 value 2454.018347
## iter  30 value 1707.203344
## iter  40 value 1307.560487
## iter  50 value 1215.137599
## iter  60 value 1191.182083
## iter  70 value 1186.133522
## iter  80 value 1185.999976
## iter  90 value 1182.519108
## iter 100 value 1037.831136
## iter 110 value 626.688435
## iter 120 value 572.308236
## iter 130 value 561.881176
## iter 140 value 557.794624
## iter 150 value 527.645978
## iter 160 value 476.116290
## iter 170 value 463.931861
## iter 180 value 458.452855
## iter 190 value 451.731667
## iter 200 value 446.110227
## iter 210 value 445.867318
## iter 220 value 445.137170
## iter 230 value 444.132180
## iter 240 value 443.256481
## iter 250 value 442.897221
## iter 260 value 442.871114
## iter 270 value 442.406041
## iter 280 value 441.893378
## iter 290 value 441.482600
## iter 300 value 441.406909
## iter 310 value 441.347801
## iter 320 value 441.206841
## iter 330 value 440.571699
## final  value 440.571699 
## stopped after 330 iterations
## INFO  [10:30:53.880] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  43
## initial  value 94836.221534 
## iter  10 value 12075.408166
## iter  20 value 1142.069710
## iter  30 value 630.369278
## iter  40 value 498.391299
## iter  50 value 473.979025
## iter  60 value 447.968411
## iter  70 value 442.696491
## iter  80 value 437.090506
## iter  90 value 408.200367
## iter 100 value 315.170162
## iter 110 value 306.490815
## iter 120 value 303.497789
## iter 130 value 294.863089
## iter 140 value 285.595374
## iter 150 value 279.734802
## iter 160 value 279.323538
## iter 170 value 279.056500
## iter 180 value 278.631320
## iter 190 value 278.385917
## iter 200 value 278.229423
## iter 210 value 278.133215
## iter 210 value 278.133215
## final  value 278.133183 
## converged
## INFO  [10:30:53.889] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  43
## initial  value 71289.919879 
## iter  10 value 2612.821619
## iter  20 value 1477.287815
## iter  30 value 1303.523446
## iter  40 value 1235.440031
## iter  50 value 1229.635603
## iter  60 value 1228.392711
## iter  70 value 1228.296389
## iter  80 value 1225.365539
## iter  90 value 1186.080151
## iter 100 value 970.766209
## iter 110 value 660.451231
## iter 120 value 650.993676
## iter 130 value 650.419430
## iter 140 value 648.891961
## iter 150 value 609.080442
## iter 160 value 576.824669
## iter 170 value 559.602759
## iter 180 value 553.441875
## iter 190 value 552.896804
## iter 200 value 552.614173
## iter 210 value 552.505141
## iter 220 value 552.278482
## iter 230 value 552.253290
## iter 240 value 552.106313
## iter 250 value 552.036886
## iter 260 value 551.991768
## iter 270 value 551.961330
## iter 280 value 551.567048
## iter 290 value 545.224876
## iter 300 value 460.371443
## iter 310 value 330.000219
## iter 320 value 311.694705
## iter 330 value 306.418319
## final  value 306.418319 
## stopped after 330 iterations
## INFO  [10:30:53.898] [mlr3] Finished benchmark
## INFO  [10:30:53.909] [bbotk] Result of batch 11:
## INFO  [10:30:53.909] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:53.909] [bbotk]     6   330 5.967503e-05  11.19307        0      0            0.016
## INFO  [10:30:53.909] [bbotk]                                 uhash
## INFO  [10:30:53.909] [bbotk]  d9eb5ee4-5d63-4a56-b680-522d7846fce2
## INFO  [10:30:53.911] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:53.917] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:53.920] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  57
## initial  value 82399.121083 
## iter  10 value 2173.802398
## iter  20 value 979.260853
## iter  30 value 491.218844
## iter  40 value 209.096161
## iter  50 value 121.335456
## iter  60 value 88.408134
## iter  70 value 78.301142
## iter  80 value 73.549396
## iter  90 value 68.258364
## iter 100 value 58.150625
## iter 110 value 54.375975
## iter 120 value 53.628419
## iter 130 value 53.286319
## iter 140 value 53.190432
## iter 150 value 53.041689
## iter 160 value 52.908596
## iter 170 value 52.729727
## iter 180 value 52.646827
## iter 190 value 52.368048
## iter 200 value 48.876465
## iter 210 value 34.589864
## iter 220 value 24.985624
## iter 230 value 21.548361
## iter 240 value 20.083392
## iter 250 value 19.727624
## iter 260 value 19.715237
## iter 270 value 19.613373
## iter 280 value 18.269044
## iter 290 value 13.725701
## iter 300 value 9.798220
## iter 310 value 5.327121
## iter 320 value 3.320596
## iter 330 value 2.891799
## iter 340 value 2.516395
## iter 350 value 2.188505
## iter 360 value 1.865785
## iter 370 value 1.757789
## final  value 1.748058 
## stopped after 375 iterations
## INFO  [10:30:53.932] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  57
## initial  value 90872.777689 
## iter  10 value 1322.389031
## iter  20 value 604.274565
## iter  30 value 313.360306
## iter  40 value 238.103380
## iter  50 value 219.845836
## iter  60 value 208.298844
## iter  70 value 164.541149
## iter  80 value 129.740960
## iter  90 value 123.375683
## iter 100 value 119.371061
## iter 110 value 116.451846
## iter 120 value 115.490310
## iter 130 value 115.323802
## iter 140 value 115.263693
## iter 150 value 115.167598
## iter 160 value 114.912126
## iter 170 value 114.469377
## iter 180 value 112.274514
## iter 190 value 100.074941
## iter 200 value 77.725218
## iter 210 value 74.263167
## iter 220 value 72.813958
## iter 230 value 71.362546
## iter 240 value 70.879225
## iter 250 value 68.332842
## iter 260 value 60.453201
## iter 270 value 58.690750
## iter 280 value 58.108263
## iter 290 value 57.160692
## iter 300 value 56.622766
## iter 310 value 55.969941
## iter 320 value 55.419200
## iter 330 value 55.216045
## iter 340 value 54.851598
## iter 350 value 54.773205
## iter 360 value 54.760108
## iter 370 value 54.730510
## final  value 54.697289 
## stopped after 375 iterations
## INFO  [10:30:53.948] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  57
## initial  value 74152.731462 
## iter  10 value 6196.108952
## iter  20 value 3736.803184
## iter  30 value 2413.888138
## iter  40 value 2291.850154
## iter  50 value 2259.960527
## iter  60 value 2141.934892
## iter  70 value 2105.072485
## iter  80 value 1806.942259
## iter  90 value 1469.172155
## iter 100 value 1015.590197
## iter 110 value 867.788402
## iter 120 value 854.731535
## iter 130 value 817.352466
## iter 140 value 785.924371
## iter 150 value 784.957679
## iter 160 value 783.947949
## iter 170 value 783.463220
## iter 180 value 783.220465
## iter 190 value 782.461445
## iter 200 value 782.309269
## iter 210 value 765.697176
## iter 220 value 740.007740
## iter 230 value 736.205654
## iter 240 value 712.179666
## iter 250 value 703.470341
## iter 260 value 698.533504
## iter 270 value 697.501779
## iter 280 value 697.325203
## iter 290 value 696.707405
## iter 300 value 696.519476
## iter 310 value 696.460665
## iter 320 value 696.000034
## iter 330 value 692.488132
## iter 340 value 554.350074
## iter 350 value 527.966766
## iter 360 value 526.754412
## iter 370 value 526.252214
## final  value 526.117605 
## stopped after 375 iterations
## INFO  [10:30:53.959] [mlr3] Finished benchmark
## INFO  [10:30:53.970] [bbotk] Result of batch 12:
## INFO  [10:30:53.970] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:53.970] [bbotk]     8   375 3.046366e-05  10.47677        0      0            0.022
## INFO  [10:30:53.970] [bbotk]                                 uhash
## INFO  [10:30:53.970] [bbotk]  2667574f-24f3-49b8-a40d-23951ceae7ae
## INFO  [10:30:53.972] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:53.979] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:53.981] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  15
## initial  value 83304.497617 
## final  value 10213.586790 
## converged
## INFO  [10:30:53.988] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  15
## initial  value 96557.705485 
## iter  10 value 1937.823336
## iter  20 value 1428.015146
## iter  30 value 1054.731678
## iter  40 value 1054.241533
## iter  50 value 1054.211974
## final  value 1054.205576 
## converged
## INFO  [10:30:53.994] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  15
## initial  value 74656.934215 
## iter  10 value 6196.384232
## iter  10 value 6196.384212
## final  value 6196.384212 
## converged
## INFO  [10:30:54.001] [mlr3] Finished benchmark
## INFO  [10:30:54.012] [bbotk] Result of batch 13:
## INFO  [10:30:54.013] [bbotk]  size maxit       decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:54.013] [bbotk]     2   388 5.57986e-05  12.87737        0      0            0.005
## INFO  [10:30:54.013] [bbotk]                                 uhash
## INFO  [10:30:54.013] [bbotk]  6d74e0e0-4c15-4cb8-b490-ff880c03623f
## INFO  [10:30:54.015] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:54.021] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:54.024] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  71
## initial  value 78380.265783 
## iter  10 value 6062.804461
## iter  20 value 2633.420211
## iter  30 value 1979.100540
## iter  40 value 1378.903561
## iter  50 value 819.377784
## iter  60 value 384.320474
## iter  70 value 310.772018
## iter  80 value 294.847693
## iter  90 value 128.492609
## iter 100 value 110.234406
## iter 110 value 100.005184
## iter 120 value 96.407656
## iter 130 value 94.277438
## iter 140 value 85.547150
## iter 150 value 76.082626
## iter 160 value 75.281462
## iter 170 value 74.894498
## iter 180 value 74.220900
## iter 190 value 71.582009
## final  value 70.733365 
## stopped after 197 iterations
## INFO  [10:30:54.034] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  71
## initial  value 93292.199688 
## iter  10 value 1128.739213
## iter  20 value 518.165172
## iter  30 value 347.320866
## iter  40 value 219.655085
## iter  50 value 172.692857
## iter  60 value 148.938210
## iter  70 value 131.431465
## iter  80 value 124.732948
## iter  90 value 109.185991
## iter 100 value 97.935256
## iter 110 value 82.746873
## iter 120 value 78.656500
## iter 130 value 76.236648
## iter 140 value 74.146852
## iter 150 value 73.633737
## iter 160 value 70.980537
## iter 170 value 65.870566
## iter 180 value 64.709445
## iter 190 value 63.443562
## final  value 62.983988 
## stopped after 197 iterations
## INFO  [10:30:54.045] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  71
## initial  value 73186.733313 
## iter  10 value 1102.020836
## iter  20 value 631.799835
## iter  30 value 387.795109
## iter  40 value 269.433803
## iter  50 value 200.327095
## iter  60 value 131.849743
## iter  70 value 97.747650
## iter  80 value 68.568269
## iter  90 value 55.799112
## iter 100 value 41.485683
## iter 110 value 31.849085
## iter 120 value 22.187898
## iter 130 value 13.385345
## iter 140 value 10.779871
## iter 150 value 9.077982
## iter 160 value 8.776718
## iter 170 value 8.495442
## iter 180 value 8.166468
## iter 190 value 7.051369
## final  value 6.637890 
## stopped after 197 iterations
## INFO  [10:30:54.054] [mlr3] Finished benchmark
## INFO  [10:30:54.066] [bbotk] Result of batch 14:
## INFO  [10:30:54.067] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:54.067] [bbotk]    10   197 4.718307e-05  21.98697        0      0            0.017
## INFO  [10:30:54.067] [bbotk]                                 uhash
## INFO  [10:30:54.067] [bbotk]  dd868135-705a-4dad-bcc5-cb1dc8642e79
## INFO  [10:30:54.072] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:54.079] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:54.081] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  22
## initial  value 82588.715460 
## iter  10 value 3441.393252
## iter  20 value 1396.262597
## iter  30 value 510.900663
## iter  40 value 295.507986
## iter  50 value 284.425299
## iter  60 value 281.988739
## iter  70 value 281.067366
## iter  80 value 281.050640
## iter  90 value 280.854013
## iter 100 value 280.702675
## iter 110 value 280.655638
## iter 120 value 280.646882
## final  value 280.646874 
## converged
## INFO  [10:30:54.088] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  22
## initial  value 94582.412305 
## iter  10 value 6527.851924
## iter  20 value 1462.297628
## iter  30 value 1132.267811
## iter  40 value 1049.546777
## iter  50 value 984.576001
## iter  60 value 873.284690
## iter  70 value 832.313449
## iter  80 value 753.639722
## iter  90 value 540.100949
## iter 100 value 470.453780
## iter 110 value 366.368441
## iter 120 value 337.411381
## iter 130 value 336.433752
## iter 140 value 336.322440
## iter 150 value 336.263905
## iter 160 value 335.211698
## iter 170 value 335.203986
## iter 180 value 335.163374
## final  value 335.162254 
## converged
## INFO  [10:30:54.096] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  22
## initial  value 71034.157386 
## iter  10 value 2008.928109
## iter  20 value 823.325166
## iter  30 value 757.416850
## iter  40 value 680.374197
## iter  50 value 636.656520
## iter  60 value 635.387202
## iter  70 value 579.207291
## iter  80 value 572.106054
## iter  90 value 571.811993
## iter 100 value 571.344959
## iter 110 value 571.342817
## final  value 571.342590 
## converged
## INFO  [10:30:54.102] [mlr3] Finished benchmark
## INFO  [10:30:54.113] [bbotk] Result of batch 15:
## INFO  [10:30:54.114] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:54.114] [bbotk]     3   468 7.639612e-06  8.031909        0      0            0.006
## INFO  [10:30:54.114] [bbotk]                                 uhash
## INFO  [10:30:54.114] [bbotk]  ef3ce57f-2760-41d7-9d0a-0800de8754d0
## INFO  [10:30:54.116] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:54.122] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:54.125] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  15
## initial  value 81314.189388 
## iter  10 value 2509.426049
## iter  20 value 1222.136972
## iter  30 value 817.546688
## iter  40 value 749.916669
## iter  50 value 699.871423
## iter  60 value 687.796082
## iter  70 value 659.269074
## iter  80 value 649.504890
## iter  90 value 648.071909
## iter 100 value 647.197922
## iter 110 value 645.168530
## iter 120 value 644.853470
## iter 130 value 644.791646
## iter 140 value 644.550962
## iter 150 value 644.540071
## iter 150 value 644.540069
## final  value 644.540044 
## converged
## INFO  [10:30:54.133] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  15
## initial  value 93711.090933 
## iter  10 value 5898.522032
## iter  20 value 2582.053813
## iter  30 value 868.887474
## iter  40 value 649.992599
## iter  50 value 573.986412
## iter  60 value 564.761837
## iter  70 value 564.444572
## iter  80 value 564.328657
## iter  90 value 564.194744
## iter 100 value 564.139625
## iter 110 value 564.131956
## iter 120 value 564.124405
## final  value 564.123454 
## converged
## INFO  [10:30:54.140] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  15
## initial  value 69975.286002 
## iter  10 value 1541.122759
## iter  20 value 1333.893095
## iter  30 value 1242.329923
## iter  40 value 1231.283308
## iter  50 value 1227.937534
## iter  60 value 1227.668936
## iter  70 value 1227.613656
## iter  80 value 1226.606861
## iter  90 value 1181.451100
## iter 100 value 777.451377
## iter 110 value 664.551588
## iter 120 value 652.432772
## iter 130 value 642.677958
## iter 140 value 634.223781
## iter 150 value 633.554872
## iter 160 value 633.496513
## iter 170 value 633.217075
## iter 180 value 633.142551
## iter 180 value 633.142550
## iter 180 value 633.142550
## final  value 633.142550 
## converged
## INFO  [10:30:54.147] [mlr3] Finished benchmark
## INFO  [10:30:54.158] [bbotk] Result of batch 16:
## INFO  [10:30:54.158] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:54.158] [bbotk]     2   325 9.797454e-05  8.744332        0      0            0.008
## INFO  [10:30:54.158] [bbotk]                                 uhash
## INFO  [10:30:54.158] [bbotk]  0434d79c-d8fb-491f-8788-c54952196aff
## INFO  [10:30:54.160] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:54.167] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:54.169] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  57
## initial  value 79977.495241 
## iter  10 value 2816.707525
## iter  20 value 764.358071
## iter  30 value 480.137966
## iter  40 value 446.790860
## iter  50 value 424.794967
## iter  60 value 297.663224
## iter  70 value 282.449484
## iter  80 value 281.082705
## iter  90 value 280.920574
## iter 100 value 280.915255
## iter 110 value 280.859430
## iter 120 value 280.849118
## iter 130 value 280.516732
## iter 140 value 264.219611
## iter 150 value 124.369576
## iter 160 value 109.598822
## iter 170 value 104.578827
## iter 180 value 95.746123
## iter 190 value 92.351014
## iter 200 value 89.769187
## iter 210 value 89.467470
## iter 220 value 89.146365
## iter 230 value 88.657389
## iter 240 value 88.442512
## iter 250 value 88.438762
## final  value 88.437505 
## stopped after 254 iterations
## INFO  [10:30:54.180] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  57
## initial  value 93072.122663 
## iter  10 value 1255.905523
## iter  20 value 490.129386
## iter  30 value 275.081993
## iter  40 value 188.881928
## iter  50 value 159.404862
## iter  60 value 147.278807
## iter  70 value 141.195425
## iter  80 value 135.984888
## iter  90 value 132.470695
## iter 100 value 128.003054
## iter 110 value 126.379700
## iter 120 value 125.777812
## iter 130 value 125.285751
## iter 140 value 123.621978
## iter 150 value 120.637690
## iter 160 value 119.979551
## iter 170 value 119.901709
## iter 180 value 119.715008
## iter 190 value 119.515214
## iter 200 value 119.299445
## iter 210 value 119.223555
## iter 220 value 118.342614
## iter 230 value 115.993512
## iter 240 value 115.299658
## iter 250 value 114.727403
## final  value 114.468011 
## stopped after 254 iterations
## INFO  [10:30:54.193] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  57
## initial  value 70411.577377 
## iter  10 value 1512.028079
## iter  20 value 592.717491
## iter  30 value 288.078199
## iter  40 value 147.104424
## iter  50 value 89.487636
## iter  60 value 80.024272
## iter  70 value 74.890404
## iter  80 value 71.762720
## iter  90 value 69.998044
## iter 100 value 69.116169
## iter 110 value 68.512528
## iter 120 value 67.906348
## iter 130 value 67.502247
## iter 140 value 65.911785
## iter 150 value 51.654545
## iter 160 value 49.363559
## iter 170 value 49.101263
## iter 180 value 48.833104
## iter 190 value 48.611851
## iter 200 value 46.423534
## iter 210 value 42.263167
## iter 220 value 32.575811
## iter 230 value 27.070810
## iter 240 value 25.689631
## iter 250 value 24.858624
## final  value 24.209430 
## stopped after 254 iterations
## INFO  [10:30:54.203] [mlr3] Finished benchmark
## INFO  [10:30:54.214] [bbotk] Result of batch 17:
## INFO  [10:30:54.214] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:54.214] [bbotk]     8   254 1.869049e-05  12.67996        0      0            0.019
## INFO  [10:30:54.214] [bbotk]                                 uhash
## INFO  [10:30:54.214] [bbotk]  7a37b4d1-6d89-4da6-bb8b-f87517d6dcaf
## INFO  [10:30:54.216] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:54.223] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:54.226] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  57
## initial  value 84812.034772 
## iter  10 value 1369.699687
## iter  20 value 514.646355
## iter  30 value 235.874150
## iter  40 value 153.652414
## iter  50 value 143.300444
## iter  60 value 139.009170
## iter  70 value 138.061437
## iter  80 value 132.121360
## iter  90 value 128.404964
## iter 100 value 127.920573
## iter 110 value 127.703287
## iter 120 value 127.498537
## iter 130 value 127.431584
## iter 140 value 127.179158
## iter 150 value 120.628891
## iter 160 value 75.213576
## iter 170 value 58.612555
## iter 180 value 56.045767
## final  value 55.359221 
## stopped after 185 iterations
## INFO  [10:30:54.235] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  57
## initial  value 93062.566124 
## iter  10 value 1731.531066
## iter  20 value 730.734190
## iter  30 value 459.564653
## iter  40 value 377.782238
## iter  50 value 343.191731
## iter  60 value 305.472638
## iter  70 value 273.579238
## iter  80 value 271.323407
## iter  90 value 268.915280
## iter 100 value 268.331324
## iter 110 value 268.146760
## iter 120 value 268.123313
## iter 130 value 268.100760
## iter 140 value 268.029071
## iter 150 value 267.798299
## iter 160 value 266.585781
## iter 170 value 263.592866
## iter 180 value 232.268886
## final  value 230.600332 
## stopped after 185 iterations
## INFO  [10:30:54.244] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  57
## initial  value 73338.507367 
## iter  10 value 3488.106582
## iter  20 value 1454.892265
## iter  30 value 1325.571767
## iter  40 value 1251.485783
## iter  50 value 1232.114554
## iter  60 value 1225.956003
## iter  70 value 1217.446557
## iter  80 value 1148.930003
## iter  90 value 1068.162607
## iter 100 value 1053.687821
## iter 110 value 782.640978
## iter 120 value 624.137058
## iter 130 value 603.765716
## iter 140 value 599.736813
## iter 150 value 580.483463
## iter 160 value 577.856753
## iter 170 value 574.230878
## iter 180 value 572.830272
## final  value 572.639300 
## stopped after 185 iterations
## INFO  [10:30:54.251] [mlr3] Finished benchmark
## INFO  [10:30:54.263] [bbotk] Result of batch 18:
## INFO  [10:30:54.263] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:54.263] [bbotk]     8   185 4.781939e-06   8.27891        0      0            0.011
## INFO  [10:30:54.263] [bbotk]                                 uhash
## INFO  [10:30:54.263] [bbotk]  9d3ab2d7-2799-4dd0-ac9b-c6ab163f25e7
## INFO  [10:30:54.265] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:54.272] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:54.274] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  29
## initial  value 84679.186352 
## iter  10 value 3051.238128
## iter  20 value 2338.916070
## iter  30 value 1768.527276
## iter  40 value 1619.210956
## iter  50 value 1273.195758
## iter  60 value 1163.948832
## iter  70 value 858.076898
## iter  80 value 501.962501
## iter  90 value 330.395638
## iter 100 value 275.354349
## iter 110 value 187.047910
## iter 120 value 153.198680
## iter 130 value 147.711375
## iter 140 value 143.339885
## iter 150 value 142.677449
## iter 160 value 142.649075
## iter 170 value 141.885884
## iter 180 value 139.178302
## iter 190 value 109.797428
## final  value 100.511879 
## stopped after 195 iterations
## INFO  [10:30:54.282] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  29
## initial  value 89528.992131 
## iter  10 value 7585.338203
## iter  20 value 1950.803305
## iter  30 value 1584.321193
## iter  40 value 1061.593980
## iter  50 value 1054.859696
## iter  60 value 1054.330179
## iter  70 value 1052.655418
## iter  80 value 1045.858571
## iter  90 value 955.700718
## iter 100 value 587.858247
## iter 110 value 483.283274
## iter 120 value 467.569072
## iter 130 value 465.000636
## iter 140 value 464.158064
## iter 150 value 462.553356
## iter 160 value 461.637722
## iter 170 value 461.618000
## iter 180 value 461.576244
## iter 190 value 461.325083
## final  value 459.458901 
## stopped after 195 iterations
## INFO  [10:30:54.290] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  29
## initial  value 71620.247325 
## iter  10 value 2025.889874
## iter  20 value 1621.018493
## iter  30 value 1544.914978
## iter  40 value 1309.178980
## iter  50 value 1242.964948
## iter  60 value 1232.737144
## iter  70 value 1228.670479
## iter  80 value 1228.435556
## iter  90 value 1227.776393
## iter 100 value 1222.302633
## iter 110 value 1209.749624
## iter 120 value 1006.872849
## iter 130 value 741.973800
## iter 140 value 651.816122
## iter 150 value 650.822330
## iter 160 value 650.536492
## iter 170 value 650.498930
## iter 180 value 650.387231
## iter 190 value 650.385247
## final  value 650.382901 
## stopped after 195 iterations
## INFO  [10:30:54.298] [mlr3] Finished benchmark
## INFO  [10:30:54.309] [bbotk] Result of batch 19:
## INFO  [10:30:54.309] [bbotk]  size maxit       decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:54.309] [bbotk]     4   195 9.59708e-05  8.559207        0      0            0.007
## INFO  [10:30:54.309] [bbotk]                                 uhash
## INFO  [10:30:54.309] [bbotk]  0ed045f2-e0aa-456f-85be-b3b7dedb0f6d
## INFO  [10:30:54.314] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:54.321] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:54.324] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  29
## initial  value 80164.203510 
## iter  10 value 3353.416712
## iter  20 value 1483.428501
## iter  30 value 1229.306336
## iter  40 value 1193.156544
## iter  50 value 1174.923281
## iter  60 value 652.911179
## iter  70 value 594.223388
## iter  80 value 531.700278
## iter  90 value 503.330463
## iter 100 value 490.772083
## iter 110 value 490.739804
## iter 120 value 485.496364
## iter 130 value 471.518004
## iter 140 value 449.615822
## iter 150 value 446.307830
## iter 160 value 445.554485
## iter 170 value 442.000923
## iter 180 value 441.434654
## iter 190 value 441.411321
## iter 200 value 441.407580
## iter 210 value 441.383456
## iter 220 value 441.188828
## iter 230 value 438.290074
## iter 240 value 423.389148
## iter 250 value 339.119115
## iter 260 value 299.706717
## iter 270 value 295.758957
## iter 280 value 293.932473
## iter 290 value 293.788532
## iter 300 value 293.745018
## iter 310 value 293.270093
## iter 320 value 291.202797
## iter 330 value 287.409031
## iter 340 value 243.620960
## iter 350 value 227.172110
## iter 360 value 212.119781
## iter 370 value 206.150268
## final  value 203.531674 
## stopped after 377 iterations
## INFO  [10:30:54.334] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  29
## initial  value 95338.099703 
## iter  10 value 1279.515843
## iter  20 value 811.543025
## iter  30 value 551.592036
## iter  40 value 531.629612
## iter  50 value 524.008567
## iter  60 value 520.062676
## iter  70 value 509.902287
## iter  80 value 431.743742
## iter  90 value 408.786510
## iter 100 value 402.197063
## iter 110 value 399.930782
## iter 120 value 398.841227
## iter 130 value 390.600003
## iter 140 value 371.509264
## iter 150 value 323.296854
## iter 160 value 253.568118
## iter 170 value 227.545542
## iter 180 value 221.711984
## iter 190 value 218.254035
## iter 200 value 212.773766
## iter 210 value 198.902423
## iter 220 value 191.662435
## iter 230 value 190.143517
## iter 240 value 188.499591
## iter 250 value 184.283264
## iter 260 value 183.179151
## iter 270 value 182.263639
## iter 280 value 181.759870
## final  value 181.759268 
## converged
## INFO  [10:30:54.343] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  29
## initial  value 73293.754851 
## iter  10 value 2254.147713
## iter  20 value 1241.204852
## iter  30 value 1162.715463
## iter  40 value 1063.389599
## iter  50 value 908.093354
## iter  60 value 789.599929
## iter  70 value 775.702807
## iter  80 value 763.744912
## iter  90 value 760.926744
## iter 100 value 758.491555
## iter 110 value 758.222134
## iter 120 value 758.115193
## iter 130 value 758.020011
## final  value 758.019546 
## converged
## INFO  [10:30:54.349] [mlr3] Finished benchmark
## INFO  [10:30:54.360] [bbotk] Result of batch 20:
## INFO  [10:30:54.361] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:54.361] [bbotk]     4   377 7.073213e-05  9.926329        0      0            0.012
## INFO  [10:30:54.361] [bbotk]                                 uhash
## INFO  [10:30:54.361] [bbotk]  e70725a1-f490-4da0-897d-1ed9ba54d3a7
## INFO  [10:30:54.364] [bbotk] Finished optimizing after 20 evaluation(s)
## INFO  [10:30:54.365] [bbotk] Result:
## INFO  [10:30:54.365] [bbotk]  size maxit        decay learner_param_vals  x_domain regr.rmse
## INFO  [10:30:54.365] [bbotk]     5   257 8.446055e-05          <list[3]> <list[3]>  7.535631
## # weights:  36
## initial  value 127901.355743 
## iter  10 value 6804.759814
## iter  20 value 3303.920358
## iter  30 value 2270.356172
## iter  40 value 1940.492304
## iter  50 value 1913.868451
## iter  60 value 1909.736810
## iter  70 value 1906.178731
## iter  80 value 1876.327485
## iter  90 value 1785.985142
## iter 100 value 1361.090282
## iter 110 value 1197.696364
## iter 120 value 1187.815554
## iter 130 value 1185.528538
## iter 140 value 1183.831801
## iter 150 value 1183.390725
## iter 160 value 1182.595410
## iter 170 value 1182.325020
## iter 180 value 1181.208723
## iter 190 value 1180.018153
## iter 200 value 1154.999100
## iter 210 value 1048.866278
## iter 220 value 952.566535
## iter 230 value 948.318255
## iter 240 value 936.864848
## iter 250 value 934.998290
## final  value 934.841760 
## stopped after 257 iterations
## INFO  [10:30:54.382] [mlr3] Applying learner 'regr.nnet.tuned' on task 'cereal' (iter 2/5)
## INFO  [10:30:54.400] [bbotk] Starting to optimize 3 parameter(s) with '<OptimizerRandomSearch>' and '<TerminatorEvals> [n_evals=20, k=0]'
## INFO  [10:30:54.406] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:54.412] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:54.415] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  50
## initial  value 87511.987406 
## iter  10 value 2915.940434
## iter  20 value 1337.078126
## iter  30 value 743.112404
## iter  40 value 589.473416
## iter  50 value 533.016543
## iter  60 value 485.848911
## iter  70 value 459.397828
## iter  80 value 447.172808
## iter  90 value 414.463300
## iter 100 value 401.023472
## iter 110 value 395.365489
## iter 120 value 394.403504
## iter 130 value 390.189913
## iter 140 value 382.840960
## iter 150 value 380.804766
## iter 160 value 379.540906
## iter 170 value 378.841870
## iter 180 value 378.326727
## iter 190 value 377.263313
## iter 200 value 375.523934
## iter 210 value 372.141655
## iter 220 value 371.416101
## iter 230 value 369.394672
## iter 240 value 365.972789
## iter 250 value 365.189187
## iter 260 value 363.775150
## iter 270 value 351.336057
## iter 280 value 277.246975
## iter 290 value 182.700352
## final  value 181.232664 
## stopped after 291 iterations
## INFO  [10:30:54.429] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  50
## initial  value 87861.820382 
## final  value 8477.423873 
## converged
## INFO  [10:30:54.436] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  50
## initial  value 74752.699146 
## iter  10 value 2971.457295
## iter  20 value 1076.624197
## iter  30 value 965.092184
## iter  40 value 915.145656
## iter  50 value 911.666283
## iter  60 value 911.060186
## iter  70 value 910.572299
## iter  80 value 877.520049
## iter  90 value 686.236485
## iter 100 value 648.530498
## iter 110 value 624.798198
## iter 120 value 621.496656
## iter 130 value 616.626386
## iter 140 value 615.068124
## iter 150 value 604.420646
## iter 160 value 587.994646
## iter 170 value 587.120081
## iter 180 value 569.663058
## iter 190 value 508.258357
## iter 200 value 491.027542
## iter 210 value 486.508749
## iter 220 value 472.688600
## iter 230 value 435.076371
## iter 240 value 411.805494
## iter 250 value 407.577239
## iter 260 value 405.493300
## iter 270 value 382.742905
## iter 280 value 350.474030
## iter 290 value 337.213030
## final  value 337.110597 
## stopped after 291 iterations
## INFO  [10:30:54.445] [mlr3] Finished benchmark
## INFO  [10:30:54.455] [bbotk] Result of batch 1:
## INFO  [10:30:54.456] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:54.456] [bbotk]     7   291 8.033919e-05  23.07666        0      0            0.017
## INFO  [10:30:54.456] [bbotk]                                 uhash
## INFO  [10:30:54.456] [bbotk]  d7e3abbf-c594-439f-a052-897e5f25655b
## INFO  [10:30:54.458] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:54.464] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:54.467] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  22
## initial  value 82967.620929 
## iter  10 value 2596.137926
## iter  20 value 1391.496126
## iter  30 value 1182.376107
## iter  40 value 784.510911
## iter  50 value 557.027099
## iter  60 value 461.903777
## iter  70 value 412.620698
## iter  80 value 410.951873
## iter  90 value 410.173826
## iter 100 value 403.804007
## iter 110 value 402.912153
## iter 120 value 401.382729
## iter 130 value 367.007835
## iter 140 value 254.294164
## iter 150 value 237.871902
## iter 160 value 230.685628
## iter 170 value 230.370981
## iter 180 value 229.604286
## iter 190 value 228.539782
## iter 200 value 228.257575
## iter 210 value 227.997574
## iter 220 value 227.950336
## iter 230 value 227.737112
## iter 240 value 227.505693
## iter 250 value 227.429614
## iter 260 value 227.347105
## iter 270 value 227.313670
## iter 280 value 227.305177
## iter 290 value 227.265644
## iter 300 value 227.259169
## iter 310 value 227.258376
## iter 320 value 227.248583
## iter 330 value 227.245862
## final  value 227.245862 
## stopped after 330 iterations
## INFO  [10:30:54.476] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  22
## initial  value 82098.887986 
## iter  10 value 4509.072690
## iter  20 value 2066.117416
## iter  30 value 1587.578656
## iter  40 value 1387.818509
## iter  50 value 1271.403803
## iter  60 value 791.386812
## iter  70 value 715.483153
## iter  80 value 678.915550
## iter  90 value 580.714922
## iter 100 value 542.734983
## iter 110 value 530.899829
## iter 120 value 525.679962
## iter 130 value 516.798485
## iter 140 value 508.370488
## iter 150 value 507.549191
## final  value 507.545092 
## converged
## INFO  [10:30:54.483] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  22
## initial  value 75898.243322 
## iter  10 value 5512.813432
## iter  20 value 1023.961775
## iter  30 value 981.607080
## iter  40 value 928.760992
## iter  50 value 912.022234
## iter  60 value 910.654020
## iter  70 value 910.247713
## iter  80 value 910.223549
## iter  90 value 910.213466
## iter 100 value 910.162721
## iter 110 value 909.983156
## iter 120 value 907.607645
## iter 130 value 871.836396
## iter 140 value 558.401676
## iter 150 value 466.299008
## iter 160 value 461.005444
## iter 170 value 459.859768
## iter 180 value 459.619756
## iter 190 value 459.308080
## iter 200 value 450.072419
## iter 210 value 448.523209
## iter 220 value 448.106342
## iter 230 value 447.134916
## iter 240 value 446.730041
## iter 250 value 445.837217
## iter 260 value 445.360426
## iter 260 value 445.360426
## final  value 445.360426 
## converged
## INFO  [10:30:54.491] [mlr3] Finished benchmark
## INFO  [10:30:54.502] [bbotk] Result of batch 2:
## INFO  [10:30:54.502] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:54.502] [bbotk]     3   330 3.144581e-05  7.846788        0      0            0.011
## INFO  [10:30:54.502] [bbotk]                                 uhash
## INFO  [10:30:54.502] [bbotk]  c01665ff-80fa-451e-861f-4f5fd887e0f7
## INFO  [10:30:54.504] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:54.511] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:54.513] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  8
## initial  value 78685.418636 
## iter  10 value 3286.478429
## iter  20 value 2277.330955
## iter  30 value 2259.259207
## iter  40 value 2139.134521
## iter  50 value 1901.234382
## iter  60 value 1563.090197
## iter  70 value 1454.446144
## iter  80 value 1444.543037
## iter  90 value 1442.182373
## iter 100 value 1442.057716
## final  value 1442.055462 
## converged
## INFO  [10:30:54.520] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  8
## initial  value 85905.993576 
## iter  10 value 3284.373414
## iter  20 value 2313.941951
## iter  30 value 1765.071798
## iter  40 value 1464.270178
## iter  50 value 1365.667716
## iter  60 value 1357.467392
## iter  70 value 1346.479315
## iter  80 value 1345.963002
## iter  90 value 1344.393609
## iter 100 value 1344.305756
## iter 110 value 1343.457049
## iter 120 value 1343.153368
## iter 130 value 1342.938900
## iter 140 value 1342.887658
## iter 150 value 1342.823482
## iter 150 value 1342.823478
## iter 150 value 1342.823477
## final  value 1342.823477 
## converged
## INFO  [10:30:54.527] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  8
## initial  value 77348.377645 
## final  value 7044.087912 
## converged
## INFO  [10:30:54.533] [mlr3] Finished benchmark
## INFO  [10:30:54.548] [bbotk] Result of batch 3:
## INFO  [10:30:54.548] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:54.548] [bbotk]     1   479 4.288808e-06  9.572197        0      0            0.006
## INFO  [10:30:54.548] [bbotk]                                 uhash
## INFO  [10:30:54.548] [bbotk]  2e431fd1-7bec-442c-b82f-8a28dc94e3bf
## INFO  [10:30:54.550] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:54.557] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:54.559] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  36
## initial  value 84033.038879 
## iter  10 value 1385.762341
## iter  20 value 827.283786
## iter  30 value 671.274771
## iter  40 value 662.299290
## iter  50 value 655.480146
## iter  60 value 652.382961
## iter  70 value 652.166040
## iter  80 value 652.046847
## final  value 652.032192 
## converged
## INFO  [10:30:54.567] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  36
## initial  value 86131.659908 
## iter  10 value 2611.766592
## iter  20 value 1717.306577
## iter  30 value 1408.213682
## iter  40 value 1366.770511
## iter  50 value 1350.571397
## iter  60 value 1347.349889
## iter  70 value 1346.983931
## iter  80 value 1339.759114
## iter  90 value 1327.724199
## iter 100 value 1138.767594
## iter 110 value 1067.780603
## iter 120 value 1040.238949
## iter 130 value 1024.581113
## iter 140 value 1013.161784
## iter 150 value 997.569140
## iter 160 value 823.665477
## iter 170 value 753.573931
## iter 180 value 750.217460
## iter 190 value 749.818489
## iter 200 value 749.374246
## iter 210 value 743.159198
## iter 220 value 740.798897
## iter 230 value 734.193355
## iter 240 value 619.379411
## iter 250 value 441.628926
## iter 260 value 342.696096
## iter 270 value 280.099902
## iter 280 value 252.651563
## iter 290 value 250.436409
## iter 300 value 249.175287
## iter 310 value 248.750530
## iter 320 value 247.696160
## iter 330 value 246.226466
## iter 340 value 244.005015
## iter 350 value 239.669297
## iter 360 value 239.509359
## iter 370 value 239.223683
## iter 380 value 237.273185
## iter 390 value 235.245823
## iter 400 value 234.947074
## final  value 234.910240 
## stopped after 407 iterations
## INFO  [10:30:54.577] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  36
## initial  value 79240.148912 
## final  value 7045.680397 
## converged
## INFO  [10:30:54.583] [mlr3] Finished benchmark
## INFO  [10:30:54.594] [bbotk] Result of batch 4:
## INFO  [10:30:54.595] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:54.595] [bbotk]     5   407 9.082541e-05  12.11542        0      0             0.01
## INFO  [10:30:54.595] [bbotk]                                 uhash
## INFO  [10:30:54.595] [bbotk]  31ba20aa-3a0e-47a0-81f4-46a26df11aef
## INFO  [10:30:54.596] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:54.603] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:54.606] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  29
## initial  value 84498.335885 
## iter  10 value 1867.168156
## iter  20 value 985.174694
## iter  30 value 541.991277
## iter  40 value 418.486207
## iter  50 value 315.848310
## iter  60 value 292.039226
## iter  70 value 283.626416
## iter  80 value 283.267859
## iter  90 value 282.013681
## iter 100 value 280.402615
## iter 110 value 279.102179
## iter 120 value 277.542744
## iter 130 value 265.352600
## iter 140 value 264.410301
## iter 150 value 264.020971
## iter 160 value 263.760686
## iter 170 value 262.695287
## iter 180 value 262.693666
## iter 190 value 262.681497
## iter 200 value 262.650120
## iter 210 value 262.520541
## iter 220 value 262.517975
## final  value 262.503110 
## converged
## INFO  [10:30:54.614] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  29
## initial  value 85643.156442 
## final  value 8475.126660 
## converged
## INFO  [10:30:54.620] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  29
## initial  value 75823.398374 
## iter  10 value 6694.715873
## iter  20 value 1849.105416
## iter  30 value 981.424330
## iter  40 value 942.116477
## iter  50 value 912.527790
## iter  60 value 911.321115
## iter  70 value 909.969339
## iter  80 value 839.834353
## iter  90 value 673.093731
## iter 100 value 624.074160
## iter 110 value 612.945609
## iter 120 value 605.494102
## iter 130 value 596.741712
## iter 140 value 594.428028
## iter 150 value 581.136898
## iter 160 value 534.638094
## iter 170 value 493.305003
## iter 180 value 477.073071
## iter 190 value 473.940477
## iter 200 value 472.806850
## iter 210 value 471.616944
## iter 220 value 471.529677
## iter 230 value 471.507498
## iter 240 value 469.985980
## iter 250 value 445.832957
## iter 260 value 397.349839
## iter 270 value 375.178460
## iter 280 value 359.269155
## iter 290 value 356.900576
## iter 300 value 356.639975
## iter 310 value 356.280907
## iter 320 value 354.898233
## iter 330 value 354.460221
## iter 340 value 354.309921
## iter 350 value 352.365328
## iter 360 value 342.912368
## iter 370 value 314.541605
## iter 380 value 292.219649
## iter 390 value 265.099835
## iter 400 value 237.131251
## iter 410 value 219.341296
## iter 420 value 217.889263
## iter 430 value 214.975215
## iter 440 value 213.926399
## iter 450 value 202.561353
## iter 460 value 195.940934
## iter 470 value 179.899299
## final  value 176.153657 
## stopped after 479 iterations
## INFO  [10:30:54.630] [mlr3] Finished benchmark
## INFO  [10:30:54.640] [bbotk] Result of batch 5:
## INFO  [10:30:54.641] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:54.641] [bbotk]     4   479 8.879083e-05   9.78283        0      0            0.011
## INFO  [10:30:54.641] [bbotk]                                 uhash
## INFO  [10:30:54.641] [bbotk]  0eee644a-0aa6-40e5-9b6a-a0cd284ce9b1
## INFO  [10:30:54.643] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:54.650] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:54.655] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  43
## initial  value 79984.980413 
## iter  10 value 8587.465479
## iter  20 value 3647.952069
## iter  30 value 2732.806869
## iter  40 value 2717.210874
## iter  50 value 2706.722918
## iter  60 value 2706.564705
## iter  70 value 2704.521578
## iter  80 value 2593.212885
## iter  90 value 1332.534108
## iter 100 value 1312.799366
## iter 110 value 1308.815954
## iter 120 value 1300.108501
## iter 130 value 1296.650003
## iter 140 value 1296.541118
## iter 150 value 1296.027454
## iter 160 value 1279.395880
## iter 170 value 1182.367982
## iter 180 value 1157.447485
## iter 190 value 1156.904719
## iter 200 value 1156.872509
## iter 210 value 1156.836669
## final  value 1156.834165 
## stopped after 212 iterations
## INFO  [10:30:54.665] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  43
## initial  value 83249.906022 
## iter  10 value 6000.716963
## iter  20 value 2032.442358
## iter  30 value 1677.687011
## iter  40 value 1389.673714
## iter  50 value 1357.071445
## iter  60 value 1348.970800
## iter  70 value 1347.263522
## iter  80 value 1346.833029
## iter  90 value 1346.467620
## iter 100 value 1343.617199
## iter 110 value 1277.894344
## iter 120 value 1111.847253
## iter 130 value 1066.020363
## iter 140 value 1010.887531
## iter 150 value 890.501530
## iter 160 value 794.052777
## iter 170 value 766.330924
## iter 180 value 752.886515
## iter 190 value 749.444335
## iter 200 value 749.201350
## iter 210 value 747.945479
## final  value 747.829006 
## stopped after 212 iterations
## INFO  [10:30:54.673] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  43
## initial  value 80521.861949 
## iter  10 value 3033.602970
## iter  20 value 1535.029055
## iter  30 value 944.815854
## iter  40 value 743.529872
## iter  50 value 721.059803
## iter  60 value 717.067529
## iter  70 value 713.606908
## iter  80 value 684.752852
## iter  90 value 531.056243
## iter 100 value 485.252432
## iter 110 value 472.957615
## iter 120 value 469.925579
## iter 130 value 468.574243
## iter 140 value 467.810810
## iter 150 value 467.103306
## iter 160 value 466.979932
## iter 170 value 466.612765
## iter 180 value 464.063588
## iter 190 value 462.723229
## iter 200 value 461.466543
## iter 210 value 461.331080
## final  value 461.308100 
## stopped after 212 iterations
## INFO  [10:30:54.681] [mlr3] Finished benchmark
## INFO  [10:30:54.692] [bbotk] Result of batch 6:
## INFO  [10:30:54.693] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:54.693] [bbotk]     6   212 7.319643e-05  7.891372        0      0            0.012
## INFO  [10:30:54.693] [bbotk]                                 uhash
## INFO  [10:30:54.693] [bbotk]  3e80b976-533f-4424-a736-9d58d75da91f
## INFO  [10:30:54.695] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:54.701] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:54.704] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  29
## initial  value 77506.134182 
## iter  10 value 2466.219924
## iter  20 value 2226.101058
## iter  30 value 1702.609438
## iter  40 value 926.539687
## iter  50 value 443.624591
## iter  60 value 381.373566
## iter  70 value 361.361526
## iter  80 value 342.100308
## iter  90 value 336.279890
## iter 100 value 331.878901
## iter 110 value 329.900271
## iter 120 value 326.882557
## iter 130 value 314.972193
## iter 140 value 314.711461
## iter 150 value 314.684906
## iter 160 value 314.555896
## iter 170 value 313.965411
## iter 180 value 313.441881
## iter 190 value 312.908298
## iter 200 value 312.862526
## final  value 312.862434 
## converged
## INFO  [10:30:54.712] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  29
## initial  value 83656.898959 
## iter  10 value 2430.672986
## iter  20 value 1617.423121
## iter  30 value 1271.136633
## iter  40 value 1064.877237
## iter  50 value 827.087251
## iter  60 value 674.463684
## iter  70 value 574.663984
## iter  80 value 549.318389
## iter  90 value 532.381620
## iter 100 value 522.204401
## iter 110 value 521.329877
## iter 120 value 519.638052
## iter 130 value 519.433724
## iter 140 value 519.136968
## iter 150 value 515.091606
## iter 160 value 513.661318
## iter 170 value 512.912270
## iter 180 value 512.878930
## iter 190 value 512.815108
## iter 200 value 512.751579
## iter 210 value 512.742455
## iter 220 value 512.742052
## iter 230 value 512.691995
## iter 240 value 512.679649
## iter 250 value 512.672726
## iter 260 value 512.665881
## iter 270 value 512.665371
## final  value 512.665159 
## stopped after 271 iterations
## INFO  [10:30:54.721] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  29
## initial  value 79859.798733 
## iter  10 value 5098.824697
## iter  20 value 1136.656180
## iter  30 value 997.786769
## iter  40 value 921.534783
## iter  50 value 911.531021
## iter  60 value 910.341469
## final  value 910.339767 
## converged
## INFO  [10:30:54.727] [mlr3] Finished benchmark
## INFO  [10:30:54.738] [bbotk] Result of batch 7:
## INFO  [10:30:54.738] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:54.738] [bbotk]     4   271 3.390402e-05   10.0576        0      0            0.011
## INFO  [10:30:54.738] [bbotk]                                 uhash
## INFO  [10:30:54.738] [bbotk]  b88b3a73-385c-4e6f-aa43-29b5fb9b6804
## INFO  [10:30:54.740] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:54.747] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:54.750] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  43
## initial  value 84835.858450 
## iter  10 value 1760.267174
## iter  20 value 1149.509727
## iter  30 value 904.391641
## iter  40 value 822.544425
## iter  50 value 794.781689
## iter  60 value 787.045574
## iter  70 value 739.662549
## iter  80 value 664.385601
## iter  90 value 652.405219
## iter 100 value 648.317282
## iter 110 value 642.584777
## iter 120 value 609.404471
## iter 130 value 605.552689
## iter 140 value 600.455259
## iter 150 value 555.536131
## iter 160 value 549.555408
## iter 170 value 540.834408
## iter 180 value 538.343950
## iter 190 value 537.377089
## iter 200 value 511.501870
## iter 210 value 449.194755
## iter 220 value 441.122064
## iter 230 value 437.518916
## iter 240 value 436.130247
## iter 250 value 435.898379
## iter 260 value 435.883080
## iter 270 value 435.855367
## iter 280 value 435.743090
## iter 290 value 435.621249
## iter 300 value 435.346367
## iter 310 value 435.189669
## iter 320 value 434.671679
## iter 330 value 427.622144
## iter 340 value 398.387312
## iter 350 value 318.258632
## iter 360 value 287.667892
## iter 370 value 267.142498
## iter 380 value 246.156803
## iter 390 value 234.744399
## iter 400 value 205.816485
## iter 410 value 197.648620
## iter 420 value 197.069255
## iter 430 value 196.829614
## iter 440 value 196.708532
## iter 450 value 195.976368
## iter 460 value 192.229171
## iter 470 value 184.656202
## final  value 183.171041 
## stopped after 471 iterations
## INFO  [10:30:54.762] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  43
## initial  value 87982.412500 
## iter  10 value 3169.654078
## iter  20 value 1647.376282
## iter  30 value 1276.886923
## iter  40 value 722.051977
## iter  50 value 504.100087
## iter  60 value 428.772214
## iter  70 value 387.319211
## iter  80 value 364.527898
## iter  90 value 351.379484
## iter 100 value 343.185654
## iter 110 value 328.445961
## iter 120 value 322.512540
## iter 130 value 315.053736
## iter 140 value 305.322048
## iter 150 value 298.203611
## iter 160 value 293.759646
## iter 170 value 290.308894
## iter 180 value 289.257815
## iter 190 value 287.915372
## iter 200 value 285.101960
## iter 210 value 284.533212
## iter 220 value 282.378311
## iter 230 value 278.258821
## iter 240 value 275.441472
## iter 250 value 275.075151
## iter 260 value 273.762222
## iter 270 value 271.553246
## iter 280 value 271.063415
## iter 290 value 270.682837
## iter 300 value 270.567257
## iter 310 value 268.454139
## iter 320 value 268.096744
## iter 330 value 268.044729
## iter 340 value 268.022622
## iter 350 value 267.413535
## iter 360 value 256.149605
## iter 370 value 208.726285
## iter 380 value 159.367233
## iter 390 value 133.025773
## iter 400 value 107.275947
## iter 410 value 94.651481
## iter 420 value 91.718828
## iter 430 value 90.097900
## iter 440 value 89.772131
## iter 450 value 89.681237
## iter 460 value 89.387771
## iter 470 value 89.192463
## final  value 89.133145 
## stopped after 471 iterations
## INFO  [10:30:54.778] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  43
## initial  value 78930.936925 
## iter  10 value 4644.581070
## iter  20 value 851.005652
## iter  30 value 619.704405
## iter  40 value 521.834305
## iter  50 value 448.259318
## iter  60 value 421.995948
## iter  70 value 370.950440
## iter  80 value 336.002583
## iter  90 value 318.888143
## iter 100 value 313.214340
## iter 110 value 298.061126
## iter 120 value 276.287215
## iter 130 value 262.058709
## iter 140 value 255.401270
## iter 150 value 254.795136
## iter 160 value 253.916603
## iter 170 value 253.529125
## iter 180 value 252.903999
## iter 190 value 252.728543
## iter 200 value 251.293172
## iter 210 value 247.710868
## iter 220 value 246.666647
## iter 230 value 246.385595
## iter 240 value 246.182816
## iter 250 value 245.793422
## iter 260 value 245.724857
## iter 270 value 245.720472
## iter 280 value 245.702838
## iter 290 value 245.529923
## iter 300 value 245.339245
## iter 310 value 245.084319
## iter 320 value 245.005886
## iter 330 value 244.898587
## iter 340 value 244.875173
## iter 350 value 244.771963
## iter 360 value 244.767325
## iter 370 value 244.761272
## iter 380 value 244.725678
## iter 390 value 244.672841
## iter 400 value 244.567481
## iter 410 value 244.515082
## iter 420 value 244.336190
## iter 430 value 244.170837
## iter 440 value 243.987044
## iter 450 value 243.915934
## iter 460 value 242.673462
## iter 470 value 202.898370
## final  value 200.870767 
## stopped after 471 iterations
## INFO  [10:30:54.789] [mlr3] Finished benchmark
## INFO  [10:30:54.800] [bbotk] Result of batch 8:
## INFO  [10:30:54.801] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:54.801] [bbotk]     6   471 4.253373e-05  11.30139        0      0            0.026
## INFO  [10:30:54.801] [bbotk]                                 uhash
## INFO  [10:30:54.801] [bbotk]  5a8d2717-36bb-4ef6-826b-a70cb299e18b
## INFO  [10:30:54.803] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:54.809] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:54.812] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  36
## initial  value 83231.426531 
## iter  10 value 3979.158592
## iter  20 value 1320.123711
## iter  30 value 597.584550
## iter  40 value 414.092222
## iter  50 value 327.126434
## final  value 290.058899 
## stopped after 59 iterations
## INFO  [10:30:54.819] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  36
## initial  value 86763.710555 
## iter  10 value 8472.675855
## iter  20 value 2755.285181
## iter  30 value 1791.841196
## iter  40 value 1449.644821
## iter  50 value 1363.208675
## final  value 1349.345023 
## stopped after 59 iterations
## INFO  [10:30:54.826] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  36
## initial  value 74499.664153 
## iter  10 value 6057.578748
## iter  20 value 991.824993
## iter  30 value 892.314122
## iter  40 value 771.519110
## iter  50 value 720.659145
## final  value 708.317786 
## stopped after 59 iterations
## INFO  [10:30:54.832] [mlr3] Finished benchmark
## INFO  [10:30:54.843] [bbotk] Result of batch 9:
## INFO  [10:30:54.844] [bbotk]  size maxit       decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:54.844] [bbotk]     5    59 4.82801e-05  9.175178        0      0            0.008
## INFO  [10:30:54.844] [bbotk]                                 uhash
## INFO  [10:30:54.844] [bbotk]  56c4372a-c949-42c7-a8c5-b9f892ed56ea
## INFO  [10:30:54.845] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:54.852] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:54.855] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  36
## initial  value 82577.474321 
## iter  10 value 4894.358563
## iter  20 value 1478.542899
## iter  30 value 887.050034
## iter  40 value 768.871271
## iter  50 value 666.962241
## iter  60 value 639.049833
## iter  70 value 631.143283
## iter  80 value 630.985783
## final  value 630.967122 
## stopped after 84 iterations
## INFO  [10:30:54.862] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  36
## initial  value 83899.269887 
## final  value 8474.654362 
## converged
## INFO  [10:30:54.868] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  36
## initial  value 79712.738025 
## iter  10 value 1475.510608
## iter  20 value 922.721764
## iter  30 value 768.081063
## iter  40 value 597.660827
## iter  50 value 533.255736
## iter  60 value 499.387735
## iter  70 value 403.385110
## iter  80 value 389.664131
## final  value 386.364127 
## stopped after 84 iterations
## INFO  [10:30:54.875] [mlr3] Finished benchmark
## INFO  [10:30:54.889] [bbotk] Result of batch 10:
## INFO  [10:30:54.890] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:54.890] [bbotk]     5    84 3.118007e-05  11.15122        0      0            0.007
## INFO  [10:30:54.890] [bbotk]                                 uhash
## INFO  [10:30:54.890] [bbotk]  83d76e0e-2815-4474-999d-fc9ad06825f4
## INFO  [10:30:54.892] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:54.899] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:54.901] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  64
## initial  value 76195.736417 
## iter  10 value 1375.016213
## iter  20 value 495.265946
## iter  30 value 365.010817
## iter  40 value 294.615235
## iter  50 value 245.534913
## iter  60 value 178.360589
## iter  70 value 145.587360
## iter  80 value 115.378928
## iter  90 value 74.505312
## iter 100 value 45.016758
## iter 110 value 31.367774
## iter 120 value 23.298761
## iter 130 value 17.009215
## iter 140 value 15.485086
## iter 150 value 12.375692
## iter 160 value 6.770308
## iter 170 value 4.924783
## iter 180 value 3.809487
## iter 190 value 2.915429
## iter 200 value 2.503239
## iter 210 value 2.398052
## iter 220 value 2.325077
## iter 230 value 2.119926
## iter 240 value 1.966610
## iter 250 value 1.734394
## iter 260 value 1.625711
## iter 270 value 1.617086
## iter 280 value 1.581797
## iter 290 value 1.558577
## iter 300 value 1.519108
## iter 310 value 1.478588
## iter 320 value 1.428759
## iter 330 value 1.305338
## iter 340 value 1.150853
## iter 350 value 1.092090
## iter 360 value 1.007639
## iter 370 value 0.975896
## iter 380 value 0.945167
## iter 390 value 0.933111
## final  value 0.933066 
## stopped after 391 iterations
## INFO  [10:30:54.915] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  64
## initial  value 84500.497247 
## iter  10 value 2639.527973
## iter  20 value 1825.953180
## iter  30 value 1321.557407
## iter  40 value 1271.017576
## iter  50 value 1200.738137
## iter  60 value 1028.962864
## iter  70 value 971.505855
## iter  80 value 926.721259
## iter  90 value 758.171380
## iter 100 value 715.983690
## iter 110 value 671.917753
## iter 120 value 627.757806
## iter 130 value 568.374696
## iter 140 value 555.059470
## iter 150 value 550.776204
## iter 160 value 547.063789
## iter 170 value 545.806368
## iter 180 value 540.846719
## iter 190 value 489.524887
## iter 200 value 326.424590
## iter 210 value 303.300762
## iter 220 value 291.217240
## iter 230 value 286.072223
## iter 240 value 282.724592
## iter 250 value 271.638667
## iter 260 value 239.116584
## iter 270 value 226.638155
## iter 280 value 225.435042
## iter 290 value 213.289026
## iter 300 value 210.065891
## iter 310 value 208.119419
## iter 320 value 206.913695
## iter 330 value 205.637300
## iter 340 value 204.858076
## iter 350 value 200.660840
## iter 360 value 191.073259
## iter 370 value 174.320846
## iter 380 value 144.279764
## iter 390 value 125.012247
## final  value 122.868110 
## stopped after 391 iterations
## INFO  [10:30:54.928] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  64
## initial  value 81770.380294 
## iter  10 value 4704.729275
## iter  20 value 939.319913
## iter  30 value 731.520698
## iter  40 value 653.298926
## iter  50 value 644.593921
## iter  60 value 538.758502
## iter  70 value 433.292992
## iter  80 value 379.960497
## iter  90 value 368.497172
## iter 100 value 337.019635
## iter 110 value 257.703407
## iter 120 value 221.355669
## iter 130 value 181.812834
## iter 140 value 152.148240
## iter 150 value 149.195050
## iter 160 value 149.148763
## iter 170 value 148.908511
## iter 180 value 148.220237
## iter 190 value 148.168527
## iter 200 value 148.112463
## iter 210 value 148.091856
## iter 220 value 148.080934
## iter 230 value 147.919925
## iter 240 value 147.822049
## iter 250 value 145.182680
## iter 260 value 140.664862
## iter 270 value 137.173614
## iter 280 value 135.705934
## iter 290 value 131.893152
## iter 300 value 130.435546
## iter 310 value 130.027248
## iter 320 value 129.590323
## iter 330 value 129.058699
## iter 340 value 128.610453
## iter 350 value 127.983540
## iter 360 value 127.959774
## iter 370 value 127.958408
## iter 380 value 127.953517
## iter 390 value 127.948475
## final  value 127.947398 
## stopped after 391 iterations
## INFO  [10:30:54.941] [mlr3] Finished benchmark
## INFO  [10:30:54.952] [bbotk] Result of batch 11:
## INFO  [10:30:54.953] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:54.953] [bbotk]     9   391 4.517636e-05  22.30202        0      0            0.027
## INFO  [10:30:54.953] [bbotk]                                 uhash
## INFO  [10:30:54.953] [bbotk]  9c2be935-936f-427a-a3e8-39d3bf6c548b
## INFO  [10:30:54.954] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:54.961] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:54.964] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  43
## initial  value 77911.391652 
## iter  10 value 4429.906774
## iter  20 value 1841.116029
## iter  30 value 1002.798414
## iter  40 value 818.097946
## iter  50 value 764.709061
## iter  60 value 712.548874
## iter  70 value 615.517337
## iter  80 value 541.536114
## iter  90 value 521.131548
## iter 100 value 497.317785
## iter 110 value 494.300753
## iter 120 value 492.867281
## iter 130 value 487.690988
## iter 140 value 473.347854
## iter 150 value 472.714329
## iter 160 value 471.468991
## iter 170 value 471.272398
## iter 180 value 471.048846
## iter 190 value 470.887617
## iter 200 value 470.880639
## iter 210 value 468.991513
## iter 220 value 464.229231
## iter 230 value 419.160165
## iter 240 value 380.904877
## iter 250 value 329.137872
## iter 260 value 292.986400
## iter 270 value 259.844266
## iter 280 value 236.430357
## iter 290 value 224.758904
## iter 300 value 223.827523
## iter 310 value 223.786502
## iter 320 value 223.274278
## iter 330 value 221.540213
## iter 340 value 220.653680
## iter 350 value 220.310450
## iter 360 value 218.973831
## iter 370 value 218.758212
## final  value 218.746017 
## stopped after 378 iterations
## INFO  [10:30:54.976] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  43
## initial  value 89523.216558 
## iter  10 value 1542.583264
## iter  20 value 1051.072270
## iter  30 value 981.119072
## iter  40 value 961.446017
## iter  50 value 803.066585
## iter  60 value 619.038971
## iter  70 value 500.229731
## iter  80 value 481.031187
## iter  90 value 477.121109
## iter 100 value 473.911927
## iter 110 value 473.043138
## iter 120 value 472.365957
## iter 130 value 472.277266
## iter 140 value 472.200467
## iter 150 value 471.965457
## iter 160 value 471.690825
## iter 170 value 471.677003
## iter 180 value 471.669626
## iter 190 value 471.602299
## iter 200 value 464.182763
## iter 210 value 357.740595
## iter 220 value 283.849536
## iter 230 value 213.273406
## iter 240 value 159.967936
## iter 250 value 109.858097
## iter 260 value 97.666771
## iter 270 value 96.249384
## iter 280 value 93.715069
## iter 290 value 91.013134
## iter 300 value 88.616045
## iter 310 value 88.248245
## iter 320 value 87.167478
## iter 330 value 77.632441
## iter 340 value 54.903981
## iter 350 value 41.381081
## iter 360 value 37.426987
## iter 370 value 36.215952
## final  value 35.455886 
## stopped after 378 iterations
## INFO  [10:30:54.987] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  43
## initial  value 76334.191224 
## iter  10 value 1276.702279
## iter  20 value 460.237556
## iter  30 value 434.715992
## iter  40 value 420.500207
## iter  50 value 294.497536
## iter  60 value 260.577008
## iter  70 value 229.523399
## iter  80 value 221.863192
## iter  90 value 220.169640
## iter 100 value 218.050586
## iter 110 value 216.530700
## iter 120 value 213.871206
## iter 130 value 212.934265
## iter 140 value 212.621644
## iter 150 value 211.271047
## iter 160 value 211.032589
## iter 170 value 210.177956
## iter 180 value 204.553420
## iter 190 value 185.522216
## iter 200 value 141.068661
## iter 210 value 125.210471
## iter 220 value 123.869589
## iter 230 value 120.999032
## iter 240 value 118.947776
## iter 250 value 118.123953
## iter 260 value 117.943214
## iter 270 value 117.692095
## iter 280 value 117.315308
## iter 290 value 116.618167
## iter 300 value 115.952922
## iter 310 value 114.877458
## iter 320 value 114.083419
## iter 330 value 113.969600
## iter 340 value 113.933643
## iter 350 value 113.930809
## iter 360 value 113.919843
## iter 370 value 113.768822
## final  value 113.073720 
## stopped after 378 iterations
## INFO  [10:30:54.997] [mlr3] Finished benchmark
## INFO  [10:30:55.011] [bbotk] Result of batch 12:
## INFO  [10:30:55.012] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:55.012] [bbotk]     6   378 8.757184e-05  17.30878        0      0             0.02
## INFO  [10:30:55.012] [bbotk]                                 uhash
## INFO  [10:30:55.012] [bbotk]  b4b9967a-4f26-4cec-8781-b57837236432
## INFO  [10:30:55.014] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:55.021] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:55.023] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  43
## initial  value 81260.705248 
## iter  10 value 5906.886193
## iter  20 value 1577.526413
## iter  30 value 946.081944
## iter  40 value 699.806554
## iter  50 value 527.286941
## iter  60 value 499.640462
## iter  70 value 441.097593
## iter  80 value 377.211476
## iter  90 value 356.659671
## iter 100 value 342.544418
## iter 110 value 341.621670
## iter 120 value 341.556700
## iter 130 value 331.141566
## iter 140 value 289.657100
## iter 150 value 281.737069
## iter 160 value 245.719073
## iter 170 value 231.210898
## iter 180 value 228.844066
## iter 190 value 225.519426
## iter 200 value 224.440070
## iter 210 value 224.364064
## iter 220 value 224.267843
## iter 230 value 224.177498
## iter 240 value 224.175089
## iter 250 value 224.172223
## iter 260 value 224.068859
## iter 270 value 224.008983
## iter 280 value 223.921324
## iter 290 value 223.901631
## iter 300 value 223.879757
## iter 310 value 223.833277
## final  value 223.832520 
## converged
## INFO  [10:30:55.034] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  43
## initial  value 86110.491632 
## iter  10 value 8474.572548
## iter  20 value 3607.563576
## iter  30 value 2607.403671
## iter  40 value 1859.031436
## iter  50 value 1444.472327
## iter  60 value 1370.280893
## iter  70 value 1347.790515
## iter  80 value 1344.392177
## iter  90 value 1343.661492
## iter 100 value 1343.591759
## iter 110 value 1343.252512
## iter 110 value 1343.252510
## iter 110 value 1343.252510
## final  value 1343.252510 
## converged
## INFO  [10:30:55.041] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  43
## initial  value 79766.328069 
## iter  10 value 1232.547620
## iter  20 value 910.763519
## iter  30 value 910.193379
## iter  40 value 910.189810
## iter  40 value 910.189809
## iter  40 value 910.189809
## final  value 910.189809 
## converged
## INFO  [10:30:55.047] [mlr3] Finished benchmark
## INFO  [10:30:55.058] [bbotk] Result of batch 13:
## INFO  [10:30:55.059] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:55.059] [bbotk]     6   372 1.271797e-05  7.792831        0      0            0.011
## INFO  [10:30:55.059] [bbotk]                                 uhash
## INFO  [10:30:55.059] [bbotk]  137eaf7c-0784-4a1f-9477-37de0d9e0381
## INFO  [10:30:55.061] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:55.067] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:55.070] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  29
## initial  value 79204.852731 
## iter  10 value 2461.524063
## iter  20 value 1985.258439
## iter  30 value 1607.138782
## iter  40 value 1452.884945
## iter  50 value 1442.983168
## iter  60 value 1441.965745
## iter  70 value 1413.411544
## iter  80 value 1043.220770
## iter  90 value 851.568961
## iter 100 value 748.106399
## iter 110 value 743.698088
## iter 120 value 734.439051
## iter 130 value 700.481035
## iter 140 value 686.117554
## iter 150 value 685.390330
## iter 160 value 684.567549
## iter 170 value 683.400913
## iter 180 value 681.726234
## iter 190 value 675.251628
## iter 200 value 670.590883
## iter 210 value 647.171131
## iter 220 value 588.363726
## iter 230 value 520.655860
## iter 240 value 443.393227
## iter 250 value 430.978631
## iter 260 value 412.187364
## iter 270 value 405.151808
## iter 280 value 404.021906
## iter 290 value 402.943274
## iter 300 value 399.540034
## iter 310 value 372.711079
## iter 320 value 307.611781
## iter 330 value 275.928248
## iter 340 value 272.456371
## iter 350 value 271.922522
## iter 360 value 271.827264
## iter 370 value 271.780382
## iter 380 value 271.716247
## iter 390 value 271.259169
## iter 400 value 271.094240
## iter 410 value 271.092763
## final  value 271.092688 
## converged
## INFO  [10:30:55.080] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  29
## initial  value 86385.375653 
## iter  10 value 7699.696507
## iter  20 value 2851.432208
## iter  30 value 2730.464990
## iter  40 value 2728.925382
## iter  50 value 2724.005543
## iter  60 value 2513.849994
## iter  70 value 2095.197456
## iter  80 value 1545.153696
## iter  90 value 1380.847883
## iter 100 value 1353.809208
## iter 110 value 1346.278930
## iter 120 value 1345.608287
## iter 130 value 1345.585211
## iter 140 value 1344.755573
## iter 150 value 1344.448135
## iter 160 value 1344.345258
## iter 170 value 1344.342209
## iter 180 value 1344.284304
## final  value 1344.284264 
## converged
## INFO  [10:30:55.088] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  29
## initial  value 78116.872071 
## iter  10 value 7044.528830
## iter  20 value 5442.584869
## iter  30 value 1895.754916
## iter  40 value 1445.022665
## iter  50 value 1440.654782
## iter  60 value 1408.326029
## iter  70 value 1129.217262
## iter  80 value 958.427046
## iter  90 value 915.054936
## iter 100 value 911.099487
## iter 110 value 910.782665
## iter 120 value 910.552420
## iter 130 value 909.053520
## iter 140 value 711.594856
## iter 150 value 642.916605
## iter 160 value 638.167502
## iter 170 value 612.329986
## iter 180 value 576.519187
## iter 190 value 569.964775
## iter 200 value 565.211022
## iter 210 value 565.132487
## iter 220 value 565.126209
## iter 230 value 565.096220
## iter 240 value 565.074551
## iter 250 value 565.038770
## iter 260 value 564.746762
## iter 270 value 564.033429
## iter 280 value 544.809972
## iter 290 value 518.103841
## iter 300 value 489.309180
## iter 310 value 464.548283
## iter 320 value 457.785870
## iter 330 value 454.760747
## iter 340 value 454.085122
## iter 350 value 453.912181
## iter 360 value 453.678754
## iter 370 value 453.620748
## iter 380 value 453.359633
## iter 390 value 453.152380
## iter 400 value 453.117571
## final  value 453.117249 
## converged
## INFO  [10:30:55.097] [mlr3] Finished benchmark
## INFO  [10:30:55.111] [bbotk] Result of batch 14:
## INFO  [10:30:55.112] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:55.112] [bbotk]     4   457 3.549095e-05  7.445906        0      0            0.016
## INFO  [10:30:55.112] [bbotk]                                 uhash
## INFO  [10:30:55.112] [bbotk]  e3c74e30-820d-4f90-b033-9c12d3f09a08
## INFO  [10:30:55.114] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:55.121] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:55.123] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  57
## initial  value 80900.597314 
## iter  10 value 943.562868
## iter  20 value 585.391323
## iter  30 value 400.462138
## iter  40 value 315.167001
## iter  50 value 281.470987
## iter  60 value 226.722203
## iter  70 value 173.849290
## iter  80 value 150.901442
## iter  90 value 143.093727
## iter 100 value 138.570155
## iter 110 value 136.526795
## final  value 134.974445 
## stopped after 117 iterations
## INFO  [10:30:55.132] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  57
## initial  value 90330.703479 
## iter  10 value 3182.169946
## iter  20 value 1046.902601
## iter  30 value 554.035582
## iter  40 value 383.421295
## iter  50 value 351.068897
## iter  60 value 347.801113
## iter  70 value 345.853999
## iter  80 value 345.172000
## iter  90 value 344.463904
## iter 100 value 344.261032
## iter 110 value 344.137444
## final  value 344.068279 
## stopped after 117 iterations
## INFO  [10:30:55.140] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  57
## initial  value 76871.563063 
## iter  10 value 1027.475845
## iter  20 value 577.816513
## iter  30 value 314.186585
## iter  40 value 219.180489
## iter  50 value 136.082838
## iter  60 value 112.875874
## iter  70 value 72.743921
## iter  80 value 53.962282
## iter  90 value 36.925948
## iter 100 value 30.372678
## iter 110 value 28.102247
## final  value 24.266769 
## stopped after 117 iterations
## INFO  [10:30:55.147] [mlr3] Finished benchmark
## INFO  [10:30:55.158] [bbotk] Result of batch 15:
## INFO  [10:30:55.159] [bbotk]  size maxit       decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:55.159] [bbotk]     8   117 8.89469e-05  9.050975        0      0             0.01
## INFO  [10:30:55.159] [bbotk]                                 uhash
## INFO  [10:30:55.159] [bbotk]  868ec8d2-7223-4053-89c2-c1de869a7dc9
## INFO  [10:30:55.161] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:55.168] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:55.170] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  8
## initial  value 78984.253109 
## iter  10 value 9739.708045
## iter  20 value 2876.168509
## iter  30 value 1993.813738
## iter  40 value 1758.655331
## iter  50 value 1517.360918
## iter  60 value 1459.170943
## iter  70 value 1447.422596
## iter  80 value 1443.138857
## iter  90 value 1442.713199
## final  value 1442.703130 
## converged
## INFO  [10:30:55.177] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  8
## initial  value 82759.379700 
## iter  10 value 5537.119070
## iter  20 value 3855.138819
## iter  30 value 3324.660963
## iter  40 value 2508.264145
## iter  50 value 2202.638917
## iter  60 value 1666.276154
## iter  70 value 1422.804156
## iter  80 value 1370.030413
## iter  90 value 1350.304396
## iter 100 value 1347.254991
## iter 110 value 1345.533305
## iter 120 value 1345.351921
## iter 130 value 1344.199857
## iter 140 value 1344.056127
## iter 150 value 1343.903202
## iter 160 value 1343.716960
## iter 170 value 1343.684735
## final  value 1343.684706 
## converged
## INFO  [10:30:55.184] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  8
## initial  value 76081.178490 
## final  value 7044.117188 
## converged
## INFO  [10:30:55.190] [mlr3] Finished benchmark
## INFO  [10:30:55.201] [bbotk] Result of batch 16:
## INFO  [10:30:55.202] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:55.202] [bbotk]     1   271 2.278679e-05  9.569035        0      0            0.006
## INFO  [10:30:55.202] [bbotk]                                 uhash
## INFO  [10:30:55.202] [bbotk]  47e4a025-d9c8-4cd5-8e9c-db2ca50dedb0
## INFO  [10:30:55.203] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:55.213] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:55.216] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  22
## initial  value 81616.149688 
## iter  10 value 2053.812555
## iter  20 value 891.294935
## iter  30 value 608.069587
## iter  40 value 517.417936
## iter  50 value 449.456534
## iter  60 value 347.360586
## iter  70 value 275.214610
## iter  80 value 214.404274
## iter  90 value 170.955256
## iter 100 value 169.291875
## iter 110 value 162.902679
## iter 120 value 160.617582
## iter 130 value 157.345552
## iter 140 value 157.315461
## iter 150 value 157.312246
## iter 160 value 156.915327
## iter 170 value 156.388312
## iter 180 value 156.309175
## iter 190 value 156.305295
## iter 200 value 156.300284
## iter 210 value 156.238012
## iter 220 value 156.235115
## iter 230 value 156.229462
## iter 240 value 156.229275
## final  value 156.229275 
## stopped after 240 iterations
## INFO  [10:30:55.225] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  22
## initial  value 82502.969812 
## iter  10 value 3032.345520
## iter  20 value 1200.893280
## iter  30 value 995.317008
## iter  40 value 902.241196
## iter  50 value 724.396019
## iter  60 value 573.072194
## iter  70 value 519.714684
## iter  80 value 479.079170
## iter  90 value 415.666149
## iter 100 value 405.264393
## iter 110 value 395.497334
## iter 120 value 388.138750
## iter 130 value 386.708896
## iter 140 value 386.561303
## iter 150 value 386.158662
## iter 160 value 386.101559
## final  value 386.101547 
## converged
## INFO  [10:30:55.232] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  22
## initial  value 82293.388596 
## iter  10 value 1242.852718
## iter  20 value 843.800111
## iter  30 value 590.772954
## iter  40 value 421.618805
## iter  50 value 375.757387
## iter  60 value 333.092006
## iter  70 value 307.725906
## iter  80 value 295.386092
## iter  90 value 273.920420
## iter 100 value 270.694664
## iter 110 value 270.247445
## iter 120 value 270.193633
## iter 130 value 270.137093
## iter 140 value 270.079482
## iter 150 value 270.033087
## final  value 270.031839 
## converged
## INFO  [10:30:55.239] [mlr3] Finished benchmark
## INFO  [10:30:55.250] [bbotk] Result of batch 17:
## INFO  [10:30:55.251] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:55.251] [bbotk]     3   240 6.485391e-05  11.66431        0      0             0.01
## INFO  [10:30:55.251] [bbotk]                                 uhash
## INFO  [10:30:55.251] [bbotk]  7c7f1fed-c7c3-43a5-b54d-f9a0f686db6c
## INFO  [10:30:55.252] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:55.259] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:55.262] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  8
## initial  value 79189.966558 
## iter  10 value 3058.887013
## iter  20 value 2679.471446
## iter  30 value 2591.359216
## iter  40 value 2443.191372
## iter  50 value 2190.054141
## iter  60 value 1554.311598
## iter  70 value 1477.395723
## iter  80 value 1446.454234
## iter  90 value 1443.659721
## iter 100 value 1442.669688
## iter 110 value 1442.630653
## final  value 1442.630501 
## converged
## INFO  [10:30:55.269] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  8
## initial  value 86105.298045 
## iter  10 value 3214.968411
## iter  20 value 3118.378899
## iter  30 value 2883.468467
## final  value 2881.943004 
## converged
## INFO  [10:30:55.275] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  8
## initial  value 76213.764248 
## iter  10 value 2207.005840
## iter  20 value 995.533438
## iter  30 value 934.438358
## iter  40 value 915.534022
## iter  50 value 910.289493
## iter  60 value 910.269006
## final  value 910.267203 
## converged
## INFO  [10:30:55.281] [mlr3] Finished benchmark
## INFO  [10:30:55.292] [bbotk] Result of batch 18:
## INFO  [10:30:55.293] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:55.293] [bbotk]     1   404 4.320416e-05  9.230552        0      0            0.007
## INFO  [10:30:55.293] [bbotk]                                 uhash
## INFO  [10:30:55.293] [bbotk]  d801814d-357e-47dc-b76f-4ce37be5beca
## INFO  [10:30:55.294] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:55.301] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:55.304] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  8
## initial  value 80745.581553 
## final  value 9739.911094 
## converged
## INFO  [10:30:55.314] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  8
## initial  value 86404.428851 
## iter  10 value 3982.546485
## iter  20 value 2297.195712
## iter  30 value 1809.005564
## iter  40 value 1531.930726
## iter  50 value 1384.082206
## iter  60 value 1364.535127
## iter  70 value 1349.021056
## iter  80 value 1348.415226
## iter  90 value 1346.786974
## iter 100 value 1346.671041
## iter 110 value 1346.384736
## iter 120 value 1346.123430
## iter 130 value 1346.054806
## iter 140 value 1346.027877
## final  value 1346.026406 
## converged
## INFO  [10:30:55.321] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  8
## initial  value 77238.399733 
## final  value 7044.173433 
## converged
## INFO  [10:30:55.326] [mlr3] Finished benchmark
## INFO  [10:30:55.337] [bbotk] Result of batch 19:
## INFO  [10:30:55.338] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:55.338] [bbotk]     1   431 7.060476e-05  11.59058        0      0            0.007
## INFO  [10:30:55.338] [bbotk]                                 uhash
## INFO  [10:30:55.338] [bbotk]  3c5947ff-75c4-4d6a-82ce-dd2871ba4f93
## INFO  [10:30:55.340] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:55.347] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:55.349] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  29
## initial  value 78568.878896 
## iter  10 value 2575.897669
## iter  20 value 854.995874
## iter  30 value 582.694022
## iter  40 value 518.488338
## iter  50 value 456.816077
## iter  60 value 417.877936
## final  value 417.505685 
## stopped after 69 iterations
## INFO  [10:30:55.357] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  29
## initial  value 88128.458607 
## iter  10 value 3076.773867
## iter  20 value 915.937089
## iter  30 value 596.917217
## iter  40 value 579.472101
## iter  50 value 543.192322
## iter  60 value 487.512220
## final  value 482.979961 
## stopped after 69 iterations
## INFO  [10:30:55.364] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  29
## initial  value 75976.139310 
## iter  10 value 4319.403000
## iter  20 value 1117.509861
## iter  30 value 978.477132
## iter  40 value 916.014660
## iter  50 value 910.841597
## iter  60 value 910.619797
## final  value 909.365983 
## stopped after 69 iterations
## INFO  [10:30:55.370] [mlr3] Finished benchmark
## INFO  [10:30:55.381] [bbotk] Result of batch 20:
## INFO  [10:30:55.382] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:55.382] [bbotk]     4    69 8.809209e-05  7.999984        0      0            0.008
## INFO  [10:30:55.382] [bbotk]                                 uhash
## INFO  [10:30:55.382] [bbotk]  349043ff-bf1f-4543-b355-31a684c3f604
## INFO  [10:30:55.385] [bbotk] Finished optimizing after 20 evaluation(s)
## INFO  [10:30:55.385] [bbotk] Result:
## INFO  [10:30:55.385] [bbotk]  size maxit        decay learner_param_vals  x_domain regr.rmse
## INFO  [10:30:55.385] [bbotk]     4   457 3.549095e-05          <list[3]> <list[3]>  7.445906
## # weights:  29
## initial  value 123513.830574 
## iter  10 value 7320.399062
## iter  20 value 2949.336828
## iter  30 value 2776.809584
## iter  40 value 2351.374207
## iter  50 value 2106.205582
## iter  60 value 2068.044925
## iter  70 value 2065.849906
## iter  80 value 2061.401113
## iter  90 value 2061.127702
## final  value 2061.127572 
## converged
## INFO  [10:30:55.399] [mlr3] Applying learner 'regr.nnet.tuned' on task 'cereal' (iter 3/5)
## INFO  [10:30:55.458] [bbotk] Starting to optimize 3 parameter(s) with '<OptimizerRandomSearch>' and '<TerminatorEvals> [n_evals=20, k=0]'
## INFO  [10:30:55.464] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:55.471] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:55.474] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  8
## initial  value 85565.891525 
## iter  10 value 3464.939840
## iter  20 value 2912.134019
## iter  30 value 2599.609432
## iter  40 value 1970.667667
## iter  50 value 1331.843152
## iter  60 value 1223.435188
## iter  70 value 1206.460940
## iter  80 value 1188.165636
## iter  90 value 1187.380360
## iter 100 value 1185.091267
## iter 110 value 1184.991268
## final  value 1184.797888 
## converged
## INFO  [10:30:55.481] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  8
## initial  value 85269.799950 
## final  value 9441.535143 
## converged
## INFO  [10:30:55.487] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  8
## initial  value 89732.717899 
## iter  10 value 6602.090454
## iter  20 value 3842.028348
## iter  30 value 2089.189763
## iter  40 value 2080.045155
## iter  50 value 2066.998663
## iter  60 value 2049.019808
## iter  70 value 2042.852574
## iter  80 value 1962.715686
## iter  90 value 1897.304048
## iter 100 value 1894.394482
## final  value 1894.314453 
## converged
## INFO  [10:30:55.493] [mlr3] Finished benchmark
## INFO  [10:30:55.503] [bbotk] Result of batch 1:
## INFO  [10:30:55.504] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:55.504] [bbotk]     1   326 6.290984e-05  9.705129        0      0            0.007
## INFO  [10:30:55.504] [bbotk]                                 uhash
## INFO  [10:30:55.504] [bbotk]  a10275e3-e5f7-4687-8090-e0db9f721ab4
## INFO  [10:30:55.506] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:55.513] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:55.515] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  15
## initial  value 82250.251960 
## final  value 7932.697127 
## converged
## INFO  [10:30:55.522] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  15
## initial  value 89374.416854 
## iter  10 value 2172.218649
## iter  20 value 1361.696072
## iter  30 value 591.453999
## iter  40 value 514.170205
## iter  50 value 486.797070
## iter  60 value 456.447815
## iter  70 value 455.233784
## iter  80 value 452.857829
## iter  90 value 451.753317
## iter 100 value 451.308556
## iter 110 value 451.147310
## iter 120 value 451.059950
## iter 130 value 450.929581
## iter 140 value 450.891323
## iter 150 value 450.840636
## iter 160 value 450.818028
## iter 170 value 450.806080
## iter 180 value 450.788427
## iter 190 value 450.767313
## final  value 450.761982 
## converged
## INFO  [10:30:55.530] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  15
## initial  value 89363.168206 
## iter  10 value 2323.919981
## iter  20 value 1072.978372
## iter  30 value 756.216071
## iter  40 value 697.730068
## iter  50 value 678.550690
## iter  60 value 667.989172
## iter  70 value 660.390243
## iter  80 value 651.493089
## iter  90 value 646.359516
## iter 100 value 645.860342
## iter 110 value 645.802788
## iter 120 value 645.575318
## final  value 645.503914 
## converged
## INFO  [10:30:55.537] [mlr3] Finished benchmark
## INFO  [10:30:55.548] [bbotk] Result of batch 2:
## INFO  [10:30:55.549] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:55.549] [bbotk]     2   403 8.831228e-05  8.311261        0      0            0.007
## INFO  [10:30:55.549] [bbotk]                                 uhash
## INFO  [10:30:55.549] [bbotk]  e62fcfc7-6e36-4a5d-a1ce-259c22255687
## INFO  [10:30:55.551] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:55.564] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:55.567] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  57
## initial  value 85804.276518 
## iter  10 value 972.254000
## iter  20 value 596.037877
## iter  30 value 494.863419
## iter  40 value 438.754458
## iter  50 value 375.960935
## iter  60 value 320.624589
## iter  70 value 232.759092
## iter  80 value 188.061199
## iter  90 value 164.258548
## iter 100 value 146.494482
## iter 110 value 134.686465
## iter 120 value 110.170231
## iter 130 value 105.222917
## iter 140 value 103.181599
## iter 150 value 97.305654
## iter 160 value 88.427416
## iter 170 value 78.752997
## iter 180 value 76.008779
## iter 190 value 75.609383
## iter 200 value 75.329296
## iter 210 value 74.838636
## iter 220 value 74.690956
## iter 230 value 74.532674
## iter 240 value 74.386847
## iter 250 value 74.362004
## iter 260 value 74.141934
## iter 270 value 73.329439
## iter 280 value 69.948368
## iter 290 value 68.817074
## iter 300 value 67.747730
## final  value 67.360497 
## stopped after 303 iterations
## INFO  [10:30:55.579] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  57
## initial  value 87518.850153 
## iter  10 value 4592.582299
## iter  20 value 1478.708015
## iter  30 value 862.083148
## iter  40 value 580.391857
## iter  50 value 444.919250
## iter  60 value 411.576004
## iter  70 value 377.321168
## iter  80 value 352.832400
## iter  90 value 345.995947
## iter 100 value 344.546025
## iter 110 value 324.414152
## iter 120 value 310.807679
## iter 130 value 308.711641
## iter 140 value 308.501128
## iter 150 value 307.943218
## iter 160 value 307.060479
## iter 170 value 305.123364
## iter 180 value 267.797548
## iter 190 value 209.981385
## iter 200 value 195.425053
## iter 210 value 183.247033
## iter 220 value 179.191554
## iter 230 value 177.933756
## iter 240 value 172.655413
## iter 250 value 149.550795
## iter 260 value 133.745943
## iter 270 value 119.446171
## iter 280 value 118.341032
## iter 290 value 116.678440
## iter 300 value 115.962973
## final  value 115.162903 
## stopped after 303 iterations
## INFO  [10:30:55.590] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  57
## initial  value 87404.008540 
## iter  10 value 2098.521375
## iter  20 value 1501.467333
## iter  30 value 1152.414678
## iter  40 value 1033.547579
## iter  50 value 929.824650
## iter  60 value 911.291453
## iter  70 value 892.585311
## iter  80 value 699.990691
## iter  90 value 619.445839
## iter 100 value 576.637757
## iter 110 value 474.578174
## iter 120 value 417.385257
## iter 130 value 383.503002
## iter 140 value 373.405579
## iter 150 value 371.547659
## iter 160 value 370.406781
## iter 170 value 370.016217
## iter 180 value 369.066754
## iter 190 value 368.114659
## iter 200 value 366.807825
## iter 210 value 366.644036
## iter 220 value 366.419713
## iter 230 value 366.006670
## iter 240 value 365.766471
## iter 250 value 365.703369
## iter 260 value 365.511046
## iter 270 value 365.421134
## iter 280 value 365.377944
## iter 290 value 365.273428
## iter 300 value 365.235460
## final  value 365.232232 
## stopped after 303 iterations
## INFO  [10:30:55.601] [mlr3] Finished benchmark
## INFO  [10:30:55.612] [bbotk] Result of batch 3:
## INFO  [10:30:55.613] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:55.613] [bbotk]     8   303 4.388317e-05  10.43645        0      0            0.019
## INFO  [10:30:55.613] [bbotk]                                 uhash
## INFO  [10:30:55.613] [bbotk]  93a9623d-8fa3-44f0-841f-c4472783c88e
## INFO  [10:30:55.614] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:55.621] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:55.624] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  50
## initial  value 83316.048971 
## iter  10 value 3011.310230
## iter  20 value 1326.259197
## iter  30 value 771.202060
## iter  40 value 547.108935
## iter  50 value 455.848349
## iter  60 value 404.652152
## iter  70 value 390.094163
## iter  80 value 371.591260
## iter  90 value 354.110288
## iter 100 value 350.705731
## iter 110 value 343.894121
## iter 120 value 342.466020
## iter 130 value 339.967876
## iter 140 value 327.867018
## iter 150 value 287.144464
## iter 160 value 110.881911
## iter 170 value 75.410415
## iter 180 value 67.668182
## iter 190 value 61.648176
## iter 200 value 60.301921
## iter 210 value 59.253329
## iter 220 value 58.670885
## iter 230 value 58.427473
## iter 240 value 58.004557
## iter 250 value 57.934346
## iter 260 value 57.415116
## iter 270 value 56.632127
## iter 280 value 51.631946
## iter 290 value 41.754224
## iter 300 value 38.507302
## iter 310 value 36.780264
## iter 320 value 36.245176
## iter 330 value 35.837181
## iter 340 value 35.494952
## iter 350 value 35.401392
## iter 360 value 35.155489
## iter 370 value 34.019753
## iter 380 value 26.850435
## iter 390 value 25.034137
## iter 400 value 24.017622
## iter 410 value 22.570641
## final  value 21.766132 
## stopped after 419 iterations
## INFO  [10:30:55.637] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  50
## initial  value 85465.507940 
## final  value 9442.456618 
## converged
## INFO  [10:30:55.644] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  50
## initial  value 87904.500788 
## iter  10 value 6602.430689
## iter  20 value 2275.993474
## iter  30 value 2173.887544
## iter  40 value 2007.805378
## iter  50 value 2007.392062
## iter  60 value 2006.255562
## iter  70 value 2005.656753
## iter  80 value 1477.563099
## iter  90 value 1143.023921
## iter 100 value 1074.772408
## iter 110 value 1013.657261
## iter 120 value 737.269918
## iter 130 value 596.409041
## iter 140 value 580.302605
## iter 150 value 573.710740
## iter 160 value 564.526723
## iter 170 value 533.814270
## iter 180 value 398.966706
## iter 190 value 388.979834
## iter 200 value 387.276224
## iter 210 value 386.564312
## iter 220 value 385.387271
## iter 230 value 376.039880
## iter 240 value 348.237592
## iter 250 value 281.506966
## iter 260 value 229.095709
## iter 270 value 191.796695
## iter 280 value 173.215281
## iter 290 value 159.954504
## iter 300 value 138.192976
## iter 310 value 126.135363
## iter 320 value 117.820088
## iter 330 value 112.107218
## iter 340 value 109.023787
## iter 350 value 105.041773
## iter 360 value 98.253592
## iter 370 value 91.256658
## iter 380 value 86.795283
## iter 390 value 85.655044
## iter 400 value 84.181472
## iter 410 value 83.219768
## final  value 80.788466 
## stopped after 419 iterations
## INFO  [10:30:55.656] [mlr3] Finished benchmark
## INFO  [10:30:55.667] [bbotk] Result of batch 4:
## INFO  [10:30:55.668] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:55.668] [bbotk]     7   419 6.328378e-05  12.84977        0      0            0.019
## INFO  [10:30:55.668] [bbotk]                                 uhash
## INFO  [10:30:55.668] [bbotk]  ae44cbcb-7b63-447a-b1a8-2f875effb1de
## INFO  [10:30:55.669] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:55.676] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:55.679] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  29
## initial  value 83598.316889 
## iter  10 value 2486.163326
## iter  20 value 1188.434909
## iter  30 value 922.581325
## iter  40 value 453.730324
## iter  50 value 250.362407
## iter  60 value 238.463529
## iter  70 value 236.639968
## iter  80 value 229.875489
## iter  90 value 223.699036
## iter 100 value 214.911926
## iter 110 value 211.580867
## iter 120 value 205.846939
## iter 130 value 194.165498
## iter 140 value 188.822838
## iter 150 value 175.850744
## final  value 171.392192 
## stopped after 157 iterations
## INFO  [10:30:55.687] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  29
## initial  value 86118.120319 
## iter  10 value 2810.008753
## iter  20 value 1374.447475
## iter  30 value 868.740591
## iter  40 value 780.225686
## iter  50 value 671.111046
## iter  60 value 519.947258
## iter  70 value 462.688306
## iter  80 value 436.901612
## iter  90 value 429.406150
## iter 100 value 429.072426
## iter 110 value 414.540031
## iter 120 value 260.215595
## iter 130 value 202.097143
## iter 140 value 185.032423
## iter 150 value 175.956017
## final  value 156.113080 
## stopped after 157 iterations
## INFO  [10:30:55.695] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  29
## initial  value 87760.931922 
## iter  10 value 2262.562316
## iter  20 value 1587.061485
## iter  30 value 1287.329712
## iter  40 value 1054.344476
## iter  50 value 744.822043
## iter  60 value 539.642931
## iter  70 value 483.951483
## iter  80 value 422.570266
## iter  90 value 358.257507
## iter 100 value 325.110975
## iter 110 value 306.196883
## iter 120 value 300.956816
## iter 130 value 281.698721
## iter 140 value 235.902368
## iter 150 value 189.304470
## final  value 183.171056 
## stopped after 157 iterations
## INFO  [10:30:55.708] [mlr3] Finished benchmark
## INFO  [10:30:55.721] [bbotk] Result of batch 5:
## INFO  [10:30:55.721] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:55.721] [bbotk]     4   157 4.263465e-05    15.485        0      0            0.014
## INFO  [10:30:55.721] [bbotk]                                 uhash
## INFO  [10:30:55.721] [bbotk]  c2c54955-d05b-4a37-bd11-4ffd258e0587
## INFO  [10:30:55.723] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:55.730] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:55.733] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  50
## initial  value 85306.281250 
## iter  10 value 5177.718365
## iter  20 value 2111.612827
## iter  30 value 1307.352520
## iter  40 value 1139.615898
## iter  50 value 1132.674061
## iter  60 value 1124.785528
## iter  70 value 1118.367424
## iter  80 value 1076.366256
## iter  90 value 737.106661
## iter 100 value 621.548068
## iter 110 value 559.941637
## iter 120 value 518.055989
## iter 130 value 421.276803
## iter 140 value 418.950758
## iter 150 value 418.726650
## iter 160 value 418.134036
## iter 170 value 405.718665
## iter 180 value 358.595710
## iter 190 value 337.681728
## iter 200 value 320.727926
## iter 210 value 267.308050
## iter 220 value 223.362928
## iter 230 value 173.121033
## iter 240 value 125.551777
## iter 250 value 106.305476
## iter 260 value 100.957606
## iter 270 value 92.890717
## iter 280 value 80.360788
## iter 290 value 76.541206
## iter 300 value 76.317970
## iter 310 value 76.218812
## iter 320 value 75.892168
## iter 330 value 75.673756
## iter 340 value 75.604385
## iter 350 value 75.536089
## iter 360 value 75.394785
## final  value 75.388791 
## stopped after 361 iterations
## INFO  [10:30:55.744] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  50
## initial  value 89020.185805 
## iter  10 value 3023.705178
## iter  20 value 1216.531954
## iter  30 value 789.267825
## iter  40 value 734.339210
## iter  50 value 605.349181
## iter  60 value 340.505542
## iter  70 value 284.660284
## iter  80 value 195.942428
## iter  90 value 151.499131
## iter 100 value 130.631021
## iter 110 value 115.690591
## iter 120 value 109.548418
## iter 130 value 107.134476
## iter 140 value 105.703870
## iter 150 value 103.740710
## iter 160 value 100.108714
## iter 170 value 94.764773
## iter 180 value 91.750494
## iter 190 value 86.827491
## iter 200 value 85.560575
## iter 210 value 84.549454
## iter 220 value 84.360358
## iter 230 value 83.593028
## iter 240 value 80.952236
## iter 250 value 79.739130
## iter 260 value 78.792906
## iter 270 value 78.116518
## iter 280 value 78.046988
## iter 290 value 77.929587
## iter 300 value 77.811548
## iter 310 value 77.745272
## iter 320 value 77.744271
## iter 330 value 77.724269
## iter 340 value 77.676246
## iter 350 value 77.571407
## iter 360 value 77.522966
## final  value 77.521684 
## stopped after 361 iterations
## INFO  [10:30:55.756] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  50
## initial  value 88796.300403 
## iter  10 value 1983.511156
## iter  20 value 945.289915
## iter  30 value 507.772968
## iter  40 value 324.449806
## iter  50 value 223.871020
## iter  60 value 182.241777
## iter  70 value 158.259209
## iter  80 value 152.757040
## iter  90 value 148.931764
## iter 100 value 144.304762
## iter 110 value 143.614875
## iter 120 value 143.011734
## iter 130 value 142.321242
## iter 140 value 141.916342
## iter 150 value 141.191848
## iter 160 value 140.574968
## iter 170 value 140.469501
## iter 180 value 140.208346
## iter 190 value 138.314261
## iter 200 value 133.086352
## iter 210 value 132.166430
## iter 220 value 131.973548
## iter 230 value 131.186343
## iter 240 value 128.170409
## iter 250 value 125.478190
## iter 260 value 121.062824
## iter 270 value 114.492589
## iter 280 value 106.074982
## iter 290 value 99.383969
## iter 300 value 88.919304
## iter 310 value 86.258478
## iter 320 value 84.984726
## iter 330 value 83.077783
## iter 340 value 81.328680
## iter 350 value 80.998639
## iter 360 value 80.199670
## final  value 80.130991 
## stopped after 361 iterations
## INFO  [10:30:55.767] [mlr3] Finished benchmark
## INFO  [10:30:55.777] [bbotk] Result of batch 6:
## INFO  [10:30:55.778] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:55.778] [bbotk]     7   361 5.214211e-05  9.719313        0      0            0.019
## INFO  [10:30:55.778] [bbotk]                                 uhash
## INFO  [10:30:55.778] [bbotk]  5ed5ee53-33c8-4e2b-8e63-54f2a942db3c
## INFO  [10:30:55.780] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:55.787] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:55.789] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  8
## initial  value 82440.267665 
## iter  10 value 3685.542355
## iter  20 value 2861.742941
## iter  30 value 2379.015327
## iter  40 value 1339.050286
## iter  50 value 1218.585074
## iter  60 value 1206.022527
## iter  70 value 1187.929971
## iter  80 value 1186.097366
## iter  90 value 1184.196160
## iter 100 value 1183.702667
## iter 110 value 1183.570768
## iter 110 value 1183.570761
## final  value 1183.570309 
## stopped after 114 iterations
## INFO  [10:30:55.797] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  8
## initial  value 82871.035805 
## iter  10 value 3598.741194
## iter  20 value 2452.216479
## iter  30 value 2137.882107
## iter  40 value 1664.495413
## iter  50 value 1259.105775
## iter  60 value 1055.159884
## iter  70 value 1025.040487
## iter  80 value 1022.260451
## iter  90 value 1021.582708
## final  value 1021.579852 
## converged
## INFO  [10:30:55.803] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  8
## initial  value 88794.821046 
## final  value 6602.085092 
## converged
## INFO  [10:30:55.809] [mlr3] Finished benchmark
## INFO  [10:30:55.820] [bbotk] Result of batch 7:
## INFO  [10:30:55.820] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:55.820] [bbotk]     1   114 8.800508e-06  10.23851        0      0            0.005
## INFO  [10:30:55.820] [bbotk]                                 uhash
## INFO  [10:30:55.820] [bbotk]  96cd6989-8ad8-4da8-b8ee-1f252c3f61f4
## INFO  [10:30:55.825] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:55.835] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:55.838] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  15
## initial  value 82554.993397 
## iter  10 value 3183.495903
## iter  20 value 1226.169656
## iter  30 value 1199.458477
## iter  40 value 1196.194217
## iter  50 value 1181.504448
## iter  60 value 1181.449521
## iter  70 value 1176.537574
## iter  80 value 719.756605
## iter  90 value 686.550198
## iter 100 value 667.241691
## iter 110 value 665.030511
## iter 120 value 664.820421
## final  value 664.517408 
## converged
## INFO  [10:30:55.846] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  15
## initial  value 85427.447982 
## final  value 9441.472559 
## converged
## INFO  [10:30:55.852] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  15
## initial  value 89726.739999 
## iter  10 value 2769.239390
## iter  20 value 2682.673812
## iter  30 value 2674.103844
## iter  40 value 2654.032571
## final  value 2654.018535 
## converged
## INFO  [10:30:55.858] [mlr3] Finished benchmark
## INFO  [10:30:55.869] [bbotk] Result of batch 8:
## INFO  [10:30:55.870] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:55.870] [bbotk]     2   297 5.113329e-05  11.12655        0      0            0.008
## INFO  [10:30:55.870] [bbotk]                                 uhash
## INFO  [10:30:55.870] [bbotk]  16db9419-37ed-409f-9bc3-f48ca0ea0db0
## INFO  [10:30:55.872] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:55.879] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:55.881] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  57
## initial  value 83454.249028 
## iter  10 value 7914.342548
## iter  20 value 2890.217311
## iter  30 value 2387.316944
## iter  40 value 1299.585760
## iter  50 value 1222.101894
## iter  60 value 1192.843299
## iter  70 value 1186.243308
## iter  80 value 1185.049409
## iter  90 value 1184.809762
## iter 100 value 1184.787846
## iter 110 value 1184.720367
## iter 120 value 1184.663040
## iter 120 value 1184.663035
## final  value 1184.662522 
## converged
## INFO  [10:30:55.890] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  57
## initial  value 85582.235378 
## iter  10 value 1158.926240
## iter  20 value 504.672458
## iter  30 value 319.215577
## iter  40 value 243.616759
## iter  50 value 218.289199
## iter  60 value 114.520160
## iter  70 value 51.856360
## iter  80 value 35.533347
## iter  90 value 26.595389
## iter 100 value 22.300680
## iter 110 value 21.199028
## iter 120 value 20.430834
## iter 130 value 19.986161
## iter 140 value 19.069620
## final  value 18.996481 
## stopped after 141 iterations
## INFO  [10:30:55.899] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  57
## initial  value 90745.622259 
## iter  10 value 2845.649339
## iter  20 value 1156.995099
## iter  30 value 907.519723
## iter  40 value 814.121843
## iter  50 value 797.132139
## iter  60 value 778.542867
## iter  70 value 740.580480
## iter  80 value 677.838445
## iter  90 value 664.535241
## iter 100 value 656.425975
## iter 110 value 647.367788
## iter 120 value 641.071392
## iter 130 value 640.755586
## iter 140 value 640.730823
## final  value 640.706243 
## stopped after 141 iterations
## INFO  [10:30:55.906] [mlr3] Finished benchmark
## INFO  [10:30:55.917] [bbotk] Result of batch 9:
## INFO  [10:30:55.918] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:55.918] [bbotk]     8   141 5.933146e-05  8.938647        0      0            0.013
## INFO  [10:30:55.918] [bbotk]                                 uhash
## INFO  [10:30:55.918] [bbotk]  9cdbe5c3-5ba7-4983-99dd-e95fc54286db
## INFO  [10:30:55.920] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:55.926] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:55.929] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  22
## initial  value 83079.692637 
## iter  10 value 5766.674710
## iter  20 value 2412.951514
## iter  30 value 1807.720644
## iter  40 value 1266.600288
## iter  50 value 1201.462044
## iter  60 value 1195.740618
## iter  70 value 1186.898408
## iter  80 value 1184.705467
## iter  90 value 1184.293692
## iter 100 value 1184.262542
## final  value 1184.262242 
## converged
## INFO  [10:30:55.936] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  22
## initial  value 86716.743918 
## iter  10 value 1099.121358
## iter  20 value 791.181156
## iter  30 value 607.431814
## iter  40 value 508.170177
## iter  50 value 427.321685
## iter  60 value 416.227382
## iter  70 value 393.402303
## iter  80 value 383.733405
## iter  90 value 379.485959
## iter 100 value 378.888296
## iter 110 value 378.513527
## iter 120 value 378.454792
## iter 130 value 378.397272
## iter 140 value 378.193647
## iter 150 value 378.192398
## iter 160 value 378.188462
## iter 170 value 378.163877
## iter 180 value 378.132212
## final  value 378.127317 
## converged
## INFO  [10:30:55.947] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  22
## initial  value 89442.877960 
## iter  10 value 2249.428292
## iter  20 value 1320.570314
## iter  30 value 725.901236
## iter  40 value 577.557603
## iter  50 value 510.390682
## iter  60 value 494.360949
## iter  70 value 493.351503
## iter  80 value 472.212776
## iter  90 value 457.035929
## iter 100 value 448.974713
## iter 110 value 446.436890
## iter 120 value 445.722237
## iter 130 value 443.547843
## iter 140 value 441.911448
## iter 150 value 439.568511
## iter 160 value 439.556440
## iter 170 value 439.546463
## iter 180 value 439.544170
## iter 190 value 439.540468
## final  value 439.537145 
## converged
## INFO  [10:30:55.958] [mlr3] Finished benchmark
## INFO  [10:30:55.969] [bbotk] Result of batch 10:
## INFO  [10:30:55.970] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:55.970] [bbotk]     3   300 4.119386e-05  8.295178        0      0            0.011
## INFO  [10:30:55.970] [bbotk]                                 uhash
## INFO  [10:30:55.970] [bbotk]  93280622-32c3-4532-bca5-84f33dc0177c
## INFO  [10:30:55.971] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:55.978] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:55.981] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  29
## initial  value 84835.500513 
## iter  10 value 3133.755191
## iter  20 value 2942.857818
## iter  30 value 2251.228786
## iter  40 value 1325.643798
## iter  50 value 1216.650303
## iter  60 value 1191.484895
## iter  70 value 1184.894078
## iter  80 value 1157.746938
## iter  90 value 941.375349
## iter 100 value 865.885724
## iter 110 value 793.094054
## iter 120 value 785.280436
## iter 130 value 753.369077
## iter 140 value 752.838461
## iter 150 value 748.836365
## iter 160 value 741.536741
## iter 170 value 420.964072
## iter 180 value 283.288243
## iter 190 value 247.733538
## iter 200 value 234.271054
## iter 210 value 231.421447
## iter 220 value 231.212610
## iter 230 value 231.109335
## iter 240 value 229.869562
## iter 250 value 227.527767
## iter 260 value 224.098411
## iter 270 value 220.008541
## iter 280 value 219.940023
## iter 290 value 216.351327
## iter 300 value 209.330800
## iter 310 value 207.640185
## final  value 207.640185 
## stopped after 310 iterations
## INFO  [10:30:55.990] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  29
## initial  value 87685.440026 
## iter  10 value 1678.478836
## iter  20 value 715.310368
## iter  30 value 613.876297
## iter  40 value 472.439764
## iter  50 value 413.641906
## iter  60 value 340.715188
## iter  70 value 322.878113
## iter  80 value 285.316676
## iter  90 value 265.380338
## iter 100 value 259.939858
## iter 110 value 258.896456
## iter 120 value 258.587488
## iter 130 value 258.393164
## iter 140 value 258.267259
## iter 150 value 257.993210
## iter 160 value 256.188974
## iter 170 value 244.787715
## iter 180 value 244.288631
## iter 190 value 243.906904
## iter 200 value 242.580581
## iter 210 value 241.948786
## iter 220 value 241.175173
## iter 230 value 240.086756
## iter 240 value 239.717614
## iter 250 value 239.579297
## iter 260 value 236.519448
## iter 270 value 230.332971
## iter 280 value 229.558062
## iter 290 value 229.387460
## iter 300 value 229.281068
## iter 310 value 229.262186
## final  value 229.262186 
## stopped after 310 iterations
## INFO  [10:30:56.000] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  29
## initial  value 89032.560650 
## iter  10 value 2207.769530
## iter  20 value 1103.426740
## iter  30 value 866.782548
## iter  40 value 677.435944
## iter  50 value 619.249390
## iter  60 value 561.490569
## iter  70 value 554.022088
## iter  80 value 553.704334
## iter  90 value 553.684452
## iter 100 value 553.628981
## iter 110 value 553.604866
## iter 120 value 553.584973
## iter 130 value 553.550314
## iter 140 value 553.497180
## iter 150 value 553.201931
## iter 160 value 546.970373
## iter 170 value 542.044901
## iter 180 value 541.471308
## iter 190 value 540.208779
## iter 200 value 524.218997
## iter 210 value 507.550917
## iter 220 value 507.338890
## iter 230 value 506.117857
## iter 240 value 502.589032
## iter 250 value 500.487991
## iter 260 value 500.414230
## iter 270 value 499.973861
## iter 280 value 499.966969
## iter 290 value 499.633042
## iter 300 value 499.386626
## iter 310 value 499.241021
## final  value 499.241021 
## stopped after 310 iterations
## INFO  [10:30:56.008] [mlr3] Finished benchmark
## INFO  [10:30:56.019] [bbotk] Result of batch 11:
## INFO  [10:30:56.020] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:56.020] [bbotk]     4   310 5.420773e-05  13.69372        0      0            0.014
## INFO  [10:30:56.020] [bbotk]                                 uhash
## INFO  [10:30:56.020] [bbotk]  1cccbc39-4681-4c27-bd92-581500e7bef0
## INFO  [10:30:56.022] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:56.029] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:56.031] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  57
## initial  value 83925.899988 
## iter  10 value 2814.305682
## iter  20 value 1370.614178
## iter  30 value 903.603252
## iter  40 value 553.073401
## iter  50 value 444.287507
## iter  60 value 405.417538
## iter  70 value 361.033842
## iter  80 value 289.084089
## iter  90 value 281.050047
## iter 100 value 271.579023
## iter 110 value 271.504917
## final  value 271.489108 
## converged
## INFO  [10:30:56.040] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  57
## initial  value 89129.646768 
## iter  10 value 1459.556658
## iter  20 value 849.129330
## iter  30 value 697.731900
## iter  40 value 596.867483
## iter  50 value 499.865479
## iter  60 value 485.965325
## iter  70 value 460.342775
## iter  80 value 429.208160
## iter  90 value 354.344793
## iter 100 value 235.586486
## iter 110 value 205.793780
## iter 120 value 189.011887
## iter 130 value 166.971896
## iter 140 value 133.936952
## iter 150 value 121.691700
## iter 160 value 110.682062
## iter 170 value 100.979403
## iter 180 value 94.385450
## iter 190 value 88.209097
## iter 200 value 85.859538
## iter 210 value 84.444443
## iter 220 value 82.727754
## iter 230 value 72.726222
## iter 240 value 70.709507
## iter 250 value 66.684201
## iter 260 value 56.554101
## iter 270 value 55.788346
## iter 280 value 53.887917
## iter 290 value 51.661577
## iter 300 value 50.530625
## iter 310 value 49.737746
## iter 320 value 48.874626
## iter 330 value 47.579862
## iter 340 value 47.288068
## iter 350 value 47.216658
## iter 360 value 47.194043
## iter 370 value 47.168806
## iter 380 value 47.021399
## iter 390 value 46.994884
## iter 400 value 46.958948
## final  value 46.941009 
## stopped after 403 iterations
## INFO  [10:30:56.053] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  57
## initial  value 92735.024675 
## iter  10 value 1938.837003
## iter  20 value 1016.538870
## iter  30 value 855.678313
## iter  40 value 818.598594
## iter  50 value 813.442038
## iter  60 value 808.747710
## iter  70 value 792.588393
## iter  80 value 617.841820
## iter  90 value 460.706729
## iter 100 value 364.671269
## iter 110 value 302.813955
## iter 120 value 280.706557
## iter 130 value 275.071134
## iter 140 value 268.284131
## iter 150 value 215.593012
## iter 160 value 191.903468
## iter 170 value 182.588694
## iter 180 value 173.217912
## iter 190 value 164.288716
## iter 200 value 158.613855
## iter 210 value 144.179876
## iter 220 value 135.705918
## iter 230 value 133.802741
## iter 240 value 133.307617
## iter 250 value 132.571068
## iter 260 value 132.181950
## iter 270 value 132.002135
## iter 280 value 131.841580
## iter 290 value 131.807841
## final  value 131.805923 
## converged
## INFO  [10:30:56.069] [mlr3] Finished benchmark
## INFO  [10:30:56.082] [bbotk] Result of batch 12:
## INFO  [10:30:56.082] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:56.082] [bbotk]     8   403 1.021026e-06  17.84537        0      0            0.024
## INFO  [10:30:56.082] [bbotk]                                 uhash
## INFO  [10:30:56.082] [bbotk]  43ba7995-3c44-420c-ad89-7c7467614d2a
## INFO  [10:30:56.084] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:56.091] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:56.094] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  15
## initial  value 84077.942005 
## iter  10 value 3845.445212
## iter  20 value 2437.868174
## iter  30 value 1698.401581
## iter  40 value 1242.614089
## iter  50 value 1204.550724
## iter  60 value 1194.822034
## iter  70 value 1187.133546
## iter  80 value 1185.506673
## iter  90 value 1185.362901
## iter 100 value 1185.271550
## final  value 1185.270287 
## converged
## INFO  [10:30:56.101] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  15
## initial  value 88111.932243 
## iter  10 value 1744.353178
## iter  20 value 1211.948171
## iter  30 value 861.313151
## iter  40 value 808.698515
## iter  50 value 765.606314
## iter  60 value 762.063352
## iter  70 value 762.018856
## iter  80 value 762.015084
## final  value 762.014459 
## converged
## INFO  [10:30:56.108] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  15
## initial  value 87841.142086 
## iter  10 value 2956.774289
## iter  20 value 1818.124163
## iter  30 value 1178.505611
## iter  40 value 1060.095022
## iter  50 value 1014.640986
## iter  60 value 981.858796
## iter  70 value 954.140626
## iter  80 value 917.109739
## iter  90 value 884.741314
## iter 100 value 884.688035
## final  value 884.687705 
## converged
## INFO  [10:30:56.115] [mlr3] Finished benchmark
## INFO  [10:30:56.126] [bbotk] Result of batch 13:
## INFO  [10:30:56.126] [bbotk]  size maxit       decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:56.126] [bbotk]     2   483 8.50991e-05  9.794818        0      0            0.008
## INFO  [10:30:56.126] [bbotk]                                 uhash
## INFO  [10:30:56.126] [bbotk]  68c28add-8103-4d9c-86ee-5cb9f260e3c7
## INFO  [10:30:56.128] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:56.135] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:56.137] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  50
## initial  value 87162.426575 
## iter  10 value 2377.071641
## iter  20 value 980.907128
## iter  30 value 721.260788
## iter  40 value 645.235901
## iter  50 value 430.113100
## iter  60 value 357.775996
## iter  70 value 347.482470
## iter  80 value 345.950740
## iter  90 value 341.967558
## iter 100 value 336.864030
## iter 110 value 335.289609
## iter 120 value 334.105779
## iter 130 value 306.877477
## iter 140 value 288.940671
## iter 150 value 285.724460
## iter 160 value 284.895082
## iter 170 value 267.422336
## iter 180 value 234.730542
## iter 190 value 187.144876
## final  value 177.000164 
## stopped after 194 iterations
## INFO  [10:30:56.147] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  50
## initial  value 88172.888836 
## iter  10 value 3159.252094
## iter  20 value 1071.796801
## iter  30 value 811.271742
## iter  40 value 802.766147
## iter  50 value 754.703911
## iter  60 value 728.602587
## iter  70 value 717.601441
## iter  80 value 711.936325
## iter  90 value 708.670533
## iter 100 value 703.338212
## iter 110 value 701.387853
## iter 120 value 684.812569
## iter 130 value 673.447904
## iter 140 value 673.134642
## iter 150 value 670.579081
## iter 160 value 669.267631
## iter 170 value 668.680330
## iter 180 value 668.447896
## iter 190 value 668.145986
## final  value 668.133724 
## stopped after 194 iterations
## INFO  [10:30:56.156] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  50
## initial  value 95138.019218 
## iter  10 value 1619.864366
## iter  20 value 878.249929
## iter  30 value 484.260931
## iter  40 value 294.874323
## iter  50 value 217.693672
## iter  60 value 181.423336
## iter  70 value 158.248208
## iter  80 value 147.442481
## iter  90 value 143.518970
## iter 100 value 141.704965
## iter 110 value 140.307293
## iter 120 value 136.974559
## iter 130 value 135.490841
## iter 140 value 130.685641
## iter 150 value 128.297720
## iter 160 value 126.562645
## iter 170 value 124.917565
## iter 180 value 124.663281
## iter 190 value 124.372429
## final  value 124.366160 
## stopped after 194 iterations
## INFO  [10:30:56.164] [mlr3] Finished benchmark
## INFO  [10:30:56.180] [bbotk] Result of batch 14:
## INFO  [10:30:56.181] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:56.181] [bbotk]     7   194 6.593456e-05   13.6557        0      0            0.015
## INFO  [10:30:56.181] [bbotk]                                 uhash
## INFO  [10:30:56.181] [bbotk]  332b9a35-d7e7-418d-8205-1afca521b266
## INFO  [10:30:56.184] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:56.191] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:56.194] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  64
## initial  value 84697.731691 
## iter  10 value 3579.448325
## iter  20 value 2369.708961
## iter  30 value 1321.375471
## iter  40 value 1224.568986
## iter  50 value 1193.634338
## iter  60 value 1186.383648
## iter  70 value 1184.099732
## iter  80 value 1183.757790
## iter  90 value 1183.460164
## iter 100 value 1183.448329
## final  value 1183.448086 
## converged
## INFO  [10:30:56.202] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  64
## initial  value 81530.898176 
## iter  10 value 1230.858608
## iter  20 value 580.681580
## iter  30 value 416.820989
## iter  40 value 293.256248
## iter  50 value 267.985530
## iter  60 value 194.581637
## iter  70 value 133.959919
## iter  80 value 80.833775
## iter  90 value 70.673748
## iter 100 value 68.923227
## iter 110 value 68.047833
## iter 120 value 67.314430
## iter 130 value 66.396410
## iter 140 value 66.205324
## iter 150 value 66.012070
## iter 160 value 65.666804
## iter 170 value 65.493849
## iter 180 value 65.420726
## iter 190 value 65.345576
## iter 200 value 65.230019
## iter 210 value 65.169999
## iter 220 value 65.137588
## iter 230 value 65.052987
## iter 240 value 64.148998
## iter 250 value 63.236800
## iter 260 value 63.077664
## iter 270 value 63.064244
## iter 280 value 63.050664
## iter 290 value 63.018397
## iter 300 value 63.002494
## iter 310 value 62.993871
## iter 320 value 62.964029
## iter 330 value 62.942500
## iter 340 value 62.922638
## iter 350 value 62.914749
## iter 360 value 62.898286
## iter 370 value 62.813845
## iter 380 value 62.781764
## iter 390 value 62.779996
## final  value 62.779996 
## stopped after 390 iterations
## INFO  [10:30:56.215] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  64
## initial  value 91421.158701 
## iter  10 value 2684.797689
## iter  20 value 757.381195
## iter  30 value 459.118703
## iter  40 value 300.781913
## iter  50 value 219.283562
## iter  60 value 159.884308
## iter  70 value 105.754465
## iter  80 value 83.808435
## iter  90 value 71.018299
## iter 100 value 63.744331
## iter 110 value 59.455341
## iter 120 value 57.863005
## iter 130 value 57.280380
## iter 140 value 57.058112
## iter 150 value 56.910705
## iter 160 value 56.467756
## iter 170 value 56.238162
## iter 180 value 55.982278
## iter 190 value 55.827156
## iter 200 value 55.701116
## iter 210 value 55.614960
## iter 220 value 55.531287
## iter 230 value 55.492084
## iter 240 value 55.483383
## iter 250 value 55.480047
## iter 260 value 55.387637
## iter 270 value 55.360322
## iter 280 value 55.357530
## iter 290 value 55.349566
## iter 300 value 55.340385
## iter 310 value 55.249966
## iter 320 value 52.959751
## iter 330 value 51.496880
## iter 340 value 50.841862
## iter 350 value 50.513582
## iter 360 value 50.364527
## iter 370 value 50.282368
## iter 380 value 50.229931
## iter 390 value 50.154623
## final  value 50.154623 
## stopped after 390 iterations
## INFO  [10:30:56.228] [mlr3] Finished benchmark
## INFO  [10:30:56.239] [bbotk] Result of batch 15:
## INFO  [10:30:56.240] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:56.240] [bbotk]     9   390 5.820521e-06  13.60529        0      0            0.022
## INFO  [10:30:56.240] [bbotk]                                 uhash
## INFO  [10:30:56.240] [bbotk]  069c6992-1e29-4770-a797-63bb4f186a4d
## INFO  [10:30:56.242] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:56.249] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:56.251] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  64
## initial  value 91015.992398 
## iter  10 value 1394.273918
## iter  20 value 650.373881
## iter  30 value 440.375458
## iter  40 value 375.478283
## iter  50 value 364.563569
## iter  60 value 361.638534
## iter  70 value 360.748758
## iter  80 value 358.170800
## iter  90 value 296.490081
## iter 100 value 243.623869
## iter 110 value 227.618333
## iter 120 value 210.885920
## iter 130 value 204.536337
## iter 140 value 195.557309
## iter 150 value 190.642783
## iter 160 value 189.922508
## iter 170 value 177.317662
## iter 180 value 141.253383
## iter 190 value 120.993212
## iter 200 value 110.792576
## iter 210 value 106.481475
## iter 220 value 104.246171
## iter 230 value 87.786773
## final  value 81.356356 
## stopped after 237 iterations
## INFO  [10:30:56.263] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  64
## initial  value 81666.704348 
## iter  10 value 9442.310751
## iter  20 value 9441.707284
## iter  30 value 9151.101359
## iter  40 value 2420.995025
## iter  50 value 1950.639882
## iter  60 value 1190.245674
## iter  70 value 1036.572645
## iter  80 value 1024.488106
## iter  90 value 1023.354487
## iter 100 value 1022.709167
## iter 110 value 1022.641456
## iter 120 value 1022.587416
## iter 120 value 1022.587410
## final  value 1022.587297 
## converged
## INFO  [10:30:56.271] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  64
## initial  value 88048.519848 
## iter  10 value 2477.980011
## iter  20 value 1614.664382
## iter  30 value 1482.488763
## iter  40 value 1450.640021
## iter  50 value 1408.088989
## iter  60 value 1396.842134
## iter  70 value 1389.155874
## iter  80 value 1386.603715
## iter  90 value 1381.410161
## iter 100 value 1040.027675
## iter 110 value 1013.602628
## iter 120 value 992.512440
## iter 130 value 969.643686
## iter 140 value 955.746974
## iter 150 value 951.492488
## iter 160 value 951.452215
## iter 170 value 950.673951
## iter 180 value 948.617552
## iter 190 value 943.718067
## iter 200 value 793.840985
## iter 210 value 658.722963
## iter 220 value 656.580111
## iter 230 value 646.288090
## final  value 619.190555 
## stopped after 237 iterations
## INFO  [10:30:56.281] [mlr3] Finished benchmark
## INFO  [10:30:56.299] [bbotk] Result of batch 16:
## INFO  [10:30:56.300] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:56.300] [bbotk]     9   237 5.115715e-05   9.87273        0      0            0.015
## INFO  [10:30:56.300] [bbotk]                                 uhash
## INFO  [10:30:56.300] [bbotk]  be2a1114-51c8-4d15-8d5b-4fc8d235b082
## INFO  [10:30:56.301] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:56.308] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:56.311] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  50
## initial  value 82748.706392 
## iter  10 value 1463.319886
## iter  20 value 971.135138
## iter  30 value 783.877926
## iter  40 value 462.531135
## iter  50 value 409.307213
## iter  60 value 333.122841
## iter  70 value 304.074298
## iter  80 value 302.353382
## iter  90 value 301.987801
## iter 100 value 300.922928
## iter 110 value 297.240104
## iter 120 value 246.706395
## iter 130 value 209.780383
## iter 140 value 194.665437
## iter 150 value 190.076948
## iter 160 value 188.186901
## iter 170 value 185.442940
## iter 180 value 184.578891
## iter 190 value 183.811369
## iter 200 value 183.738695
## iter 210 value 183.736848
## iter 220 value 183.384391
## iter 230 value 183.074498
## iter 240 value 183.026614
## iter 250 value 183.017731
## iter 260 value 182.955467
## iter 270 value 182.853665
## iter 280 value 152.042431
## iter 290 value 131.555733
## iter 300 value 128.813124
## iter 310 value 112.524755
## final  value 108.290313 
## stopped after 312 iterations
## INFO  [10:30:56.322] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  50
## initial  value 86499.127219 
## iter  10 value 908.936394
## iter  20 value 487.762832
## iter  30 value 441.936893
## iter  40 value 437.074174
## iter  50 value 431.708465
## iter  60 value 421.036031
## iter  70 value 419.606864
## iter  80 value 415.616203
## iter  90 value 413.260139
## iter 100 value 412.883112
## iter 110 value 412.787066
## iter 120 value 412.736460
## iter 130 value 374.475883
## iter 140 value 361.094925
## iter 150 value 359.101070
## iter 160 value 358.973737
## iter 170 value 358.863568
## iter 180 value 358.518042
## iter 190 value 358.189685
## iter 200 value 357.533599
## iter 210 value 357.180449
## iter 220 value 356.590841
## iter 230 value 356.366480
## iter 240 value 356.325096
## iter 250 value 356.319968
## iter 260 value 356.291856
## iter 270 value 356.231079
## iter 280 value 356.186065
## iter 290 value 356.153712
## iter 300 value 356.127408
## iter 310 value 355.830257
## final  value 349.096642 
## stopped after 312 iterations
## INFO  [10:30:56.333] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  50
## initial  value 91044.365476 
## iter  10 value 1759.810114
## iter  20 value 1021.386982
## iter  30 value 834.490486
## iter  40 value 589.028168
## iter  50 value 541.198201
## iter  60 value 373.943552
## iter  70 value 324.817355
## iter  80 value 311.376493
## iter  90 value 305.518962
## iter 100 value 300.638412
## iter 110 value 289.773252
## iter 120 value 245.839075
## iter 130 value 193.852126
## iter 140 value 165.546052
## iter 150 value 158.944706
## iter 160 value 144.523245
## iter 170 value 141.207521
## iter 180 value 140.834267
## iter 190 value 137.488453
## iter 200 value 123.363648
## iter 210 value 113.789882
## iter 220 value 107.712001
## iter 230 value 97.621645
## iter 240 value 89.010397
## iter 250 value 84.061811
## iter 260 value 67.689206
## iter 270 value 29.683933
## iter 280 value 22.849307
## iter 290 value 19.727830
## iter 300 value 18.997941
## iter 310 value 18.502761
## final  value 18.322847 
## stopped after 312 iterations
## INFO  [10:30:56.344] [mlr3] Finished benchmark
## INFO  [10:30:56.355] [bbotk] Result of batch 17:
## INFO  [10:30:56.356] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:56.356] [bbotk]     7   312 5.673564e-05    8.9031        0      0            0.017
## INFO  [10:30:56.356] [bbotk]                                 uhash
## INFO  [10:30:56.356] [bbotk]  ca3b388c-c918-4cb1-9968-07e23dea38c6
## INFO  [10:30:56.358] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:56.364] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:56.367] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  64
## initial  value 81615.563729 
## iter  10 value 1586.014283
## iter  20 value 630.938426
## iter  30 value 427.723570
## iter  40 value 326.615933
## iter  50 value 256.678596
## iter  60 value 230.667546
## iter  70 value 220.296991
## iter  80 value 209.549140
## iter  90 value 194.915374
## iter 100 value 186.910812
## iter 110 value 185.326143
## iter 120 value 184.474281
## iter 130 value 183.670046
## iter 140 value 183.528406
## iter 150 value 182.961217
## iter 160 value 182.315284
## iter 170 value 166.050988
## iter 180 value 164.559129
## iter 190 value 164.304337
## iter 200 value 163.715661
## iter 210 value 162.842310
## iter 220 value 162.276786
## iter 230 value 161.866069
## iter 240 value 161.224932
## iter 250 value 159.438956
## iter 260 value 151.828311
## iter 270 value 120.623311
## iter 280 value 111.583138
## iter 290 value 106.137815
## iter 300 value 67.981742
## iter 310 value 47.851839
## iter 320 value 44.450953
## iter 330 value 43.766556
## iter 340 value 42.751421
## iter 350 value 39.970358
## iter 360 value 35.340119
## iter 370 value 31.658120
## iter 380 value 30.193958
## iter 390 value 29.169287
## iter 400 value 27.673965
## iter 410 value 26.422979
## iter 420 value 24.989694
## iter 430 value 24.231056
## iter 440 value 24.121790
## iter 450 value 22.961773
## iter 460 value 21.441640
## iter 470 value 18.505795
## iter 480 value 17.415460
## final  value 17.297984 
## stopped after 487 iterations
## INFO  [10:30:56.383] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  64
## initial  value 84050.108128 
## iter  10 value 1281.765369
## iter  20 value 584.806656
## iter  30 value 455.163081
## iter  40 value 371.826665
## iter  50 value 309.155638
## iter  60 value 295.043921
## iter  70 value 256.176818
## iter  80 value 227.913127
## iter  90 value 189.359955
## iter 100 value 171.133761
## iter 110 value 152.482814
## iter 120 value 147.275099
## iter 130 value 144.233526
## iter 140 value 140.709850
## iter 150 value 139.089554
## iter 160 value 137.929772
## iter 170 value 135.614387
## iter 180 value 133.946622
## iter 190 value 133.590354
## iter 200 value 133.017790
## iter 210 value 131.062490
## iter 220 value 126.175014
## iter 230 value 119.594482
## iter 240 value 110.207224
## iter 250 value 96.764718
## iter 260 value 88.217936
## iter 270 value 75.003632
## iter 280 value 67.845458
## iter 290 value 63.039772
## iter 300 value 59.014175
## iter 310 value 49.830589
## iter 320 value 47.790908
## iter 330 value 40.638762
## iter 340 value 32.458845
## iter 350 value 26.616737
## iter 360 value 22.533851
## iter 370 value 18.815962
## iter 380 value 17.493569
## iter 390 value 16.920194
## iter 400 value 16.623461
## iter 410 value 16.117077
## iter 420 value 15.924157
## iter 430 value 15.645302
## iter 440 value 15.473523
## iter 450 value 15.457735
## iter 460 value 15.391320
## iter 470 value 15.245788
## iter 480 value 15.180627
## final  value 15.059240 
## stopped after 487 iterations
## INFO  [10:30:56.399] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  64
## initial  value 86742.864504 
## iter  10 value 2711.781381
## iter  20 value 1609.288984
## iter  30 value 1432.599497
## iter  40 value 1399.070908
## iter  50 value 1391.306777
## iter  60 value 1388.426983
## iter  70 value 1387.987629
## iter  80 value 1387.885418
## iter  90 value 1387.452985
## iter 100 value 1383.404754
## iter 110 value 1037.630731
## iter 120 value 857.758444
## iter 130 value 818.603647
## iter 140 value 774.444100
## iter 150 value 656.002086
## iter 160 value 651.772728
## iter 170 value 648.723872
## iter 180 value 648.046655
## iter 190 value 647.578914
## iter 200 value 645.839064
## iter 210 value 644.287180
## iter 220 value 639.806975
## iter 230 value 591.043876
## iter 240 value 526.865326
## iter 250 value 516.431986
## iter 260 value 514.158710
## iter 270 value 512.747224
## iter 280 value 510.346268
## iter 290 value 508.171259
## iter 300 value 507.869734
## iter 310 value 484.275971
## iter 320 value 444.403039
## iter 330 value 430.103498
## iter 340 value 427.846048
## iter 350 value 422.451855
## iter 360 value 403.139966
## iter 370 value 348.729274
## iter 380 value 330.663234
## iter 390 value 318.050623
## iter 400 value 311.320279
## iter 410 value 256.004279
## iter 420 value 190.222435
## iter 430 value 160.164540
## iter 440 value 132.051606
## iter 450 value 110.115879
## iter 460 value 96.631296
## iter 470 value 86.731530
## iter 480 value 78.809957
## final  value 76.086355 
## stopped after 487 iterations
## INFO  [10:30:56.419] [mlr3] Finished benchmark
## INFO  [10:30:56.432] [bbotk] Result of batch 18:
## INFO  [10:30:56.432] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:56.432] [bbotk]     9   487 8.087822e-05  12.60908        0      0            0.037
## INFO  [10:30:56.432] [bbotk]                                 uhash
## INFO  [10:30:56.432] [bbotk]  6b8bb98b-8aa0-458a-8aff-974d9aad77a8
## INFO  [10:30:56.434] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:56.441] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:56.444] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  71
## initial  value 80557.228713 
## iter  10 value 1092.227214
## iter  20 value 345.693935
## iter  30 value 195.710240
## iter  40 value 109.368279
## iter  50 value 77.606452
## iter  60 value 69.326299
## iter  70 value 62.065716
## iter  80 value 56.663887
## iter  90 value 53.766806
## final  value 53.391007 
## stopped after 93 iterations
## INFO  [10:30:56.452] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  71
## initial  value 83812.084563 
## iter  10 value 1472.857581
## iter  20 value 550.117786
## iter  30 value 478.929096
## iter  40 value 463.227244
## iter  50 value 456.967801
## iter  60 value 453.883945
## iter  70 value 453.660164
## iter  80 value 453.108838
## iter  90 value 452.487512
## final  value 449.716934 
## stopped after 93 iterations
## INFO  [10:30:56.461] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  71
## initial  value 88147.243705 
## iter  10 value 1453.806720
## iter  20 value 788.497191
## iter  30 value 437.380657
## iter  40 value 273.053168
## iter  50 value 234.643497
## iter  60 value 227.443645
## iter  70 value 203.069393
## iter  80 value 163.169283
## iter  90 value 143.505957
## final  value 140.325530 
## stopped after 93 iterations
## INFO  [10:30:56.469] [mlr3] Finished benchmark
## INFO  [10:30:56.480] [bbotk] Result of batch 19:
## INFO  [10:30:56.481] [bbotk]  size maxit       decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:56.481] [bbotk]    10    93 1.12927e-05  9.909154        0      0             0.01
## INFO  [10:30:56.481] [bbotk]                                 uhash
## INFO  [10:30:56.481] [bbotk]  ff4f34e8-c46b-4c1b-b914-29e08255b063
## INFO  [10:30:56.482] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:56.489] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:56.492] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  50
## initial  value 82789.620096 
## iter  10 value 2166.684411
## iter  20 value 589.110696
## iter  30 value 453.223170
## iter  40 value 392.399255
## iter  50 value 356.654809
## iter  60 value 330.590932
## iter  70 value 328.890907
## iter  80 value 328.216377
## iter  90 value 322.835631
## iter 100 value 294.209146
## iter 110 value 268.580595
## iter 120 value 245.475505
## iter 130 value 217.881693
## iter 140 value 185.639703
## iter 150 value 161.459330
## iter 160 value 148.255504
## iter 170 value 136.164745
## iter 180 value 125.426893
## iter 190 value 124.807684
## iter 200 value 123.809520
## iter 210 value 122.539084
## final  value 122.405672 
## stopped after 214 iterations
## INFO  [10:30:56.502] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  50
## initial  value 85090.820195 
## iter  10 value 1501.989863
## iter  20 value 530.680643
## iter  30 value 493.761539
## iter  40 value 478.590801
## iter  50 value 468.987990
## iter  60 value 456.977457
## iter  70 value 450.905526
## iter  80 value 444.416701
## iter  90 value 437.537940
## iter 100 value 416.594903
## iter 110 value 392.906953
## iter 120 value 391.719073
## iter 130 value 389.210992
## iter 140 value 386.873925
## iter 150 value 384.963435
## iter 160 value 384.944707
## iter 170 value 383.436000
## iter 180 value 369.282991
## iter 190 value 367.273775
## iter 200 value 365.088837
## iter 210 value 355.418402
## final  value 353.322155 
## stopped after 214 iterations
## INFO  [10:30:56.511] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  50
## initial  value 86419.965148 
## iter  10 value 5150.208419
## iter  20 value 2044.182546
## iter  30 value 1127.184016
## iter  40 value 795.806979
## iter  50 value 635.086700
## iter  60 value 617.855840
## iter  70 value 610.469872
## iter  80 value 547.538051
## iter  90 value 504.223300
## iter 100 value 499.216106
## iter 110 value 498.860872
## iter 120 value 497.871274
## iter 130 value 488.880092
## iter 140 value 479.713408
## iter 150 value 456.410809
## iter 160 value 445.849998
## iter 170 value 441.508435
## iter 180 value 441.098621
## iter 190 value 440.613527
## iter 200 value 440.546266
## iter 210 value 440.536852
## final  value 440.535680 
## stopped after 214 iterations
## INFO  [10:30:56.525] [mlr3] Finished benchmark
## INFO  [10:30:56.538] [bbotk] Result of batch 20:
## INFO  [10:30:56.538] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:56.538] [bbotk]     7   214 1.443899e-05  17.89432        0      0            0.018
## INFO  [10:30:56.538] [bbotk]                                 uhash
## INFO  [10:30:56.538] [bbotk]  0396f66a-3035-4a55-979f-d066efb1a295
## INFO  [10:30:56.542] [bbotk] Finished optimizing after 20 evaluation(s)
## INFO  [10:30:56.542] [bbotk] Result:
## INFO  [10:30:56.543] [bbotk]  size maxit        decay learner_param_vals  x_domain regr.rmse
## INFO  [10:30:56.543] [bbotk]     3   300 4.119386e-05          <list[3]> <list[3]>  8.295178
## # weights:  22
## initial  value 124405.536119 
## iter  10 value 4600.319175
## iter  20 value 2299.074947
## iter  30 value 1395.662317
## iter  40 value 1273.750702
## iter  50 value 1220.555003
## iter  60 value 1157.057558
## iter  70 value 1034.437637
## iter  80 value 873.342870
## iter  90 value 856.901333
## iter 100 value 852.691694
## iter 110 value 843.597680
## iter 120 value 834.186698
## iter 130 value 815.041928
## iter 140 value 796.957173
## iter 150 value 781.315577
## iter 160 value 767.392819
## iter 170 value 758.761952
## iter 180 value 752.388758
## iter 190 value 748.509619
## iter 200 value 748.231456
## iter 210 value 748.222359
## iter 220 value 748.221454
## final  value 748.220955 
## converged
## INFO  [10:30:56.559] [mlr3] Applying learner 'regr.nnet.tuned' on task 'cereal' (iter 4/5)
## INFO  [10:30:56.576] [bbotk] Starting to optimize 3 parameter(s) with '<OptimizerRandomSearch>' and '<TerminatorEvals> [n_evals=20, k=0]'
## INFO  [10:30:56.583] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:56.589] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:56.592] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  57
## initial  value 79647.254062 
## iter  10 value 3176.958033
## iter  20 value 1048.558408
## iter  30 value 584.441049
## iter  40 value 402.625187
## iter  50 value 341.081196
## iter  60 value 323.011179
## iter  70 value 286.649678
## iter  80 value 285.011894
## iter  90 value 281.869347
## iter 100 value 273.398054
## iter 110 value 257.353058
## iter 120 value 209.324308
## iter 130 value 186.710094
## iter 140 value 168.651558
## iter 150 value 160.475256
## final  value 159.437466 
## stopped after 153 iterations
## INFO  [10:30:56.601] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  57
## initial  value 82204.018941 
## iter  10 value 3380.829024
## iter  20 value 563.035256
## iter  30 value 241.549882
## iter  40 value 168.618749
## iter  50 value 141.161048
## iter  60 value 118.637384
## iter  70 value 90.264205
## iter  80 value 73.195012
## iter  90 value 65.876122
## iter 100 value 55.003018
## iter 110 value 50.438739
## iter 120 value 47.191321
## iter 130 value 44.814307
## iter 140 value 40.941683
## iter 150 value 37.966639
## final  value 36.796008 
## stopped after 153 iterations
## INFO  [10:30:56.611] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  57
## initial  value 79457.353119 
## iter  10 value 3813.749316
## iter  20 value 1510.837336
## iter  30 value 1197.827746
## iter  40 value 1163.755407
## iter  50 value 1155.497990
## iter  60 value 1153.913263
## iter  70 value 1153.460138
## iter  80 value 1149.168944
## iter  90 value 1128.666227
## iter 100 value 1089.480514
## iter 110 value 930.497428
## iter 120 value 878.233082
## iter 130 value 875.074351
## iter 140 value 831.113275
## iter 150 value 775.932277
## final  value 770.901212 
## stopped after 153 iterations
## INFO  [10:30:56.618] [mlr3] Finished benchmark
## INFO  [10:30:56.632] [bbotk] Result of batch 1:
## INFO  [10:30:56.633] [bbotk]  size maxit      decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:56.633] [bbotk]     8   153 6.8896e-05  7.921639        0      0            0.013
## INFO  [10:30:56.633] [bbotk]                                 uhash
## INFO  [10:30:56.633] [bbotk]  8f9700b5-1669-4fab-af99-4bd6be6db175
## INFO  [10:30:56.636] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:56.644] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:56.647] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  15
## initial  value 75423.455705 
## iter  10 value 3609.744468
## iter  20 value 1125.495576
## iter  30 value 557.269057
## iter  40 value 500.301154
## iter  50 value 492.344312
## iter  60 value 478.791637
## iter  70 value 475.641714
## iter  80 value 473.962086
## iter  90 value 471.599538
## iter 100 value 471.236833
## iter 110 value 470.574362
## iter 120 value 463.228298
## iter 130 value 462.564441
## iter 140 value 462.433206
## iter 150 value 462.427565
## final  value 462.419085 
## converged
## INFO  [10:30:56.655] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  15
## initial  value 79782.565546 
## iter  10 value 4240.427810
## iter  20 value 1691.096459
## iter  30 value 1541.963172
## iter  40 value 998.724110
## iter  50 value 894.094151
## iter  60 value 890.263131
## final  value 890.195994 
## converged
## INFO  [10:30:56.662] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  15
## initial  value 80357.411796 
## iter  10 value 1283.814648
## iter  20 value 646.563374
## iter  30 value 554.136683
## iter  40 value 534.805539
## iter  50 value 446.098113
## iter  60 value 439.970101
## iter  70 value 439.834534
## iter  80 value 439.773264
## iter  90 value 439.596905
## final  value 439.596872 
## converged
## INFO  [10:30:56.668] [mlr3] Finished benchmark
## INFO  [10:30:56.679] [bbotk] Result of batch 2:
## INFO  [10:30:56.680] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:56.680] [bbotk]     2   232 2.719739e-05  8.026327        0      0            0.008
## INFO  [10:30:56.680] [bbotk]                                 uhash
## INFO  [10:30:56.680] [bbotk]  5f60275d-e96c-4123-aae3-85d60f41424f
## INFO  [10:30:56.681] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:56.688] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:56.691] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  15
## initial  value 76199.040094 
## final  value 7197.689906 
## converged
## INFO  [10:30:56.697] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  15
## initial  value 80166.491193 
## iter  10 value 2503.436104
## iter  20 value 889.387327
## iter  30 value 693.816452
## iter  40 value 676.820298
## iter  50 value 663.176913
## iter  60 value 663.162014
## iter  70 value 663.136937
## iter  80 value 663.128060
## iter  90 value 663.078959
## iter 100 value 662.791313
## iter 110 value 655.817119
## iter 120 value 552.867817
## iter 130 value 357.939693
## iter 140 value 351.129617
## iter 150 value 350.189370
## iter 160 value 343.982981
## iter 170 value 342.842663
## iter 180 value 342.834193
## iter 190 value 342.784414
## iter 200 value 342.771123
## final  value 342.771048 
## converged
## INFO  [10:30:56.705] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  15
## initial  value 76372.109352 
## iter  10 value 1621.118079
## iter  20 value 614.771690
## iter  30 value 528.668945
## iter  40 value 523.614788
## iter  50 value 519.600355
## iter  60 value 516.648794
## iter  70 value 515.736098
## final  value 515.735607 
## converged
## INFO  [10:30:56.711] [mlr3] Finished benchmark
## INFO  [10:30:56.722] [bbotk] Result of batch 3:
## INFO  [10:30:56.723] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:56.723] [bbotk]     2   309 1.647272e-05  8.727068        0      0            0.007
## INFO  [10:30:56.723] [bbotk]                                 uhash
## INFO  [10:30:56.723] [bbotk]  7430ad38-31c6-491c-9dde-45cd82b4171d
## INFO  [10:30:56.725] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:56.735] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:56.739] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  8
## initial  value 76855.092576 
## final  value 7198.572531 
## converged
## INFO  [10:30:56.747] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  8
## initial  value 80656.252225 
## final  value 6909.932794 
## converged
## INFO  [10:30:56.754] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  8
## initial  value 77132.476584 
## iter  10 value 2398.787981
## iter  20 value 1564.551299
## iter  30 value 1396.520263
## iter  40 value 1251.814593
## iter  50 value 1198.903169
## iter  60 value 1160.278349
## iter  70 value 1153.118299
## iter  80 value 1151.441811
## iter  90 value 1149.985188
## iter 100 value 1149.603113
## iter 110 value 1149.151479
## iter 120 value 1149.115997
## iter 130 value 1148.837663
## iter 140 value 1148.779520
## iter 150 value 1148.687028
## iter 150 value 1148.687025
## iter 160 value 1148.679987
## iter 170 value 1148.560579
## iter 180 value 1148.548724
## final  value 1148.546143 
## converged
## INFO  [10:30:56.760] [mlr3] Finished benchmark
## INFO  [10:30:56.772] [bbotk] Result of batch 4:
## INFO  [10:30:56.772] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:56.772] [bbotk]     1   191 3.267971e-05  9.486437        0      0            0.006
## INFO  [10:30:56.772] [bbotk]                                 uhash
## INFO  [10:30:56.772] [bbotk]  894ca7c8-8b11-4fd8-8900-be79cf5c8fd9
## INFO  [10:30:56.774] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:56.781] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:56.784] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  8
## initial  value 75252.884324 
## final  value 7197.663487 
## converged
## INFO  [10:30:56.790] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  8
## initial  value 76367.270209 
## iter  10 value 1891.443883
## iter  20 value 1626.893404
## iter  30 value 1075.065815
## iter  40 value 941.386488
## iter  50 value 890.309672
## iter  60 value 890.095470
## final  value 890.077131 
## converged
## INFO  [10:30:56.797] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  8
## initial  value 80627.011843 
## iter  10 value 1607.163041
## iter  20 value 1239.194889
## iter  30 value 1179.044078
## iter  40 value 1162.354865
## iter  50 value 1152.988223
## iter  60 value 1151.512971
## iter  70 value 1149.497540
## iter  80 value 1149.300170
## iter  90 value 1148.628502
## iter 100 value 1148.372802
## iter 110 value 1147.905496
## iter 120 value 1147.790811
## iter 130 value 1147.717151
## iter 140 value 1147.652780
## iter 150 value 1147.583386
## iter 160 value 1147.527923
## iter 170 value 1147.488296
## iter 180 value 1147.421076
## iter 190 value 1147.370082
## iter 200 value 1147.359912
## iter 210 value 1147.336746
## final  value 1147.336343 
## converged
## INFO  [10:30:56.804] [mlr3] Finished benchmark
## INFO  [10:30:56.815] [bbotk] Result of batch 5:
## INFO  [10:30:56.816] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:56.816] [bbotk]     1   333 2.346569e-07  8.343919        0      0            0.008
## INFO  [10:30:56.816] [bbotk]                                 uhash
## INFO  [10:30:56.816] [bbotk]  87a2fb1f-1421-4097-9333-74a80385ae44
## INFO  [10:30:56.817] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:56.829] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:56.833] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  29
## initial  value 77069.460205 
## iter  10 value 2455.232148
## iter  20 value 680.381243
## iter  30 value 578.090731
## iter  40 value 457.812132
## iter  50 value 402.385659
## iter  60 value 386.484144
## iter  70 value 377.320415
## iter  80 value 374.902590
## iter  90 value 373.018521
## iter 100 value 371.604819
## iter 110 value 371.348887
## iter 120 value 371.278745
## iter 130 value 371.190671
## iter 140 value 371.167837
## iter 150 value 371.115576
## iter 160 value 371.085691
## iter 170 value 370.996560
## iter 180 value 370.849945
## iter 190 value 370.845271
## iter 200 value 370.817937
## iter 210 value 370.802559
## iter 220 value 370.790851
## iter 230 value 370.756758
## iter 240 value 370.734851
## final  value 370.733973 
## converged
## INFO  [10:30:56.842] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  29
## initial  value 81593.932751 
## iter  10 value 3134.709264
## iter  20 value 1207.588282
## iter  30 value 478.194977
## iter  40 value 273.740695
## iter  50 value 252.167878
## iter  60 value 221.848147
## iter  70 value 213.219806
## iter  80 value 197.490344
## iter  90 value 189.395490
## iter 100 value 178.081936
## iter 110 value 163.781769
## iter 120 value 160.673603
## iter 130 value 160.506649
## iter 140 value 160.389347
## iter 150 value 158.742674
## iter 160 value 157.407859
## iter 170 value 156.216868
## iter 180 value 155.459973
## iter 190 value 151.831473
## iter 200 value 146.826389
## iter 210 value 142.499817
## iter 220 value 141.965548
## iter 230 value 133.127152
## iter 240 value 126.695877
## iter 250 value 125.387751
## iter 260 value 124.975156
## iter 270 value 124.489509
## iter 280 value 124.463988
## iter 290 value 124.233785
## iter 300 value 123.822068
## iter 310 value 123.277206
## final  value 123.120496 
## stopped after 311 iterations
## INFO  [10:30:56.852] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  29
## initial  value 78143.464103 
## iter  10 value 2337.063718
## iter  20 value 1406.900034
## iter  30 value 1256.225100
## iter  40 value 1065.805792
## iter  50 value 934.753268
## iter  60 value 904.366128
## iter  70 value 895.288091
## iter  80 value 888.508217
## iter  90 value 883.857014
## iter 100 value 881.557389
## iter 110 value 880.658984
## iter 120 value 879.823208
## iter 130 value 879.777655
## iter 140 value 879.764947
## iter 150 value 879.703956
## iter 160 value 878.264250
## iter 170 value 812.597278
## iter 180 value 731.102024
## iter 190 value 723.653304
## iter 200 value 722.747110
## iter 210 value 719.351643
## iter 220 value 718.295362
## iter 230 value 717.563249
## iter 240 value 717.243807
## iter 250 value 717.153455
## final  value 717.148612 
## converged
## INFO  [10:30:56.860] [mlr3] Finished benchmark
## INFO  [10:30:56.871] [bbotk] Result of batch 6:
## INFO  [10:30:56.872] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:56.872] [bbotk]     4   311 4.140793e-05  9.620708        0      0            0.015
## INFO  [10:30:56.872] [bbotk]                                 uhash
## INFO  [10:30:56.872] [bbotk]  cbe00273-d229-44e7-a8a6-abb725900b3f
## INFO  [10:30:56.874] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:56.881] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:56.883] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  71
## initial  value 79449.886459 
## iter  10 value 1505.139574
## iter  20 value 607.561898
## iter  30 value 415.807293
## iter  40 value 231.695951
## iter  50 value 165.425041
## iter  60 value 132.149346
## iter  70 value 100.182917
## iter  80 value 69.184741
## iter  90 value 66.033949
## iter 100 value 64.547980
## iter 110 value 63.494519
## iter 120 value 62.427119
## iter 130 value 59.412391
## iter 140 value 57.816658
## iter 150 value 57.450302
## iter 160 value 57.250532
## iter 170 value 57.116352
## iter 180 value 56.607204
## iter 190 value 56.072754
## iter 200 value 55.560652
## iter 210 value 55.186871
## iter 220 value 54.924882
## iter 230 value 54.809461
## iter 240 value 53.331141
## iter 250 value 49.587622
## iter 260 value 45.414992
## iter 270 value 44.264443
## iter 280 value 43.809920
## iter 290 value 43.306942
## iter 300 value 42.837798
## final  value 42.783392 
## stopped after 305 iterations
## INFO  [10:30:56.896] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  71
## initial  value 82628.386945 
## final  value 6912.706775 
## converged
## INFO  [10:30:56.903] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  71
## initial  value 75566.294762 
## iter  10 value 1696.222234
## iter  20 value 649.682842
## iter  30 value 374.118727
## iter  40 value 303.466463
## iter  50 value 209.813542
## iter  60 value 164.431165
## iter  70 value 124.646397
## iter  80 value 120.503620
## iter  90 value 117.923666
## iter 100 value 114.048619
## iter 110 value 111.813568
## iter 120 value 111.176810
## iter 130 value 110.818890
## iter 140 value 110.704049
## iter 150 value 110.375700
## iter 160 value 109.153927
## iter 170 value 105.267373
## iter 180 value 104.777869
## iter 190 value 103.886184
## iter 200 value 103.848001
## iter 210 value 103.733524
## iter 220 value 103.722735
## iter 230 value 103.714613
## iter 240 value 102.527431
## iter 250 value 83.780022
## iter 260 value 74.023533
## iter 270 value 69.291464
## iter 280 value 67.137376
## iter 290 value 61.724856
## iter 300 value 49.810903
## final  value 46.415671 
## stopped after 305 iterations
## INFO  [10:30:56.920] [mlr3] Finished benchmark
## INFO  [10:30:56.933] [bbotk] Result of batch 7:
## INFO  [10:30:56.934] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:56.934] [bbotk]    10   305 3.250192e-05    9.6612        0      0            0.022
## INFO  [10:30:56.934] [bbotk]                                 uhash
## INFO  [10:30:56.934] [bbotk]  70230894-2bd1-4d25-b1c1-30b7f0cf3624
## INFO  [10:30:56.935] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:56.942] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:56.945] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  22
## initial  value 76525.994555 
## iter  10 value 1281.486813
## iter  20 value 668.859459
## iter  30 value 455.292121
## iter  40 value 312.372550
## iter  50 value 279.265483
## iter  60 value 251.282983
## iter  70 value 199.273038
## iter  80 value 179.777838
## iter  90 value 177.473066
## iter 100 value 177.253041
## iter 110 value 176.819459
## iter 120 value 176.457814
## iter 130 value 175.748603
## iter 140 value 175.678870
## iter 150 value 175.671270
## iter 160 value 175.625425
## iter 170 value 175.575711
## iter 180 value 175.479796
## final  value 175.478986 
## converged
## INFO  [10:30:56.953] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  22
## initial  value 82048.516100 
## iter  10 value 1746.879397
## iter  20 value 390.574608
## iter  30 value 297.352238
## iter  40 value 290.880346
## iter  50 value 287.154860
## iter  60 value 283.724212
## iter  70 value 272.230989
## iter  80 value 250.513277
## iter  90 value 241.061723
## iter 100 value 240.578010
## iter 110 value 238.002888
## iter 120 value 235.111743
## iter 130 value 234.120016
## iter 140 value 234.063421
## iter 150 value 234.052435
## iter 160 value 234.041656
## final  value 234.041543 
## converged
## INFO  [10:30:56.961] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  22
## initial  value 80699.219347 
## iter  10 value 2163.611324
## iter  20 value 1473.516625
## iter  30 value 1296.013521
## iter  40 value 1019.878388
## iter  50 value 855.173084
## iter  60 value 754.281105
## iter  70 value 600.345310
## iter  80 value 539.717388
## iter  90 value 463.509126
## iter 100 value 454.190556
## iter 110 value 446.566723
## iter 120 value 442.379622
## iter 130 value 442.155079
## iter 140 value 442.011601
## iter 150 value 442.000465
## iter 160 value 441.975885
## iter 170 value 441.944445
## iter 180 value 441.942030
## iter 190 value 429.223995
## iter 200 value 417.628198
## iter 210 value 387.032021
## iter 220 value 366.802835
## iter 230 value 348.782893
## final  value 348.782893 
## stopped after 230 iterations
## INFO  [10:30:56.969] [mlr3] Finished benchmark
## INFO  [10:30:56.980] [bbotk] Result of batch 8:
## INFO  [10:30:56.981] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:56.981] [bbotk]     3   230 9.676331e-05  7.856719        0      0            0.011
## INFO  [10:30:56.981] [bbotk]                                 uhash
## INFO  [10:30:56.981] [bbotk]  9ff014f9-021d-4a93-90c7-7a4fec73bc04
## INFO  [10:30:56.983] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:56.989] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:56.992] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  22
## initial  value 76815.108770 
## iter  10 value 1300.958126
## iter  20 value 896.927352
## iter  30 value 852.160215
## iter  40 value 816.867436
## iter  50 value 797.024075
## final  value 748.613405 
## stopped after 58 iterations
## INFO  [10:30:56.999] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  22
## initial  value 76218.489354 
## iter  10 value 1901.812554
## iter  20 value 1095.229101
## iter  30 value 893.540219
## iter  40 value 626.958487
## iter  50 value 602.465209
## final  value 586.538831 
## stopped after 58 iterations
## INFO  [10:30:57.011] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  22
## initial  value 77594.614122 
## iter  10 value 3795.186841
## iter  20 value 1427.501395
## iter  30 value 1320.133040
## iter  40 value 1189.101469
## iter  50 value 1166.563830
## final  value 1157.603031 
## stopped after 58 iterations
## INFO  [10:30:57.019] [mlr3] Finished benchmark
## INFO  [10:30:57.030] [bbotk] Result of batch 9:
## INFO  [10:30:57.031] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:57.031] [bbotk]     3    58 3.272069e-05  7.604849        0      0             0.01
## INFO  [10:30:57.031] [bbotk]                                 uhash
## INFO  [10:30:57.031] [bbotk]  9af71789-794f-415d-8157-8491ccece63c
## INFO  [10:30:57.033] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:57.040] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:57.042] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  15
## initial  value 75954.206031 
## iter  10 value 1814.542902
## iter  20 value 1180.212522
## iter  30 value 1089.925467
## iter  40 value 1059.314220
## iter  50 value 871.151533
## iter  60 value 766.078413
## iter  70 value 696.474973
## final  value 696.253011 
## stopped after 75 iterations
## INFO  [10:30:57.050] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  15
## initial  value 76488.986376 
## iter  10 value 2282.087244
## iter  20 value 436.739833
## iter  30 value 294.132084
## iter  40 value 280.247950
## iter  50 value 265.616341
## iter  60 value 262.300862
## iter  70 value 262.251672
## final  value 262.212099 
## stopped after 75 iterations
## INFO  [10:30:57.057] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  15
## initial  value 75717.303277 
## iter  10 value 3062.179126
## iter  20 value 1504.875542
## iter  30 value 1224.745800
## iter  40 value 1184.971453
## iter  50 value 1156.337802
## iter  60 value 1152.927936
## iter  70 value 1151.459890
## final  value 1150.281577 
## stopped after 75 iterations
## INFO  [10:30:57.063] [mlr3] Finished benchmark
## INFO  [10:30:57.074] [bbotk] Result of batch 10:
## INFO  [10:30:57.075] [bbotk]  size maxit       decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:57.075] [bbotk]     2    75 5.25751e-05  6.850185        0      0            0.007
## INFO  [10:30:57.075] [bbotk]                                 uhash
## INFO  [10:30:57.075] [bbotk]  4038ff88-a516-48d7-95ea-7bec8ed4e3ac
## INFO  [10:30:57.076] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:57.083] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:57.086] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  15
## initial  value 76681.006143 
## iter  10 value 3454.807150
## iter  20 value 1912.303275
## iter  30 value 1450.216497
## iter  40 value 1311.040897
## iter  50 value 713.760981
## iter  60 value 646.757303
## iter  70 value 643.741276
## final  value 629.317793 
## stopped after 73 iterations
## INFO  [10:30:57.098] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  15
## initial  value 78314.663298 
## final  value 6909.861105 
## converged
## INFO  [10:30:57.106] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  15
## initial  value 80992.157229 
## iter  10 value 2006.415446
## iter  20 value 1544.975532
## iter  30 value 1086.241659
## iter  40 value 560.160036
## iter  50 value 527.325838
## iter  60 value 524.810826
## iter  70 value 517.541847
## final  value 516.010519 
## stopped after 73 iterations
## INFO  [10:30:57.112] [mlr3] Finished benchmark
## INFO  [10:30:57.124] [bbotk] Result of batch 11:
## INFO  [10:30:57.124] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:57.124] [bbotk]     2    73 1.755493e-05   7.46907        0      0            0.008
## INFO  [10:30:57.124] [bbotk]                                 uhash
## INFO  [10:30:57.124] [bbotk]  758b9aa4-88a0-4709-8d37-7b91fe770822
## INFO  [10:30:57.126] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:57.133] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:57.136] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  15
## initial  value 76181.407416 
## iter  10 value 3061.825826
## iter  20 value 1715.384821
## iter  30 value 1114.018069
## iter  40 value 668.328205
## iter  50 value 504.378241
## iter  60 value 481.842008
## iter  70 value 479.058838
## iter  80 value 476.869461
## iter  90 value 474.360695
## iter 100 value 472.713353
## iter 110 value 471.563377
## iter 120 value 470.670103
## iter 130 value 469.763414
## iter 140 value 463.864383
## iter 150 value 463.863079
## iter 160 value 463.862603
## final  value 463.862562 
## converged
## INFO  [10:30:57.144] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  15
## initial  value 78106.445576 
## iter  10 value 2216.573892
## iter  20 value 2164.831478
## iter  30 value 2115.532897
## iter  40 value 1803.170617
## iter  50 value 1721.373778
## iter  60 value 1281.537366
## iter  70 value 915.068757
## iter  80 value 891.568349
## iter  90 value 890.885303
## iter 100 value 890.430433
## iter 110 value 887.514003
## iter 120 value 817.300287
## iter 130 value 417.123912
## iter 140 value 403.456312
## iter 150 value 403.243025
## iter 160 value 402.777741
## iter 170 value 402.775067
## final  value 402.775054 
## converged
## INFO  [10:30:57.151] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  15
## initial  value 78181.370602 
## iter  10 value 3835.860568
## iter  20 value 3531.360503
## iter  30 value 3527.072002
## iter  40 value 3526.448710
## iter  50 value 3524.629620
## iter  60 value 3519.246904
## iter  70 value 3515.337232
## iter  80 value 3514.138540
## iter  90 value 3513.631176
## iter 100 value 3513.576926
## iter 110 value 3513.438623
## iter 120 value 3513.205778
## iter 130 value 3374.675574
## iter 140 value 1929.025091
## iter 150 value 1413.086533
## iter 160 value 1311.622602
## iter 170 value 1224.497700
## iter 180 value 1169.672248
## iter 190 value 1156.710769
## iter 200 value 1152.793635
## iter 210 value 1150.778215
## iter 220 value 1150.190844
## iter 230 value 1149.972331
## iter 240 value 1149.681927
## iter 250 value 1149.251705
## iter 260 value 1149.155963
## final  value 1149.154444 
## converged
## INFO  [10:30:57.159] [mlr3] Finished benchmark
## INFO  [10:30:57.175] [bbotk] Result of batch 12:
## INFO  [10:30:57.177] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:57.177] [bbotk]     2   373 4.830053e-05   6.57438        0      0             0.01
## INFO  [10:30:57.177] [bbotk]                                 uhash
## INFO  [10:30:57.177] [bbotk]  57d09bbd-0144-4b1c-9611-9e0b7389729d
## INFO  [10:30:57.178] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:57.185] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:57.188] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  15
## initial  value 73946.447979 
## final  value 7198.159640 
## converged
## INFO  [10:30:57.195] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  15
## initial  value 79753.811654 
## iter  10 value 1961.484452
## iter  20 value 1103.387780
## iter  30 value 555.478938
## iter  40 value 296.350116
## iter  50 value 277.791819
## iter  60 value 268.097745
## iter  70 value 262.716066
## iter  80 value 262.333241
## final  value 262.332247 
## converged
## INFO  [10:30:57.202] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  15
## initial  value 79026.855614 
## iter  10 value 3009.419402
## iter  20 value 1830.248987
## iter  30 value 1706.407034
## iter  40 value 1692.216608
## iter  50 value 1657.083961
## iter  60 value 1471.665073
## iter  70 value 1307.057490
## iter  80 value 1206.123715
## iter  90 value 1170.785253
## iter 100 value 1154.254885
## iter 110 value 1152.552340
## iter 120 value 1150.623596
## iter 130 value 1149.066197
## iter 140 value 1141.215483
## iter 150 value 965.876943
## iter 160 value 886.496294
## iter 170 value 858.310358
## iter 180 value 853.614743
## iter 190 value 822.855607
## iter 200 value 695.957519
## iter 210 value 659.613923
## iter 220 value 599.277310
## iter 230 value 589.624298
## iter 240 value 584.275221
## iter 250 value 579.632639
## iter 260 value 579.367326
## iter 270 value 574.599549
## iter 280 value 548.739395
## iter 290 value 533.050945
## iter 300 value 518.087038
## iter 310 value 516.471400
## iter 320 value 516.416814
## iter 330 value 516.413609
## final  value 516.407983 
## converged
## INFO  [10:30:57.210] [mlr3] Finished benchmark
## INFO  [10:30:57.222] [bbotk] Result of batch 13:
## INFO  [10:30:57.222] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:57.222] [bbotk]     2   387 8.499084e-05  7.948422        0      0             0.01
## INFO  [10:30:57.222] [bbotk]                                 uhash
## INFO  [10:30:57.222] [bbotk]  4577d0ab-194f-49b2-814f-3aa50d13ed78
## INFO  [10:30:57.224] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:57.231] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:57.233] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  64
## initial  value 73756.826064 
## iter  10 value 1128.796588
## iter  20 value 668.837620
## iter  30 value 465.563256
## iter  40 value 312.380702
## iter  50 value 229.700324
## iter  60 value 185.942719
## iter  70 value 167.143538
## iter  80 value 136.789925
## iter  90 value 130.022036
## iter 100 value 128.820840
## iter 110 value 128.224898
## iter 120 value 126.413093
## iter 130 value 118.919361
## iter 140 value 107.925878
## iter 150 value 46.101327
## iter 160 value 29.885333
## iter 170 value 27.311340
## iter 180 value 25.398635
## iter 190 value 24.519677
## iter 200 value 23.697849
## iter 210 value 22.698301
## iter 220 value 22.271388
## iter 230 value 22.179689
## iter 240 value 22.025944
## iter 250 value 21.970148
## iter 260 value 21.854230
## iter 270 value 21.849316
## iter 280 value 21.841584
## iter 290 value 21.822434
## iter 300 value 21.787792
## iter 310 value 21.697114
## final  value 21.666715 
## stopped after 312 iterations
## INFO  [10:30:57.246] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  64
## initial  value 78582.471990 
## iter  10 value 6787.216186
## iter  20 value 2599.802734
## iter  30 value 827.205205
## iter  40 value 273.248095
## iter  50 value 202.683014
## iter  60 value 194.653781
## iter  70 value 192.777577
## iter  80 value 191.828193
## iter  90 value 188.941946
## iter 100 value 187.795547
## iter 110 value 187.261196
## iter 120 value 185.221575
## iter 130 value 182.210251
## iter 140 value 181.419899
## iter 150 value 180.565018
## iter 160 value 178.527120
## iter 170 value 162.480812
## iter 180 value 155.255468
## iter 190 value 153.133168
## iter 200 value 152.487901
## iter 210 value 151.915390
## iter 220 value 150.431841
## iter 230 value 150.286870
## iter 240 value 149.899259
## iter 250 value 149.404162
## iter 260 value 145.209609
## iter 270 value 138.414347
## iter 280 value 137.023290
## iter 290 value 131.200588
## iter 300 value 127.221467
## iter 310 value 120.309742
## final  value 118.758162 
## stopped after 312 iterations
## INFO  [10:30:57.265] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  64
## initial  value 79629.209958 
## iter  10 value 1818.054307
## iter  20 value 1459.569049
## iter  30 value 1074.943187
## iter  40 value 565.461564
## iter  50 value 473.581126
## iter  60 value 465.229609
## iter  70 value 465.049884
## iter  80 value 464.696736
## iter  90 value 437.820714
## iter 100 value 436.072927
## iter 110 value 425.781018
## iter 120 value 390.556786
## iter 130 value 369.310835
## iter 140 value 328.382249
## iter 150 value 317.028856
## iter 160 value 315.703700
## iter 170 value 311.505922
## iter 180 value 293.678660
## iter 190 value 280.133271
## iter 200 value 274.730961
## iter 210 value 273.791717
## iter 220 value 272.788810
## iter 230 value 272.341337
## iter 240 value 271.560763
## iter 250 value 271.279818
## iter 260 value 271.252791
## iter 270 value 271.092725
## iter 280 value 270.070712
## iter 290 value 258.615530
## iter 300 value 216.424798
## iter 310 value 215.676486
## final  value 215.667562 
## stopped after 312 iterations
## INFO  [10:30:57.277] [mlr3] Finished benchmark
## INFO  [10:30:57.288] [bbotk] Result of batch 14:
## INFO  [10:30:57.289] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:57.289] [bbotk]     9   312 3.121987e-05  9.493398        0      0            0.026
## INFO  [10:30:57.289] [bbotk]                                 uhash
## INFO  [10:30:57.289] [bbotk]  f9c14aad-49a3-418e-9144-f1baeaaa5683
## INFO  [10:30:57.291] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:57.298] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:57.300] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  71
## initial  value 75699.117815 
## iter  10 value 3870.210487
## iter  20 value 2881.064814
## iter  30 value 2633.437962
## iter  40 value 1911.677334
## iter  50 value 1337.846243
## iter  60 value 905.776926
## iter  70 value 744.273884
## iter  80 value 660.316469
## iter  90 value 624.398340
## iter 100 value 618.249606
## iter 110 value 606.490607
## iter 120 value 589.986292
## iter 130 value 583.789823
## iter 140 value 575.812650
## iter 150 value 570.414513
## iter 160 value 562.798522
## iter 170 value 562.656833
## iter 180 value 562.192391
## iter 190 value 555.389729
## iter 200 value 522.967078
## iter 210 value 472.954723
## iter 220 value 432.471463
## iter 230 value 412.156284
## iter 240 value 407.169668
## iter 250 value 405.099827
## iter 260 value 403.944590
## iter 270 value 394.840800
## iter 280 value 393.720188
## iter 290 value 393.464480
## iter 300 value 392.861651
## iter 310 value 389.984135
## iter 320 value 385.941442
## iter 330 value 382.951415
## iter 340 value 382.118837
## iter 350 value 381.935076
## iter 360 value 378.082553
## iter 370 value 336.368868
## iter 380 value 248.900856
## iter 390 value 181.424594
## final  value 167.995812 
## stopped after 398 iterations
## INFO  [10:30:57.316] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  71
## initial  value 79692.818924 
## iter  10 value 1672.410155
## iter  20 value 686.666675
## iter  30 value 511.244757
## iter  40 value 391.613209
## iter  50 value 272.761107
## iter  60 value 179.925472
## iter  70 value 125.858289
## iter  80 value 100.990610
## iter  90 value 90.628818
## iter 100 value 80.578075
## iter 110 value 55.699585
## iter 120 value 46.451654
## iter 130 value 38.765973
## iter 140 value 33.235737
## iter 150 value 29.994578
## iter 160 value 27.810849
## iter 170 value 25.695031
## iter 180 value 24.671171
## iter 190 value 23.952349
## iter 200 value 23.347505
## iter 210 value 21.812759
## iter 220 value 20.988355
## iter 230 value 20.240658
## iter 240 value 17.579602
## iter 250 value 13.239962
## iter 260 value 10.240711
## iter 270 value 9.260486
## iter 280 value 8.831439
## iter 290 value 8.070845
## iter 300 value 7.882097
## iter 310 value 7.229528
## iter 320 value 6.472812
## iter 330 value 5.310892
## iter 340 value 4.270179
## iter 350 value 3.787786
## iter 360 value 3.579389
## iter 370 value 3.268852
## iter 380 value 3.114250
## iter 390 value 2.862031
## final  value 2.686088 
## stopped after 398 iterations
## INFO  [10:30:57.336] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  71
## initial  value 82423.814559 
## iter  10 value 1553.694541
## iter  20 value 1252.436680
## iter  30 value 865.402474
## iter  40 value 535.124332
## iter  50 value 330.627018
## iter  60 value 279.909505
## iter  70 value 269.395122
## iter  80 value 265.845929
## iter  90 value 256.943671
## iter 100 value 253.336241
## iter 110 value 247.917167
## iter 120 value 246.990003
## iter 130 value 245.666267
## iter 140 value 241.965930
## iter 150 value 238.403730
## iter 160 value 234.290994
## iter 170 value 231.717509
## iter 180 value 229.976839
## iter 190 value 224.949980
## iter 200 value 218.436556
## iter 210 value 215.315513
## iter 220 value 182.176979
## iter 230 value 128.988478
## iter 240 value 113.762475
## iter 250 value 109.203478
## iter 260 value 105.387234
## iter 270 value 104.469057
## iter 280 value 103.358602
## iter 290 value 97.918333
## iter 300 value 89.575296
## iter 310 value 88.872089
## iter 320 value 86.705815
## iter 330 value 85.456180
## iter 340 value 85.045419
## iter 350 value 83.961213
## iter 360 value 83.375980
## iter 370 value 83.088606
## iter 380 value 82.402144
## iter 390 value 82.035743
## final  value 81.802906 
## stopped after 398 iterations
## INFO  [10:30:57.351] [mlr3] Finished benchmark
## INFO  [10:30:57.363] [bbotk] Result of batch 15:
## INFO  [10:30:57.363] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:57.363] [bbotk]    10   398 6.479318e-05  9.702574        0      0            0.035
## INFO  [10:30:57.363] [bbotk]                                 uhash
## INFO  [10:30:57.363] [bbotk]  f2f11ad6-6d8d-4218-aea8-08f7c4c653d4
## INFO  [10:30:57.365] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:57.372] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:57.375] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  8
## initial  value 73570.810409 
## final  value 7197.712373 
## converged
## INFO  [10:30:57.382] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  8
## initial  value 78900.544140 
## final  value 6909.938251 
## converged
## INFO  [10:30:57.388] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  8
## initial  value 78067.849624 
## iter  10 value 4980.681789
## iter  20 value 1511.327361
## iter  30 value 1303.750128
## iter  40 value 1208.332171
## iter  50 value 1172.497683
## iter  60 value 1154.669466
## iter  70 value 1152.715539
## iter  80 value 1150.336715
## iter  90 value 1150.131578
## iter 100 value 1149.588766
## iter 110 value 1149.409768
## iter 120 value 1149.327178
## iter 130 value 1149.235059
## iter 140 value 1149.188736
## iter 150 value 1149.094360
## final  value 1149.093168 
## stopped after 154 iterations
## INFO  [10:30:57.395] [mlr3] Finished benchmark
## INFO  [10:30:57.406] [bbotk] Result of batch 16:
## INFO  [10:30:57.407] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:57.407] [bbotk]     1   154 4.650919e-05  9.486234        0      0            0.007
## INFO  [10:30:57.407] [bbotk]                                 uhash
## INFO  [10:30:57.407] [bbotk]  0f15f5e7-3fa5-4e60-8fdd-3bbffefe4456
## INFO  [10:30:57.408] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:57.418] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:57.422] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  43
## initial  value 73387.402662 
## iter  10 value 1048.867719
## iter  20 value 575.452365
## iter  30 value 331.703500
## iter  40 value 195.069454
## iter  50 value 123.966759
## iter  60 value 87.267600
## iter  70 value 73.279012
## iter  80 value 71.108013
## iter  90 value 70.318840
## iter 100 value 69.686243
## iter 110 value 68.662379
## iter 120 value 66.515661
## iter 130 value 58.023832
## iter 140 value 53.440810
## iter 150 value 45.740036
## iter 160 value 38.682778
## iter 170 value 35.770153
## iter 180 value 34.663220
## final  value 34.618217 
## stopped after 182 iterations
## INFO  [10:30:57.433] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  43
## initial  value 77969.155266 
## iter  10 value 1565.996194
## iter  20 value 918.226744
## iter  30 value 700.714093
## iter  40 value 646.662129
## iter  50 value 553.588542
## iter  60 value 358.090280
## iter  70 value 353.845503
## iter  80 value 346.359660
## iter  90 value 344.549573
## iter 100 value 344.311569
## iter 110 value 344.257939
## iter 120 value 344.000255
## iter 130 value 343.394936
## iter 140 value 340.928373
## iter 150 value 329.138710
## iter 160 value 303.190271
## iter 170 value 243.916635
## iter 180 value 175.361090
## final  value 163.105567 
## stopped after 182 iterations
## INFO  [10:30:57.442] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  43
## initial  value 77608.354310 
## iter  10 value 2471.223257
## iter  20 value 928.897923
## iter  30 value 650.199822
## iter  40 value 572.640623
## iter  50 value 537.507206
## iter  60 value 419.467479
## iter  70 value 346.642934
## iter  80 value 330.956087
## iter  90 value 323.361536
## iter 100 value 313.742073
## iter 110 value 310.796327
## iter 120 value 308.861552
## iter 130 value 307.818515
## iter 140 value 298.034181
## iter 150 value 229.448375
## iter 160 value 201.003467
## iter 170 value 186.703081
## iter 180 value 183.029127
## final  value 181.941272 
## stopped after 182 iterations
## INFO  [10:30:57.451] [mlr3] Finished benchmark
## INFO  [10:30:57.462] [bbotk] Result of batch 17:
## INFO  [10:30:57.463] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:57.463] [bbotk]     6   182 9.137956e-05  9.626471        0      0            0.013
## INFO  [10:30:57.463] [bbotk]                                 uhash
## INFO  [10:30:57.463] [bbotk]  f0671efa-16a4-4f80-a7d0-7ce5c0fe11ee
## INFO  [10:30:57.465] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:57.471] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:57.474] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  57
## initial  value 76671.719223 
## iter  10 value 1117.599522
## iter  20 value 628.417805
## iter  30 value 310.914677
## iter  40 value 167.717744
## iter  50 value 131.775626
## iter  60 value 114.908168
## iter  70 value 85.981185
## iter  80 value 68.698864
## iter  90 value 56.997935
## iter 100 value 39.972120
## iter 110 value 33.805849
## iter 120 value 31.892576
## iter 130 value 31.265795
## iter 140 value 29.169146
## iter 150 value 27.815320
## iter 160 value 26.937108
## iter 170 value 26.634376
## iter 180 value 26.505239
## iter 190 value 26.452871
## iter 200 value 26.442106
## iter 210 value 26.397309
## final  value 26.391601 
## stopped after 214 iterations
## INFO  [10:30:57.589] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  57
## initial  value 80815.035685 
## iter  10 value 2946.912171
## iter  20 value 995.709936
## iter  30 value 684.277525
## iter  40 value 354.409819
## iter  50 value 263.131573
## iter  60 value 164.059133
## iter  70 value 133.157154
## iter  80 value 112.268338
## iter  90 value 104.102458
## iter 100 value 99.417940
## iter 110 value 95.430541
## iter 120 value 93.373129
## iter 130 value 90.536574
## iter 140 value 78.752017
## iter 150 value 60.889484
## iter 160 value 55.264074
## iter 170 value 53.530242
## iter 180 value 52.030134
## iter 190 value 50.965025
## iter 200 value 50.149327
## iter 210 value 49.759779
## final  value 49.703695 
## stopped after 214 iterations
## INFO  [10:30:57.599] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  57
## initial  value 78869.604771 
## iter  10 value 4167.445153
## iter  20 value 2280.242178
## iter  30 value 1228.881501
## iter  40 value 986.569187
## iter  50 value 919.926563
## iter  60 value 801.483312
## iter  70 value 775.176342
## iter  80 value 774.460446
## iter  90 value 768.314458
## iter 100 value 759.175289
## iter 110 value 719.586830
## iter 120 value 690.490501
## iter 130 value 689.355992
## iter 140 value 678.237200
## iter 150 value 674.026863
## iter 160 value 670.671052
## iter 170 value 601.291906
## iter 180 value 552.354706
## iter 190 value 501.311309
## iter 200 value 442.632746
## iter 210 value 431.902336
## final  value 428.657622 
## stopped after 214 iterations
## INFO  [10:30:57.608] [mlr3] Finished benchmark
## INFO  [10:30:57.619] [bbotk] Result of batch 18:
## INFO  [10:30:57.620] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:57.620] [bbotk]     8   214 1.671782e-05  9.221697        0      0            0.118
## INFO  [10:30:57.620] [bbotk]                                 uhash
## INFO  [10:30:57.620] [bbotk]  5e8f7687-9e40-46df-86f3-214e1c8b9812
## INFO  [10:30:57.622] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:57.628] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:57.631] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  15
## initial  value 76760.594099 
## iter  10 value 2811.570072
## iter  20 value 1627.767614
## iter  30 value 946.162184
## iter  40 value 562.962210
## iter  50 value 483.694937
## iter  60 value 477.893554
## iter  70 value 477.111964
## iter  80 value 472.743552
## iter  90 value 472.104773
## iter 100 value 467.486539
## iter 110 value 466.359741
## iter 120 value 465.861321
## iter 130 value 463.340029
## iter 140 value 463.174134
## iter 150 value 463.169126
## final  value 463.168501 
## converged
## INFO  [10:30:57.639] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  15
## initial  value 79435.001724 
## iter  10 value 5311.306560
## iter  20 value 1656.687779
## iter  30 value 1081.478689
## iter  40 value 916.870576
## iter  50 value 892.846149
## iter  60 value 890.275660
## iter  70 value 890.240482
## iter  80 value 890.226755
## iter  90 value 888.953011
## iter 100 value 882.989992
## iter 110 value 665.184068
## iter 120 value 422.856789
## iter 130 value 392.880687
## iter 140 value 372.311256
## iter 150 value 345.825932
## iter 160 value 343.441071
## iter 170 value 343.425550
## iter 180 value 343.024272
## iter 190 value 342.992980
## final  value 342.992925 
## converged
## INFO  [10:30:57.647] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  15
## initial  value 79077.414540 
## iter  10 value 3002.127587
## iter  20 value 1553.569881
## iter  30 value 1315.798083
## iter  40 value 1214.946682
## iter  50 value 1162.460249
## iter  60 value 1152.658982
## iter  70 value 1151.584338
## iter  80 value 1150.093858
## iter  90 value 1141.454776
## iter 100 value 1114.650318
## iter 110 value 957.367635
## iter 120 value 768.116781
## iter 130 value 726.635979
## iter 140 value 692.693313
## iter 150 value 665.783011
## iter 160 value 645.407659
## iter 170 value 590.268386
## iter 180 value 582.854858
## iter 190 value 582.502485
## iter 200 value 582.301130
## iter 210 value 575.403695
## iter 220 value 563.598443
## iter 230 value 547.644641
## iter 240 value 524.464217
## iter 250 value 518.695660
## iter 260 value 517.064326
## iter 270 value 515.990403
## final  value 515.988431 
## converged
## INFO  [10:30:57.655] [mlr3] Finished benchmark
## INFO  [10:30:57.665] [bbotk] Result of batch 19:
## INFO  [10:30:57.666] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:57.666] [bbotk]     2   401 3.894598e-05  7.049084        0      0            0.011
## INFO  [10:30:57.666] [bbotk]                                 uhash
## INFO  [10:30:57.666] [bbotk]  543a8bce-8b50-43ca-a0f5-76a1e2748dcf
## INFO  [10:30:57.668] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:57.674] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:57.677] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  50
## initial  value 74769.584354 
## iter  10 value 7154.737969
## iter  20 value 2445.579532
## iter  30 value 1441.542005
## iter  40 value 1435.951390
## iter  50 value 1272.916537
## iter  60 value 1222.598912
## iter  70 value 1220.050064
## iter  80 value 1219.757425
## iter  90 value 1218.668535
## iter 100 value 1137.154432
## iter 110 value 740.694393
## iter 120 value 528.788857
## iter 130 value 453.938759
## iter 140 value 434.137767
## iter 150 value 426.038263
## iter 160 value 423.063365
## iter 170 value 420.386689
## iter 180 value 415.636237
## iter 190 value 414.827198
## iter 200 value 414.230744
## iter 210 value 413.737175
## iter 220 value 411.153248
## iter 230 value 367.414900
## iter 240 value 316.481534
## iter 250 value 226.632420
## iter 260 value 189.995516
## iter 270 value 174.990846
## iter 280 value 172.010777
## iter 290 value 168.905560
## iter 300 value 167.922783
## iter 310 value 167.246190
## iter 320 value 159.758933
## iter 330 value 151.127157
## iter 340 value 147.864561
## iter 350 value 138.340373
## final  value 133.829139 
## stopped after 356 iterations
## INFO  [10:30:57.689] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  50
## initial  value 77992.048004 
## iter  10 value 1403.110419
## iter  20 value 709.121812
## iter  30 value 613.659677
## iter  40 value 603.682959
## iter  50 value 521.217446
## iter  60 value 496.184751
## iter  70 value 489.997162
## iter  80 value 489.566321
## iter  90 value 488.820943
## iter 100 value 488.431693
## iter 110 value 487.924915
## iter 120 value 487.754773
## iter 130 value 487.088657
## iter 140 value 482.716324
## iter 150 value 342.378491
## iter 160 value 290.143233
## iter 170 value 285.597604
## iter 180 value 279.460906
## iter 190 value 277.400238
## iter 200 value 264.017996
## iter 210 value 242.613851
## iter 220 value 217.864870
## iter 230 value 130.914514
## iter 240 value 124.622395
## iter 250 value 121.386902
## iter 260 value 118.022398
## iter 270 value 113.625880
## iter 280 value 110.389145
## iter 290 value 105.543532
## iter 300 value 99.260523
## iter 310 value 97.550996
## iter 320 value 96.417480
## iter 330 value 95.304381
## iter 340 value 90.545931
## iter 350 value 83.232409
## final  value 82.391317 
## stopped after 356 iterations
## INFO  [10:30:57.701] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  50
## initial  value 80229.167053 
## iter  10 value 4309.665790
## iter  20 value 1836.406407
## iter  30 value 1391.051901
## iter  40 value 1283.924151
## iter  50 value 1042.680109
## iter  60 value 884.427880
## iter  70 value 772.176947
## iter  80 value 499.724404
## iter  90 value 407.801002
## iter 100 value 352.676051
## iter 110 value 323.472276
## iter 120 value 320.703117
## iter 130 value 313.530453
## iter 140 value 291.502663
## iter 150 value 275.180731
## iter 160 value 272.664380
## iter 170 value 272.012693
## iter 180 value 271.510720
## iter 190 value 264.511666
## iter 200 value 264.316092
## iter 210 value 263.962265
## iter 220 value 263.618421
## iter 230 value 263.577957
## iter 240 value 263.251268
## iter 250 value 260.956740
## iter 260 value 258.890783
## iter 270 value 256.128674
## iter 280 value 255.576960
## iter 290 value 255.382028
## iter 300 value 255.233217
## iter 310 value 255.132508
## iter 320 value 255.053454
## iter 330 value 255.049940
## iter 340 value 255.013235
## iter 350 value 254.984665
## final  value 254.973058 
## stopped after 356 iterations
## INFO  [10:30:57.712] [mlr3] Finished benchmark
## INFO  [10:30:57.727] [bbotk] Result of batch 20:
## INFO  [10:30:57.728] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:57.728] [bbotk]     7   356 6.275318e-05  8.013516        0      0            0.024
## INFO  [10:30:57.728] [bbotk]                                 uhash
## INFO  [10:30:57.728] [bbotk]  b7f2f68f-6f90-499d-ba0c-8d6e4745af21
## INFO  [10:30:57.731] [bbotk] Finished optimizing after 20 evaluation(s)
## INFO  [10:30:57.731] [bbotk] Result:
## INFO  [10:30:57.732] [bbotk]  size maxit        decay learner_param_vals  x_domain regr.rmse
## INFO  [10:30:57.732] [bbotk]     2   373 4.830053e-05          <list[3]> <list[3]>   6.57438
## # weights:  15
## initial  value 116212.339840 
## iter  10 value 4902.785291
## iter  20 value 3711.445889
## iter  30 value 3380.499091
## iter  40 value 3212.678720
## iter  50 value 2264.001327
## iter  60 value 1934.313451
## iter  70 value 1856.448221
## iter  80 value 1839.780642
## iter  90 value 1838.441911
## iter 100 value 1838.402974
## iter 110 value 1838.382460
## final  value 1838.372844 
## converged
## INFO  [10:30:57.746] [mlr3] Applying learner 'regr.nnet.tuned' on task 'cereal' (iter 5/5)
## INFO  [10:30:57.763] [bbotk] Starting to optimize 3 parameter(s) with '<OptimizerRandomSearch>' and '<TerminatorEvals> [n_evals=20, k=0]'
## INFO  [10:30:57.769] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:57.776] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:57.778] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  15
## initial  value 83085.077476 
## iter  10 value 3031.788380
## iter  20 value 2754.876216
## iter  30 value 2728.488398
## iter  40 value 2183.840115
## iter  50 value 1468.348063
## iter  60 value 1149.507298
## final  value 1134.357170 
## stopped after 62 iterations
## INFO  [10:30:57.785] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  15
## initial  value 80481.959420 
## iter  10 value 2677.918486
## iter  20 value 1058.904624
## iter  30 value 1029.627808
## iter  40 value 1024.827850
## iter  50 value 1014.751736
## iter  60 value 1012.260708
## final  value 1011.967571 
## stopped after 62 iterations
## INFO  [10:30:57.792] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  15
## initial  value 93064.683669 
## iter  10 value 2521.613905
## iter  20 value 1495.920745
## iter  30 value 1462.361865
## iter  40 value 1450.389402
## iter  50 value 1449.889206
## final  value 1449.887339 
## converged
## INFO  [10:30:57.798] [mlr3] Finished benchmark
## INFO  [10:30:57.808] [bbotk] Result of batch 1:
## INFO  [10:30:57.809] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:57.809] [bbotk]     2    62 1.299817e-05  6.434725        0      0            0.007
## INFO  [10:30:57.809] [bbotk]                                 uhash
## INFO  [10:30:57.809] [bbotk]  cd51d347-7d3e-436e-8874-650c37742cac
## INFO  [10:30:57.811] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:57.817] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:57.820] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  64
## initial  value 79176.876437 
## iter  10 value 2135.519636
## iter  20 value 905.222686
## iter  30 value 442.649698
## iter  40 value 369.555536
## iter  50 value 344.782822
## iter  60 value 327.173642
## iter  70 value 315.108758
## iter  80 value 300.862345
## iter  90 value 298.575786
## iter 100 value 291.802470
## iter 110 value 281.105673
## iter 120 value 279.740018
## final  value 279.447658 
## stopped after 126 iterations
## INFO  [10:30:57.839] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  64
## initial  value 85255.612804 
## iter  10 value 1231.550151
## iter  20 value 665.056132
## iter  30 value 534.628944
## iter  40 value 422.756256
## iter  50 value 315.647364
## iter  60 value 257.818073
## iter  70 value 160.710945
## iter  80 value 100.811839
## iter  90 value 69.255248
## iter 100 value 55.559496
## iter 110 value 45.256582
## iter 120 value 33.642594
## final  value 28.076886 
## stopped after 126 iterations
## INFO  [10:30:57.848] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  64
## initial  value 89052.384262 
## iter  10 value 1475.873324
## iter  20 value 813.410887
## iter  30 value 621.978469
## iter  40 value 560.694703
## iter  50 value 552.971654
## iter  60 value 551.752624
## iter  70 value 551.033427
## iter  80 value 550.784969
## iter  90 value 523.295033
## iter 100 value 512.103230
## iter 110 value 510.653664
## iter 120 value 510.271012
## final  value 509.760509 
## stopped after 126 iterations
## INFO  [10:30:57.857] [mlr3] Finished benchmark
## INFO  [10:30:57.867] [bbotk] Result of batch 2:
## INFO  [10:30:57.868] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:57.868] [bbotk]     9   126 5.910645e-05  9.295543        0      0            0.011
## INFO  [10:30:57.868] [bbotk]                                 uhash
## INFO  [10:30:57.868] [bbotk]  c46a7f63-551b-437d-9a91-409504058bd7
## INFO  [10:30:57.870] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:57.876] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:57.879] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  50
## initial  value 82851.815776 
## iter  10 value 2427.008893
## iter  20 value 1941.800317
## iter  30 value 1371.860984
## iter  40 value 999.803708
## iter  50 value 664.484474
## iter  60 value 529.288577
## iter  70 value 519.736066
## iter  80 value 514.066099
## iter  90 value 509.919764
## iter 100 value 508.131588
## iter 110 value 507.739739
## iter 120 value 507.076019
## iter 130 value 506.734015
## iter 140 value 506.719786
## iter 150 value 506.469881
## iter 160 value 506.327595
## iter 170 value 497.276104
## iter 180 value 426.107668
## iter 190 value 378.378649
## iter 200 value 342.743280
## iter 210 value 274.390960
## iter 220 value 264.611281
## iter 230 value 261.666456
## iter 240 value 261.296563
## iter 250 value 259.419720
## iter 260 value 256.419176
## iter 270 value 255.678283
## iter 280 value 253.858208
## iter 290 value 234.217247
## iter 300 value 224.781510
## iter 310 value 206.544177
## iter 320 value 179.966789
## iter 330 value 168.241333
## iter 340 value 167.419135
## iter 350 value 166.558991
## iter 360 value 164.576753
## iter 370 value 158.051002
## iter 380 value 155.811985
## final  value 154.787705 
## stopped after 385 iterations
## INFO  [10:30:57.891] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  50
## initial  value 83914.132562 
## iter  10 value 2501.634782
## iter  20 value 1029.441274
## iter  30 value 1018.512320
## iter  40 value 1014.078751
## iter  50 value 1013.134887
## iter  60 value 1012.874428
## iter  70 value 1012.488386
## iter  80 value 998.485956
## iter  90 value 846.915181
## iter 100 value 720.715089
## iter 110 value 601.186668
## iter 120 value 541.722892
## iter 130 value 521.816921
## iter 140 value 518.980504
## iter 150 value 518.091241
## iter 160 value 517.175711
## iter 170 value 516.604823
## iter 180 value 515.918929
## iter 190 value 515.691914
## iter 200 value 509.505593
## iter 210 value 486.283631
## iter 220 value 360.054477
## iter 230 value 295.523147
## iter 240 value 278.790138
## iter 250 value 262.120887
## iter 260 value 249.087525
## iter 270 value 242.162386
## iter 280 value 239.425798
## iter 290 value 238.198187
## iter 300 value 237.841253
## iter 310 value 237.097991
## iter 320 value 237.042165
## iter 330 value 236.889576
## iter 340 value 236.562134
## iter 350 value 236.064088
## iter 360 value 236.027216
## iter 370 value 234.749049
## iter 380 value 229.791031
## final  value 228.103805 
## stopped after 385 iterations
## INFO  [10:30:57.904] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  50
## initial  value 92870.571610 
## iter  10 value 3513.952667
## iter  20 value 1873.011065
## iter  30 value 1709.531614
## iter  40 value 1288.922475
## iter  50 value 928.410459
## iter  60 value 898.135573
## iter  70 value 885.585187
## iter  80 value 875.687035
## iter  90 value 833.572634
## iter 100 value 589.244041
## iter 110 value 557.892832
## iter 120 value 529.384023
## iter 130 value 522.879371
## iter 140 value 515.277426
## iter 150 value 512.842698
## iter 160 value 511.691843
## iter 170 value 511.569958
## iter 180 value 511.023592
## iter 190 value 510.996830
## iter 200 value 510.476516
## iter 210 value 508.212566
## iter 220 value 494.238120
## iter 230 value 477.721250
## iter 240 value 471.808881
## iter 250 value 443.494951
## iter 260 value 433.018420
## iter 270 value 432.614599
## iter 280 value 428.763486
## iter 290 value 422.040828
## iter 300 value 315.266751
## iter 310 value 268.217008
## iter 320 value 254.831666
## iter 330 value 206.450435
## iter 340 value 175.521008
## iter 350 value 168.054449
## iter 360 value 166.860215
## iter 370 value 164.313878
## iter 380 value 162.497127
## final  value 162.403116 
## stopped after 385 iterations
## INFO  [10:30:57.916] [mlr3] Finished benchmark
## INFO  [10:30:57.927] [bbotk] Result of batch 3:
## INFO  [10:30:57.928] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:57.928] [bbotk]     7   385 9.508889e-05  13.53424        0      0            0.025
## INFO  [10:30:57.928] [bbotk]                                 uhash
## INFO  [10:30:57.928] [bbotk]  2515842e-da8d-4267-b343-f0eab52bdddf
## INFO  [10:30:57.929] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:57.936] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:57.938] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  8
## initial  value 80935.954379 
## final  value 9170.979203 
## converged
## INFO  [10:30:57.945] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  8
## initial  value 82630.578648 
## final  value 6343.932271 
## converged
## INFO  [10:30:57.952] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  8
## initial  value 94443.643625 
## iter  10 value 5906.722812
## iter  20 value 2942.516253
## iter  30 value 2834.641018
## iter  40 value 2592.532102
## iter  50 value 1976.317428
## iter  60 value 1670.269108
## iter  70 value 1460.766664
## iter  80 value 1453.229093
## iter  90 value 1449.800759
## final  value 1449.799161 
## converged
## INFO  [10:30:57.958] [mlr3] Finished benchmark
## INFO  [10:30:57.970] [bbotk] Result of batch 4:
## INFO  [10:30:57.970] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:57.970] [bbotk]     1   418 6.998396e-06  11.53957        0      0            0.007
## INFO  [10:30:57.970] [bbotk]                                 uhash
## INFO  [10:30:57.970] [bbotk]  63623ab0-49a7-416c-8ebe-2e29af36f3f4
## INFO  [10:30:57.976] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:57.982] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:57.985] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  15
## initial  value 81152.990761 
## iter  10 value 2233.970107
## iter  20 value 1865.508424
## iter  30 value 1863.347020
## iter  40 value 1581.579065
## iter  50 value 1272.688235
## iter  60 value 1240.974399
## iter  70 value 1204.681029
## iter  80 value 1158.034227
## iter  90 value 1144.389230
## iter 100 value 1079.234370
## iter 110 value 706.173037
## iter 120 value 634.020444
## iter 130 value 612.293115
## iter 140 value 577.082736
## iter 150 value 572.467892
## iter 160 value 570.943534
## iter 170 value 569.703753
## iter 180 value 565.178858
## iter 190 value 564.590557
## iter 200 value 564.517777
## iter 210 value 564.514014
## iter 220 value 564.455144
## iter 230 value 564.330105
## iter 240 value 563.796044
## iter 250 value 563.665865
## iter 260 value 562.265473
## iter 270 value 537.898467
## iter 280 value 506.807507
## iter 290 value 505.496923
## iter 300 value 503.842627
## iter 310 value 500.832411
## iter 320 value 500.375541
## final  value 500.311543 
## stopped after 328 iterations
## INFO  [10:30:57.994] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  15
## initial  value 82729.255932 
## iter  10 value 6341.759758
## iter  20 value 1198.840519
## iter  30 value 1035.797671
## iter  40 value 1017.996309
## iter  50 value 975.355250
## iter  60 value 788.617333
## iter  70 value 719.811212
## iter  80 value 657.224883
## iter  90 value 637.068567
## iter 100 value 626.080260
## iter 110 value 601.611604
## iter 120 value 559.536263
## iter 130 value 558.979584
## iter 140 value 558.953196
## iter 150 value 558.828092
## iter 160 value 558.821671
## iter 170 value 558.777501
## final  value 558.774641 
## converged
## INFO  [10:30:58.002] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  15
## initial  value 91914.228109 
## iter  10 value 9265.354834
## iter  20 value 5973.638988
## iter  30 value 2167.638240
## iter  40 value 1753.275049
## iter  50 value 1500.986400
## iter  60 value 1402.456312
## iter  70 value 984.539008
## iter  80 value 964.292779
## iter  90 value 962.698413
## iter 100 value 925.055995
## iter 110 value 924.350479
## iter 120 value 924.339903
## iter 130 value 924.337337
## final  value 924.337273 
## converged
## INFO  [10:30:58.009] [mlr3] Finished benchmark
## INFO  [10:30:58.019] [bbotk] Result of batch 5:
## INFO  [10:30:58.020] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:58.020] [bbotk]     2   328 4.676914e-05  8.162926        0      0             0.01
## INFO  [10:30:58.020] [bbotk]                                 uhash
## INFO  [10:30:58.020] [bbotk]  59f05a5b-9eec-428f-b14e-507954ab1a27
## INFO  [10:30:58.022] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:58.028] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:58.031] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  64
## initial  value 84888.770675 
## final  value 9171.964530 
## converged
## INFO  [10:30:58.037] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  64
## initial  value 77103.688980 
## iter  10 value 1249.573193
## iter  20 value 554.281542
## iter  30 value 380.962827
## iter  40 value 257.979286
## iter  50 value 150.860021
## iter  60 value 98.978247
## iter  70 value 72.234499
## iter  80 value 56.619634
## iter  90 value 48.597895
## iter 100 value 32.391883
## iter 110 value 24.448233
## iter 120 value 17.571349
## iter 130 value 13.699653
## iter 140 value 13.275343
## iter 150 value 12.525723
## iter 160 value 10.733161
## iter 170 value 7.296750
## iter 180 value 5.443207
## iter 190 value 4.680034
## iter 200 value 4.111229
## iter 210 value 3.697935
## iter 220 value 3.562641
## iter 230 value 3.435893
## iter 240 value 3.188930
## iter 250 value 2.745083
## iter 260 value 2.473560
## iter 270 value 2.434816
## iter 280 value 2.390375
## iter 290 value 2.344311
## iter 300 value 2.293808
## iter 310 value 2.243316
## final  value 2.106220 
## stopped after 319 iterations
## INFO  [10:30:58.051] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  64
## initial  value 94200.697069 
## iter  10 value 1269.671750
## iter  20 value 672.175816
## iter  30 value 556.162088
## iter  40 value 517.007382
## iter  50 value 481.351525
## iter  60 value 433.263375
## iter  70 value 398.815602
## iter  80 value 390.044579
## iter  90 value 365.026276
## iter 100 value 331.786420
## iter 110 value 321.726957
## iter 120 value 320.188740
## iter 130 value 316.725824
## iter 140 value 314.916136
## iter 150 value 296.847433
## iter 160 value 284.472630
## iter 170 value 276.211758
## iter 180 value 274.460865
## iter 190 value 269.613519
## iter 200 value 261.442394
## iter 210 value 193.580230
## iter 220 value 184.443284
## iter 230 value 182.909336
## iter 240 value 179.433158
## iter 250 value 177.730787
## iter 260 value 176.595522
## iter 270 value 176.481095
## iter 280 value 176.395300
## iter 290 value 176.378570
## iter 300 value 176.287339
## iter 310 value 176.135778
## final  value 176.014552 
## stopped after 319 iterations
## INFO  [10:30:58.062] [mlr3] Finished benchmark
## INFO  [10:30:58.073] [bbotk] Result of batch 6:
## INFO  [10:30:58.074] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:58.074] [bbotk]     9   319 3.739961e-05  13.10578        0      0            0.017
## INFO  [10:30:58.074] [bbotk]                                 uhash
## INFO  [10:30:58.074] [bbotk]  02c6053c-554a-48ca-838a-de77071e939c
## INFO  [10:30:58.076] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:58.083] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:58.085] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  43
## initial  value 80058.733362 
## iter  10 value 7265.869028
## iter  20 value 1065.148336
## iter  30 value 723.647600
## iter  40 value 548.307665
## iter  50 value 420.977436
## iter  60 value 382.425648
## iter  70 value 378.413316
## iter  80 value 378.016100
## iter  90 value 377.937898
## iter 100 value 377.606890
## iter 110 value 376.533087
## final  value 376.515622 
## stopped after 113 iterations
## INFO  [10:30:58.093] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  43
## initial  value 83225.910073 
## iter  10 value 2958.401836
## iter  20 value 1129.685175
## iter  30 value 839.179196
## iter  40 value 648.140216
## iter  50 value 589.595917
## iter  60 value 572.373824
## iter  70 value 513.232618
## iter  80 value 448.013850
## iter  90 value 421.126301
## iter 100 value 391.872262
## iter 110 value 355.061726
## final  value 350.080451 
## stopped after 113 iterations
## INFO  [10:30:58.105] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  43
## initial  value 88621.145725 
## iter  10 value 5371.005162
## iter  20 value 1828.253879
## iter  30 value 1498.765544
## iter  40 value 1454.194465
## iter  50 value 1451.033467
## iter  60 value 1450.975576
## iter  70 value 1450.199830
## iter  80 value 1443.295451
## iter  90 value 1407.845675
## iter 100 value 1276.570586
## iter 110 value 1069.506948
## final  value 1025.744681 
## stopped after 113 iterations
## INFO  [10:30:58.113] [mlr3] Finished benchmark
## INFO  [10:30:58.123] [bbotk] Result of batch 7:
## INFO  [10:30:58.124] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:58.124] [bbotk]     6   113 4.914075e-05  7.095884        0      0            0.009
## INFO  [10:30:58.124] [bbotk]                                 uhash
## INFO  [10:30:58.124] [bbotk]  55254817-f5b5-45e4-aa4d-cef3e1e43340
## INFO  [10:30:58.126] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:58.132] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:58.135] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  64
## initial  value 85583.578147 
## iter  10 value 9439.287480
## iter  20 value 1978.870291
## iter  30 value 534.037484
## iter  40 value 337.458587
## iter  50 value 264.177388
## iter  60 value 234.586996
## iter  70 value 210.871278
## iter  80 value 190.602324
## iter  90 value 174.050711
## iter 100 value 167.459687
## iter 110 value 152.612594
## iter 120 value 135.574010
## iter 130 value 130.116122
## iter 140 value 128.126803
## iter 150 value 105.304816
## iter 160 value 88.461834
## final  value 88.461834 
## stopped after 160 iterations
## INFO  [10:30:58.145] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  64
## initial  value 79865.628382 
## iter  10 value 2650.254907
## iter  20 value 1360.112036
## iter  30 value 927.536563
## iter  40 value 619.441049
## iter  50 value 415.982188
## iter  60 value 372.364828
## iter  70 value 361.336730
## iter  80 value 351.635448
## iter  90 value 309.886998
## iter 100 value 289.908508
## iter 110 value 286.474517
## iter 120 value 282.744503
## iter 130 value 274.291746
## iter 140 value 266.603869
## iter 150 value 251.040251
## iter 160 value 244.412871
## final  value 244.412871 
## stopped after 160 iterations
## INFO  [10:30:58.154] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  64
## initial  value 96313.217607 
## iter  10 value 4093.661756
## iter  20 value 2055.304473
## iter  30 value 1362.087226
## iter  40 value 1244.428279
## iter  50 value 913.901405
## iter  60 value 777.751831
## iter  70 value 707.153368
## iter  80 value 702.462881
## iter  90 value 697.906649
## iter 100 value 695.422729
## iter 110 value 695.411706
## iter 120 value 695.215349
## iter 130 value 695.144798
## iter 140 value 695.133249
## iter 150 value 694.552419
## iter 160 value 687.962670
## final  value 687.962670 
## stopped after 160 iterations
## INFO  [10:30:58.163] [mlr3] Finished benchmark
## INFO  [10:30:58.174] [bbotk] Result of batch 8:
## INFO  [10:30:58.175] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:58.175] [bbotk]     9   160 1.586458e-05  10.05934        0      0            0.016
## INFO  [10:30:58.175] [bbotk]                                 uhash
## INFO  [10:30:58.175] [bbotk]  840133b2-f0a4-4df3-8595-9cc71dd6a9a1
## INFO  [10:30:58.177] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:58.184] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:58.186] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  50
## initial  value 81854.956286 
## iter  10 value 3441.243815
## iter  20 value 2025.853360
## iter  30 value 1705.623000
## iter  40 value 1210.412448
## iter  50 value 1119.506058
## iter  60 value 1104.357786
## iter  70 value 1102.267749
## iter  80 value 1102.073905
## iter  90 value 1101.490671
## iter 100 value 1101.484255
## iter 100 value 1101.484248
## final  value 1101.484173 
## converged
## INFO  [10:30:58.195] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  50
## initial  value 77519.552539 
## iter  10 value 971.398890
## iter  20 value 461.730613
## iter  30 value 340.650305
## iter  40 value 285.975664
## iter  50 value 275.258106
## iter  60 value 272.733784
## iter  70 value 268.035696
## iter  80 value 266.097605
## iter  90 value 264.566735
## iter 100 value 262.936745
## iter 110 value 262.587945
## iter 120 value 261.718314
## iter 130 value 255.516875
## iter 140 value 228.215447
## iter 150 value 214.975204
## iter 160 value 205.089303
## iter 170 value 187.127273
## iter 180 value 169.341094
## iter 190 value 163.139088
## iter 200 value 159.431693
## iter 210 value 158.941087
## iter 220 value 158.898480
## iter 230 value 158.613962
## iter 240 value 158.406905
## iter 250 value 158.209253
## iter 260 value 157.946905
## iter 270 value 157.696131
## iter 280 value 157.515381
## iter 290 value 157.332942
## iter 300 value 156.909241
## iter 310 value 156.594101
## iter 320 value 156.493194
## iter 330 value 156.407409
## iter 340 value 156.214013
## iter 350 value 156.083265
## iter 360 value 155.993967
## iter 370 value 155.931973
## iter 380 value 155.888490
## iter 390 value 155.821365
## iter 400 value 155.695080
## iter 410 value 155.646839
## iter 420 value 155.591171
## final  value 155.478711 
## stopped after 427 iterations
## INFO  [10:30:58.208] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  50
## initial  value 92835.487492 
## iter  10 value 3102.546495
## iter  20 value 1728.849476
## iter  30 value 1353.935328
## iter  40 value 1348.900604
## iter  50 value 1348.398573
## iter  60 value 1340.923903
## iter  70 value 1026.905918
## iter  80 value 947.128681
## iter  90 value 935.515009
## iter 100 value 935.013703
## iter 110 value 934.929120
## iter 120 value 933.700294
## iter 130 value 933.402257
## iter 140 value 933.271175
## iter 150 value 932.457190
## iter 160 value 926.326999
## iter 170 value 856.051193
## iter 180 value 585.539203
## iter 190 value 521.637444
## iter 200 value 479.554137
## iter 210 value 434.483563
## iter 220 value 298.477965
## iter 230 value 261.381535
## iter 240 value 253.986047
## iter 250 value 251.746004
## iter 260 value 247.584228
## iter 270 value 247.096862
## iter 280 value 246.993978
## iter 290 value 246.977807
## iter 300 value 246.960663
## iter 310 value 246.951936
## iter 320 value 246.904904
## iter 330 value 246.849720
## iter 340 value 246.566759
## iter 350 value 236.836075
## iter 360 value 190.160990
## iter 370 value 158.983178
## iter 380 value 152.940942
## iter 390 value 152.239588
## iter 400 value 151.619692
## iter 410 value 148.090319
## iter 420 value 129.703199
## final  value 119.342220 
## stopped after 427 iterations
## INFO  [10:30:58.220] [mlr3] Finished benchmark
## INFO  [10:30:58.232] [bbotk] Result of batch 9:
## INFO  [10:30:58.232] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:58.232] [bbotk]     7   427 5.397219e-05  10.64276        0      0             0.02
## INFO  [10:30:58.232] [bbotk]                                 uhash
## INFO  [10:30:58.232] [bbotk]  7c0251d7-0278-439a-8e3b-3ba938dfd0f9
## INFO  [10:30:58.234] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:58.244] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:58.247] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  8
## initial  value 80523.975956 
## iter  10 value 8195.900253
## iter  20 value 3016.372736
## iter  30 value 2952.111091
## iter  40 value 1903.832271
## iter  50 value 1585.206982
## iter  60 value 1158.670405
## iter  70 value 1117.990378
## iter  80 value 1102.379160
## iter  90 value 1100.531944
## iter 100 value 1099.239275
## final  value 1099.238328 
## converged
## INFO  [10:30:58.254] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  8
## initial  value 85311.370974 
## iter  10 value 1311.623641
## iter  20 value 1035.353478
## iter  30 value 1026.890523
## iter  40 value 1016.231998
## iter  50 value 1013.829450
## iter  60 value 1012.025514
## iter  70 value 1011.503788
## iter  80 value 1011.380420
## iter  90 value 1011.263341
## iter 100 value 1011.257609
## iter 110 value 1011.238671
## iter 110 value 1011.238664
## final  value 1011.238579 
## converged
## INFO  [10:30:58.262] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  8
## initial  value 93799.518279 
## iter  10 value 3931.336598
## iter  20 value 2734.198309
## iter  30 value 2236.442508
## iter  40 value 1721.961296
## iter  50 value 1506.192813
## iter  60 value 1455.441861
## iter  70 value 1450.572033
## iter  80 value 1449.914891
## final  value 1449.914810 
## converged
## INFO  [10:30:58.268] [mlr3] Finished benchmark
## INFO  [10:30:58.278] [bbotk] Result of batch 10:
## INFO  [10:30:58.279] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:58.279] [bbotk]     1   195 1.102321e-05  6.280607        0      0            0.007
## INFO  [10:30:58.279] [bbotk]                                 uhash
## INFO  [10:30:58.279] [bbotk]  1a86fb22-4d81-4d7e-8886-afa57224cf92
## INFO  [10:30:58.281] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:58.287] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:58.290] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  64
## initial  value 85332.036819 
## iter  10 value 2334.132930
## iter  20 value 1055.548207
## iter  30 value 438.727058
## iter  40 value 350.173378
## iter  50 value 291.161020
## iter  60 value 231.477422
## iter  70 value 197.721515
## iter  80 value 163.476828
## iter  90 value 140.730047
## iter 100 value 134.031285
## iter 110 value 132.138111
## iter 120 value 127.877250
## iter 130 value 127.265938
## iter 140 value 127.097511
## iter 150 value 126.951634
## iter 160 value 126.391436
## iter 170 value 124.821098
## iter 180 value 124.699614
## iter 190 value 123.083551
## iter 200 value 121.604725
## iter 210 value 121.196543
## iter 220 value 117.478654
## iter 230 value 103.919237
## iter 240 value 96.746100
## iter 250 value 91.146696
## iter 260 value 83.420168
## iter 270 value 80.767534
## iter 280 value 79.733568
## iter 290 value 78.014247
## iter 300 value 77.011303
## iter 310 value 74.985613
## final  value 74.985613 
## stopped after 310 iterations
## INFO  [10:30:58.303] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  64
## initial  value 81766.020614 
## iter  10 value 1245.149170
## iter  20 value 638.115800
## iter  30 value 450.280931
## iter  40 value 382.967441
## iter  50 value 352.129176
## iter  60 value 314.503051
## iter  70 value 297.777646
## iter  80 value 281.194267
## iter  90 value 265.828422
## iter 100 value 252.843166
## iter 110 value 248.691966
## iter 120 value 246.990972
## iter 130 value 242.629926
## iter 140 value 231.656793
## iter 150 value 223.651919
## iter 160 value 222.694916
## iter 170 value 219.303117
## iter 180 value 214.659502
## iter 190 value 211.055023
## iter 200 value 205.863707
## iter 210 value 203.853056
## iter 220 value 202.631211
## iter 230 value 202.170843
## iter 240 value 192.347706
## iter 250 value 157.077336
## iter 260 value 133.905950
## iter 270 value 124.461519
## iter 280 value 120.079376
## iter 290 value 114.446664
## iter 300 value 110.940467
## iter 310 value 107.267513
## final  value 107.267513 
## stopped after 310 iterations
## INFO  [10:30:58.316] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  64
## initial  value 91622.769164 
## iter  10 value 2281.520721
## iter  20 value 1457.817911
## iter  30 value 577.446499
## iter  40 value 458.863228
## iter  50 value 351.388959
## iter  60 value 291.698326
## iter  70 value 264.971327
## iter  80 value 221.089821
## iter  90 value 175.156723
## iter 100 value 154.564350
## iter 110 value 119.359468
## iter 120 value 98.164849
## iter 130 value 91.452436
## iter 140 value 89.835977
## iter 150 value 86.075935
## iter 160 value 83.458377
## iter 170 value 80.855372
## iter 180 value 80.052169
## iter 190 value 78.554231
## iter 200 value 76.534890
## iter 210 value 70.159532
## iter 220 value 67.032355
## iter 230 value 62.813156
## iter 240 value 58.094364
## iter 250 value 51.315428
## iter 260 value 45.914997
## iter 270 value 44.360041
## iter 280 value 41.427623
## iter 290 value 37.450721
## iter 300 value 35.611997
## iter 310 value 34.281796
## final  value 34.281796 
## stopped after 310 iterations
## INFO  [10:30:58.329] [mlr3] Finished benchmark
## INFO  [10:30:58.340] [bbotk] Result of batch 11:
## INFO  [10:30:58.341] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:58.341] [bbotk]     9   310 8.434946e-05  13.14123        0      0            0.025
## INFO  [10:30:58.341] [bbotk]                                 uhash
## INFO  [10:30:58.341] [bbotk]  85ce3009-4f90-4b69-b18f-0776c56575db
## INFO  [10:30:58.343] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:58.349] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:58.352] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  57
## initial  value 83240.260064 
## iter  10 value 2078.637880
## iter  20 value 1022.905366
## iter  30 value 852.600687
## iter  40 value 634.801885
## iter  50 value 510.802464
## iter  60 value 469.524967
## iter  70 value 450.663127
## iter  80 value 442.494646
## iter  90 value 441.411817
## iter 100 value 439.041030
## iter 110 value 411.705029
## iter 120 value 289.079975
## iter 130 value 276.198592
## iter 140 value 236.004309
## iter 150 value 203.686520
## iter 160 value 203.348779
## iter 170 value 203.114501
## iter 180 value 202.436849
## iter 190 value 200.789028
## iter 200 value 169.787992
## iter 210 value 142.991466
## iter 220 value 135.097581
## iter 230 value 133.131910
## iter 240 value 133.047362
## iter 250 value 132.857610
## iter 260 value 132.693907
## iter 270 value 132.239296
## iter 280 value 131.918564
## iter 290 value 130.850596
## iter 300 value 130.748542
## iter 310 value 130.548969
## iter 320 value 130.401157
## iter 330 value 130.018122
## iter 340 value 129.604816
## iter 350 value 129.422430
## iter 360 value 129.373565
## iter 370 value 129.315370
## iter 380 value 129.295179
## iter 390 value 129.217735
## iter 400 value 129.213500
## iter 410 value 129.208857
## final  value 129.207880 
## stopped after 412 iterations
## INFO  [10:30:58.366] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  57
## initial  value 86093.605977 
## iter  10 value 1094.905272
## iter  20 value 939.482471
## iter  30 value 656.714996
## iter  40 value 440.545439
## iter  50 value 414.915857
## iter  60 value 392.018788
## iter  70 value 385.630925
## iter  80 value 379.680882
## iter  90 value 376.020597
## iter 100 value 374.725014
## iter 110 value 373.890888
## iter 120 value 373.740727
## iter 130 value 373.729263
## iter 140 value 373.646281
## iter 150 value 364.517238
## iter 160 value 355.976536
## iter 170 value 268.068183
## iter 180 value 218.616150
## iter 190 value 193.852924
## iter 200 value 158.745967
## iter 210 value 154.088903
## iter 220 value 152.200804
## iter 230 value 151.919182
## iter 240 value 149.609429
## iter 250 value 147.557461
## iter 260 value 147.299959
## iter 270 value 147.035002
## iter 280 value 146.963956
## iter 290 value 146.945415
## iter 300 value 146.916062
## iter 310 value 146.865813
## iter 320 value 146.785462
## iter 330 value 146.762452
## iter 340 value 146.549176
## iter 350 value 146.515684
## iter 360 value 146.384052
## iter 370 value 145.712601
## iter 380 value 129.706170
## iter 390 value 112.996059
## iter 400 value 99.611489
## iter 410 value 88.649410
## final  value 88.134575 
## stopped after 412 iterations
## INFO  [10:30:58.384] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  57
## initial  value 94337.243042 
## iter  10 value 6100.727353
## iter  20 value 2066.671722
## iter  30 value 1805.608649
## iter  40 value 1498.660731
## iter  50 value 1434.213295
## iter  60 value 1015.198559
## iter  70 value 961.758697
## iter  80 value 957.272315
## iter  90 value 955.018533
## iter 100 value 953.104049
## iter 110 value 940.379810
## iter 120 value 933.871151
## iter 130 value 931.114412
## iter 140 value 923.161491
## iter 150 value 912.208995
## iter 160 value 894.421787
## iter 170 value 731.490901
## iter 180 value 696.056374
## iter 190 value 692.877096
## iter 200 value 692.602552
## iter 210 value 692.494021
## iter 220 value 692.366559
## iter 230 value 692.328027
## final  value 692.326855 
## converged
## INFO  [10:30:58.394] [mlr3] Finished benchmark
## INFO  [10:30:58.405] [bbotk] Result of batch 12:
## INFO  [10:30:58.406] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:58.406] [bbotk]     8   412 2.129418e-05  7.393695        0      0            0.028
## INFO  [10:30:58.406] [bbotk]                                 uhash
## INFO  [10:30:58.406] [bbotk]  1756d543-fb24-47de-9124-3725633a933e
## INFO  [10:30:58.408] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:58.414] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:58.417] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  36
## initial  value 82605.883146 
## iter  10 value 2299.028853
## iter  20 value 1101.393004
## iter  30 value 730.243474
## iter  40 value 475.813127
## iter  50 value 420.811676
## iter  60 value 395.401851
## iter  70 value 392.041325
## iter  80 value 386.012698
## iter  90 value 383.664077
## iter 100 value 383.048071
## iter 110 value 382.614491
## iter 120 value 381.818880
## iter 130 value 374.519694
## iter 140 value 349.868095
## iter 150 value 211.948605
## iter 160 value 180.030642
## iter 170 value 158.296315
## iter 180 value 152.538215
## iter 190 value 146.689974
## iter 200 value 144.378473
## iter 210 value 143.333414
## iter 220 value 142.847998
## iter 230 value 142.434505
## iter 240 value 142.147856
## iter 250 value 142.147077
## iter 260 value 142.141008
## iter 270 value 141.804441
## iter 280 value 141.605330
## iter 290 value 140.889719
## iter 300 value 140.743397
## iter 310 value 140.705409
## iter 320 value 140.695195
## iter 330 value 140.693695
## iter 340 value 140.688448
## iter 350 value 140.671610
## iter 360 value 140.663856
## iter 370 value 140.651987
## iter 380 value 140.649542
## final  value 140.649251 
## converged
## INFO  [10:30:58.429] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  36
## initial  value 80345.766132 
## iter  10 value 7437.720019
## iter  20 value 4795.784160
## iter  30 value 1204.909165
## iter  40 value 1047.178191
## iter  50 value 1023.793989
## iter  60 value 1015.549449
## iter  70 value 1012.623544
## iter  80 value 974.138312
## iter  90 value 728.260671
## iter 100 value 673.237442
## iter 110 value 626.077590
## iter 120 value 598.433499
## iter 130 value 582.965530
## iter 140 value 524.317443
## iter 150 value 517.467504
## iter 160 value 515.972262
## iter 170 value 510.046862
## iter 180 value 506.131322
## iter 190 value 503.866340
## iter 200 value 503.714249
## iter 210 value 503.101551
## iter 220 value 501.464223
## iter 230 value 494.170284
## iter 240 value 461.535807
## iter 250 value 406.152091
## iter 260 value 340.945556
## iter 270 value 312.507098
## iter 280 value 301.061305
## iter 290 value 299.038548
## iter 300 value 296.668821
## iter 310 value 294.392560
## iter 320 value 292.509533
## iter 330 value 290.639724
## iter 340 value 290.009358
## iter 350 value 289.733088
## iter 360 value 289.631855
## iter 370 value 289.172893
## iter 380 value 288.837362
## iter 390 value 288.807075
## iter 400 value 288.529515
## iter 410 value 285.084383
## iter 420 value 279.991393
## iter 430 value 272.641893
## iter 440 value 263.693311
## final  value 256.983821 
## stopped after 447 iterations
## INFO  [10:30:58.442] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  36
## initial  value 95275.353135 
## iter  10 value 7011.147997
## iter  20 value 2702.778583
## iter  30 value 2024.347109
## iter  40 value 1630.061157
## iter  50 value 1461.063865
## iter  60 value 1452.330361
## iter  70 value 1451.871688
## iter  80 value 1451.526547
## final  value 1451.524176 
## converged
## INFO  [10:30:58.449] [mlr3] Finished benchmark
## INFO  [10:30:58.459] [bbotk] Result of batch 13:
## INFO  [10:30:58.460] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:58.460] [bbotk]     5   447 7.190734e-05  6.817563        0      0            0.017
## INFO  [10:30:58.460] [bbotk]                                 uhash
## INFO  [10:30:58.460] [bbotk]  1e813db5-f7e4-4bff-a1c4-261d1a532970
## INFO  [10:30:58.462] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:58.469] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:58.471] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  29
## initial  value 84000.213615 
## iter  10 value 4028.994496
## iter  20 value 1207.218749
## iter  30 value 812.670363
## iter  40 value 501.856911
## iter  50 value 344.672119
## iter  60 value 262.810058
## iter  70 value 237.884571
## iter  80 value 202.058418
## iter  90 value 189.981175
## iter 100 value 189.178933
## iter 110 value 186.892972
## iter 120 value 186.365177
## iter 130 value 186.326613
## iter 140 value 186.079310
## iter 150 value 185.831712
## iter 160 value 185.280828
## iter 170 value 185.143727
## final  value 185.124979 
## converged
## INFO  [10:30:58.480] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  29
## initial  value 80431.931558 
## iter  10 value 2688.947115
## iter  20 value 1273.068906
## iter  30 value 927.507909
## iter  40 value 864.068747
## iter  50 value 854.554936
## iter  60 value 841.278264
## iter  70 value 838.272630
## iter  80 value 831.936713
## iter  90 value 827.472737
## iter 100 value 825.675864
## iter 110 value 825.625663
## iter 120 value 825.613105
## iter 130 value 789.787765
## iter 140 value 587.425193
## iter 150 value 480.868719
## iter 160 value 477.143965
## iter 170 value 474.255684
## iter 180 value 473.002058
## iter 190 value 472.959607
## iter 200 value 472.938235
## iter 210 value 472.340447
## iter 220 value 471.629304
## iter 230 value 469.523682
## iter 240 value 464.835500
## iter 250 value 461.578540
## iter 260 value 457.372024
## iter 270 value 456.859438
## iter 280 value 453.403201
## iter 290 value 419.142278
## iter 300 value 373.349491
## iter 310 value 333.712419
## iter 320 value 329.838445
## iter 330 value 328.531323
## iter 340 value 328.450329
## iter 350 value 328.117431
## iter 360 value 326.490444
## final  value 323.340707 
## stopped after 367 iterations
## INFO  [10:30:58.490] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  29
## initial  value 93794.914276 
## final  value 9265.109242 
## converged
## INFO  [10:30:58.496] [mlr3] Finished benchmark
## INFO  [10:30:58.511] [bbotk] Result of batch 14:
## INFO  [10:30:58.512] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:58.512] [bbotk]     4   367 4.274419e-05  15.83837        0      0            0.012
## INFO  [10:30:58.512] [bbotk]                                 uhash
## INFO  [10:30:58.512] [bbotk]  28cefccf-3554-4a89-98a4-f755474e4d0f
## INFO  [10:30:58.513] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:58.520] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:58.523] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  8
## initial  value 81146.802604 
## final  value 9171.030918 
## converged
## INFO  [10:30:58.529] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  8
## initial  value 82889.077222 
## iter  10 value 2399.341829
## iter  20 value 1685.065398
## iter  30 value 1637.984272
## iter  40 value 1625.138129
## iter  50 value 1625.097457
## iter  60 value 1624.867240
## iter  70 value 1624.692636
## iter  80 value 1624.629374
## iter  90 value 1624.493266
## iter 100 value 1624.266264
## iter 110 value 1501.878702
## iter 120 value 1473.203350
## iter 130 value 1384.251920
## iter 140 value 1058.950509
## iter 150 value 1030.190859
## iter 160 value 1020.573619
## iter 170 value 1015.796796
## iter 180 value 1012.933915
## final  value 1012.649440 
## stopped after 186 iterations
## INFO  [10:30:58.537] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  8
## initial  value 92643.485747 
## iter  10 value 3603.608415
## iter  20 value 1990.192396
## iter  30 value 1529.808400
## iter  40 value 1465.460874
## iter  50 value 1454.454954
## iter  60 value 1452.259338
## final  value 1452.198089 
## converged
## INFO  [10:30:58.543] [mlr3] Finished benchmark
## INFO  [10:30:58.554] [bbotk] Result of batch 15:
## INFO  [10:30:58.554] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:58.554] [bbotk]     1   186 7.421892e-05  8.333121        0      0            0.008
## INFO  [10:30:58.554] [bbotk]                                 uhash
## INFO  [10:30:58.554] [bbotk]  518dd4e5-f86a-4c39-ba6b-251178d740ff
## INFO  [10:30:58.556] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:58.563] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:58.566] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  71
## initial  value 81235.270927 
## iter  10 value 912.814422
## iter  20 value 456.934938
## iter  30 value 278.613482
## iter  40 value 139.151583
## iter  50 value 109.558774
## iter  60 value 78.757892
## iter  70 value 50.823138
## iter  80 value 47.069767
## iter  90 value 45.897250
## iter 100 value 43.150300
## iter 110 value 41.644004
## iter 120 value 41.272292
## iter 130 value 40.988001
## iter 140 value 40.820413
## iter 150 value 40.642881
## iter 160 value 40.577751
## iter 170 value 40.339228
## iter 180 value 40.039156
## iter 190 value 39.300604
## iter 200 value 28.068058
## iter 210 value 23.227708
## iter 220 value 20.063933
## iter 230 value 18.298598
## iter 240 value 17.881870
## iter 250 value 17.572338
## iter 260 value 17.061925
## iter 270 value 16.659186
## iter 280 value 15.985624
## iter 290 value 15.422290
## iter 300 value 15.163701
## iter 310 value 13.733838
## iter 320 value 11.928510
## iter 330 value 11.438988
## iter 340 value 11.063337
## iter 350 value 10.901452
## iter 360 value 10.742113
## iter 370 value 10.493990
## iter 380 value 10.209970
## iter 390 value 10.019498
## iter 400 value 9.630087
## iter 410 value 9.023178
## iter 420 value 7.850952
## iter 430 value 6.628482
## iter 440 value 6.575020
## final  value 6.560884 
## stopped after 442 iterations
## INFO  [10:30:58.582] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  71
## initial  value 82910.052895 
## iter  10 value 2574.002124
## iter  20 value 1051.666101
## iter  30 value 1025.498089
## iter  40 value 1017.851997
## iter  50 value 1012.740382
## iter  60 value 1012.037099
## iter  70 value 1011.886403
## iter  80 value 1004.434851
## iter  90 value 900.296177
## iter 100 value 803.748927
## iter 110 value 734.193413
## iter 120 value 666.896669
## iter 130 value 655.941088
## iter 140 value 654.660223
## iter 150 value 535.711408
## iter 160 value 464.109495
## iter 170 value 393.666708
## iter 180 value 358.912274
## iter 190 value 351.032484
## iter 200 value 347.898773
## iter 210 value 346.916326
## iter 220 value 346.812071
## iter 230 value 346.743680
## iter 240 value 342.979135
## iter 250 value 291.291314
## iter 260 value 269.659161
## iter 270 value 267.315706
## iter 280 value 262.998536
## iter 290 value 261.266320
## iter 300 value 259.278605
## iter 310 value 258.024106
## iter 320 value 256.999232
## iter 330 value 255.697475
## iter 340 value 252.353080
## iter 350 value 216.131906
## iter 360 value 201.893775
## iter 370 value 199.298361
## iter 380 value 194.542438
## iter 390 value 183.171829
## iter 400 value 164.870569
## iter 410 value 143.140414
## iter 420 value 129.211321
## iter 430 value 119.232424
## iter 440 value 108.477007
## final  value 108.055647 
## stopped after 442 iterations
## INFO  [10:30:58.599] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  71
## initial  value 94774.750764 
## iter  10 value 1285.002738
## iter  20 value 708.817398
## iter  30 value 357.305533
## iter  40 value 154.475227
## iter  50 value 94.921131
## iter  60 value 81.259026
## iter  70 value 79.709264
## iter  80 value 73.046123
## iter  90 value 58.157763
## iter 100 value 39.231891
## iter 110 value 28.029038
## iter 120 value 24.548787
## iter 130 value 21.652630
## iter 140 value 19.994324
## iter 150 value 19.723187
## iter 160 value 19.529059
## iter 170 value 19.065189
## iter 180 value 18.632029
## iter 190 value 18.145765
## iter 200 value 17.804955
## iter 210 value 17.560369
## iter 220 value 17.279343
## iter 230 value 16.953143
## iter 240 value 16.741426
## iter 250 value 16.529141
## iter 260 value 16.130509
## iter 270 value 15.630801
## iter 280 value 15.359086
## iter 290 value 15.106300
## iter 300 value 15.070718
## iter 310 value 14.992705
## iter 320 value 14.863684
## iter 330 value 14.762216
## iter 340 value 14.403929
## iter 350 value 14.146112
## iter 360 value 13.964799
## iter 370 value 13.784822
## iter 380 value 13.672426
## iter 390 value 13.574701
## iter 400 value 13.472264
## iter 410 value 13.391614
## iter 420 value 13.320149
## iter 430 value 13.289155
## iter 440 value 13.288388
## final  value 13.288274 
## stopped after 442 iterations
## INFO  [10:30:58.615] [mlr3] Finished benchmark
## INFO  [10:30:58.626] [bbotk] Result of batch 16:
## INFO  [10:30:58.627] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:58.627] [bbotk]    10   442 8.188255e-05  9.570173        0      0            0.034
## INFO  [10:30:58.627] [bbotk]                                 uhash
## INFO  [10:30:58.627] [bbotk]  12a4b18c-f0f2-4632-8f3a-d80a11aede0d
## INFO  [10:30:58.628] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:58.639] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:58.641] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  8
## initial  value 80789.984492 
## final  value 9171.086456 
## converged
## INFO  [10:30:58.648] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  8
## initial  value 80503.490483 
## final  value 6343.969083 
## converged
## INFO  [10:30:58.654] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  8
## initial  value 94892.677785 
## final  value 9265.558866 
## converged
## INFO  [10:30:58.660] [mlr3] Finished benchmark
## INFO  [10:30:58.671] [bbotk] Result of batch 17:
## INFO  [10:30:58.671] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:58.671] [bbotk]     1   411 3.094475e-05  14.19413        0      0            0.005
## INFO  [10:30:58.671] [bbotk]                                 uhash
## INFO  [10:30:58.671] [bbotk]  98db7291-5aca-4577-ba20-ad6e483545a3
## INFO  [10:30:58.673] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:58.680] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:58.682] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  8
## initial  value 81927.423305 
## iter  10 value 5118.967572
## iter  20 value 2717.304490
## iter  30 value 2151.487097
## iter  40 value 1701.048557
## iter  50 value 1344.032850
## iter  60 value 1136.203756
## iter  70 value 1112.008925
## iter  80 value 1103.550291
## iter  90 value 1100.891302
## iter 100 value 1100.278063
## iter 110 value 1099.899566
## iter 120 value 1099.866862
## iter 130 value 1099.840229
## final  value 1099.839883 
## converged
## INFO  [10:30:58.690] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  8
## initial  value 82372.656337 
## iter  10 value 1788.183691
## iter  20 value 1752.651269
## iter  30 value 1719.484297
## iter  40 value 1679.523400
## iter  50 value 1677.106696
## iter  60 value 1632.931869
## iter  70 value 1183.738290
## iter  80 value 1034.846786
## iter  90 value 1024.569277
## iter 100 value 1018.288812
## iter 110 value 1013.542301
## iter 120 value 1012.538578
## iter 130 value 1011.699411
## iter 140 value 1011.675617
## iter 150 value 1011.598221
## final  value 1011.597813 
## converged
## INFO  [10:30:58.697] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  8
## initial  value 93793.915215 
## iter  10 value 3260.984504
## iter  20 value 2832.247664
## iter  30 value 2534.623048
## iter  40 value 2060.551669
## iter  50 value 1816.586804
## iter  60 value 1490.528663
## iter  70 value 1459.789424
## iter  80 value 1452.332027
## iter  90 value 1450.938555
## final  value 1450.779757 
## converged
## INFO  [10:30:58.704] [mlr3] Finished benchmark
## INFO  [10:30:58.715] [bbotk] Result of batch 18:
## INFO  [10:30:58.716] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:58.716] [bbotk]     1   466 6.912196e-05   6.28995        0      0            0.007
## INFO  [10:30:58.716] [bbotk]                                 uhash
## INFO  [10:30:58.716] [bbotk]  9a93bd87-f7c6-44c2-abed-bd9922f73bfb
## INFO  [10:30:58.717] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:58.724] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:58.727] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  15
## initial  value 83414.098976 
## iter  10 value 3238.673066
## iter  20 value 1586.091787
## iter  30 value 1096.990595
## iter  40 value 732.009044
## iter  50 value 594.740559
## iter  60 value 565.479831
## iter  70 value 561.223873
## iter  80 value 560.938215
## iter  90 value 560.470688
## iter 100 value 560.461268
## iter 110 value 560.460995
## iter 120 value 560.455688
## final  value 560.455331 
## converged
## INFO  [10:30:58.735] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  15
## initial  value 81736.947154 
## iter  10 value 1451.338346
## iter  20 value 904.985199
## iter  30 value 790.083187
## iter  40 value 730.524303
## iter  50 value 706.344254
## iter  60 value 690.439276
## iter  70 value 680.850956
## iter  80 value 654.298027
## iter  90 value 580.240873
## iter 100 value 561.466043
## iter 110 value 561.035061
## iter 120 value 560.746410
## iter 130 value 559.696223
## iter 140 value 559.059608
## iter 150 value 559.038769
## iter 160 value 558.881792
## iter 170 value 558.772213
## iter 180 value 558.770273
## iter 190 value 558.689658
## iter 200 value 558.663485
## iter 210 value 558.636769
## iter 220 value 558.631858
## iter 230 value 558.625716
## final  value 558.624003 
## converged
## INFO  [10:30:58.743] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  15
## initial  value 90683.277863 
## iter  10 value 3730.546781
## iter  20 value 2980.146498
## iter  30 value 2897.937852
## iter  40 value 2809.721779
## iter  50 value 2463.125052
## iter  60 value 2168.660029
## iter  70 value 1617.899095
## iter  80 value 1466.281802
## iter  90 value 1454.809457
## iter 100 value 1450.563972
## iter 110 value 1450.465070
## iter 120 value 1450.455775
## iter 120 value 1450.455765
## final  value 1450.455696 
## converged
## INFO  [10:30:58.750] [mlr3] Finished benchmark
## INFO  [10:30:58.764] [bbotk] Result of batch 19:
## INFO  [10:30:58.765] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:58.765] [bbotk]     2   392 4.004162e-05  6.199296        0      0             0.01
## INFO  [10:30:58.765] [bbotk]                                 uhash
## INFO  [10:30:58.765] [bbotk]  7dfcd219-2cd2-477b-a4cd-5dd41c2f2b2a
## INFO  [10:30:58.767] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:30:58.774] [mlr3] Running benchmark with 3 resampling iterations
## INFO  [10:30:58.776] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 1/3)
## # weights:  15
## initial  value 81138.677642 
## iter  10 value 3466.368660
## iter  20 value 2298.655441
## iter  30 value 2045.962058
## iter  40 value 1351.203437
## iter  50 value 1146.843858
## iter  60 value 1104.556522
## iter  70 value 1100.480968
## iter  80 value 1099.466484
## iter  90 value 1099.417540
## iter 100 value 1099.273440
## iter 110 value 1099.260242
## final  value 1099.257148 
## converged
## INFO  [10:30:58.784] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 2/3)
## # weights:  15
## initial  value 81362.578157 
## iter  10 value 2358.628498
## iter  20 value 1524.616772
## iter  30 value 1126.956176
## iter  40 value 946.541185
## iter  50 value 876.873100
## iter  60 value 831.855761
## iter  70 value 686.442082
## iter  80 value 590.918466
## iter  90 value 566.369560
## iter 100 value 537.737598
## iter 110 value 527.871585
## final  value 526.354608 
## stopped after 119 iterations
## INFO  [10:30:58.792] [mlr3] Applying learner 'regr.nnet' on task 'cereal' (iter 3/3)
## # weights:  15
## initial  value 93108.428130 
## iter  10 value 5065.343080
## iter  20 value 3076.461628
## iter  30 value 2390.909365
## iter  40 value 1880.901296
## iter  50 value 1544.591746
## iter  60 value 1464.356775
## iter  70 value 1451.233243
## iter  80 value 1450.415528
## final  value 1450.399494 
## converged
## INFO  [10:30:58.798] [mlr3] Finished benchmark
## INFO  [10:30:58.809] [bbotk] Result of batch 20:
## INFO  [10:30:58.809] [bbotk]  size maxit        decay regr.rmse warnings errors runtime_learners
## INFO  [10:30:58.809] [bbotk]     2   119 4.546635e-05  5.732408        0      0            0.008
## INFO  [10:30:58.809] [bbotk]                                 uhash
## INFO  [10:30:58.809] [bbotk]  62662a5a-d625-4270-86eb-6b253d062c66
## INFO  [10:30:58.813] [bbotk] Finished optimizing after 20 evaluation(s)
## INFO  [10:30:58.813] [bbotk] Result:
## INFO  [10:30:58.813] [bbotk]  size maxit        decay learner_param_vals  x_domain regr.rmse
## INFO  [10:30:58.813] [bbotk]     2   119 4.546635e-05          <list[3]> <list[3]>  5.732408
## # weights:  15
## initial  value 127815.151906 
## final  value 12456.841180 
## converged

We can extract the results of the tuning process (the inner cross validation) as follows:

## Extract tuning results

extract_inner_tuning_results(cereal_nn)[ , list(maxit, decay, size, regr.rmse)]
##    maxit        decay size regr.rmse
## 1:   257 8.446055e-05    5  7.535631
## 2:   457 3.549095e-05    4  7.445906
## 3:   300 4.119386e-05    3  8.295178
## 4:   373 4.830053e-05    2  6.574380
## 5:   119 4.546635e-05    2  5.732408

From these results, it would appear that the last set of parameters gives the best result (lowest RMSE). However, when we extract the RMSE for the test set as follows, this has the highest test RMSE, suggesting that these parameters overfit the model.

In other words, the model fits the training data well, but it does not generalize/predict well.

## Test Data RMSE
cereal_nn$score(msr_rmse)[ , list(regr.rmse)]
##    regr.rmse
## 1:  8.753778
## 2:  5.793959
## 3:  8.691641
## 4:  8.885114
## 5: 13.075462

In this case, the results of the 2nd outer fold (lowest RMSE score) have the lowest error. We will build our model using this.

## Extract the maxit, decay, and size from model 1 to build our full model

lrn_nn <- lrn("regr.nnet", 
              size = extract_inner_tuning_results(cereal_nn)[2]$size,
              maxit = extract_inner_tuning_results(cereal_nn)[2]$maxit,
              decay = extract_inner_tuning_results(cereal_nn)[2]$decay)
## Full Model Build
cereal_nn.full = lrn_nn$train(cereal_task)
## # weights:  29
## initial  value 153249.633453 
## iter  10 value 3722.204564
## iter  20 value 2178.182772
## iter  30 value 1875.558405
## iter  40 value 1733.728010
## iter  50 value 1616.705206
## iter  60 value 1602.685360
## iter  70 value 1595.256919
## iter  80 value 1476.425707
## iter  90 value 1338.751958
## iter 100 value 1224.078138
## iter 110 value 1194.835285
## iter 120 value 1184.841338
## iter 130 value 1181.809025
## iter 140 value 1161.018764
## iter 150 value 1148.752936
## iter 160 value 1131.352144
## iter 170 value 1123.524452
## iter 180 value 1121.432264
## final  value 1121.431939 
## converged

[Optional section] The final model we obtained is in a format that is quite hard to visualize. You can show the network by first downloading the following function:

## Download the nnet visualization package/tool from github
## Requires devtools package

library(devtools)
## Loading required package: usethis
devtools::source_url('https://gist.githubusercontent.com/Peque/41a9e20d6687f2f3108d/raw/85e14f3a292e126f1454864427e3a189c2fe33f3/nnet_plot_update.r')
## ℹ SHA-1 hash of file is "bf3c7b8ac910823b729e3ce73bb6ab5e6955ad3d"
## Load the required package
library(nnet)

## Rebuild the model
cereal_nn2 = nnet(rating ~ ., 
                   scaled_data,
                   size = extract_inner_tuning_results(cereal_nn)[2]$size,
                   maxit = extract_inner_tuning_results(cereal_nn)[2]$maxit,
                   decay = extract_inner_tuning_results(cereal_nn)[2]$decay)
## # weights:  29
## initial  value 151658.678214 
## iter  10 value 148676.785788
## iter  20 value 148668.864492
## final  value 148668.775844 
## converged
##Neural Network Plot

plot(cereal_nn2)
## Loading required package: scales
## Loading required package: reshape
## 
## Attaching package: 'reshape'
## The following object is masked from 'package:dplyr':
## 
##     rename

Neural Network Classification

Next, we’ll build a neural network for a classification task. We’ll use a new dataset, containing credit rankings for over 4000 people (see appendix for a description of the fields). The goal will be to predict Status, a binary outcome with two levels: good and bad. We’ll start again by reading the data:

## Read in the data
credit_data = read.csv("../datafiles/credit_data.csv")

## Check
str(credit_data)
## 'data.frame':    4454 obs. of  14 variables:
##  $ Status   : chr  "good" "good" "bad" "good" ...
##  $ Seniority: int  9 17 10 0 0 1 29 9 0 0 ...
##  $ Home     : chr  "rent" "rent" "owner" "rent" ...
##  $ Time     : int  60 60 36 60 36 60 60 12 60 48 ...
##  $ Age      : int  30 58 46 24 26 36 44 27 32 41 ...
##  $ Marital  : chr  "married" "widow" "married" "single" ...
##  $ Records  : chr  "no" "no" "yes" "no" ...
##  $ Job      : chr  "freelance" "fixed" "freelance" "fixed" ...
##  $ Expenses : int  73 48 90 63 46 75 75 35 90 90 ...
##  $ Income   : int  129 131 200 182 107 214 125 80 107 80 ...
##  $ Assets   : int  0 0 3000 2500 0 3500 10000 0 15000 0 ...
##  $ Debt     : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ Amount   : int  800 1000 2000 900 310 650 1600 200 1200 1200 ...
##  $ Price    : int  846 1658 2985 1325 910 1645 1800 1093 1957 1468 ...

As we have several categorical variables, we need to make sure that R recognizes these as factors. The following line of code checks each column in the credit_data data frame, and if it contains character data, it then converts it to a factor. Note this is similar to the approach in the previous lab, where we convert individual variables to factors:

## Loop through the data frame and change character variables to factors
credit_data = credit_data %>%
  mutate_if(is.character, as.factor) %>%
  mutate_if(is.integer, as.numeric)

## Check
str(credit_data)
## 'data.frame':    4454 obs. of  14 variables:
##  $ Status   : Factor w/ 2 levels "bad","good": 2 2 1 2 2 2 2 2 2 1 ...
##  $ Seniority: num  9 17 10 0 0 1 29 9 0 0 ...
##  $ Home     : Factor w/ 6 levels "ignore","other",..: 6 6 3 6 6 3 3 4 3 4 ...
##  $ Time     : num  60 60 36 60 36 60 60 12 60 48 ...
##  $ Age      : num  30 58 46 24 26 36 44 27 32 41 ...
##  $ Marital  : Factor w/ 5 levels "divorced","married",..: 2 5 2 4 4 2 2 4 2 2 ...
##  $ Records  : Factor w/ 2 levels "no","yes": 1 1 2 1 1 1 1 1 1 1 ...
##  $ Job      : Factor w/ 4 levels "fixed","freelance",..: 2 1 2 1 1 1 1 1 2 4 ...
##  $ Expenses : num  73 48 90 63 46 75 75 35 90 90 ...
##  $ Income   : num  129 131 200 182 107 214 125 80 107 80 ...
##  $ Assets   : num  0 0 3000 2500 0 3500 10000 0 15000 0 ...
##  $ Debt     : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ Amount   : num  800 1000 2000 900 310 650 1600 200 1200 1200 ...
##  $ Price    : num  846 1658 2985 1325 910 ...
## Check the credit data for NAs
summary(credit_data)
##   Status       Seniority           Home           Time            Age       
##  bad :1254   Min.   : 0.000   ignore :  20   Min.   : 6.00   Min.   :18.00  
##  good:3200   1st Qu.: 2.000   other  : 319   1st Qu.:36.00   1st Qu.:28.00  
##              Median : 5.000   owner  :2107   Median :48.00   Median :36.00  
##              Mean   : 7.987   parents: 783   Mean   :46.44   Mean   :37.08  
##              3rd Qu.:12.000   priv   : 246   3rd Qu.:60.00   3rd Qu.:45.00  
##              Max.   :48.000   rent   : 973   Max.   :72.00   Max.   :68.00  
##                               NA's   :   6                                  
##       Marital     Records           Job          Expenses          Income     
##  divorced :  38   no :3681   fixed    :2805   Min.   : 35.00   Min.   :  6.0  
##  married  :3241   yes: 773   freelance:1024   1st Qu.: 35.00   1st Qu.: 90.0  
##  separated: 130              others   : 171   Median : 51.00   Median :125.0  
##  single   : 977              partime  : 452   Mean   : 55.57   Mean   :141.7  
##  widow    :  67              NA's     :   2   3rd Qu.: 72.00   3rd Qu.:170.0  
##  NA's     :   1                               Max.   :180.00   Max.   :959.0  
##                                                                NA's   :381    
##      Assets            Debt           Amount         Price      
##  Min.   :     0   Min.   :    0   Min.   : 100   Min.   :  105  
##  1st Qu.:     0   1st Qu.:    0   1st Qu.: 700   1st Qu.: 1117  
##  Median :  3000   Median :    0   Median :1000   Median : 1400  
##  Mean   :  5404   Mean   :  343   Mean   :1039   Mean   : 1463  
##  3rd Qu.:  6000   3rd Qu.:    0   3rd Qu.:1300   3rd Qu.: 1692  
##  Max.   :300000   Max.   :30000   Max.   :5000   Max.   :11140  
##  NA's   :47       NA's   :18
## Home - 6
## Marital - 1
## Job - 2
## Income - 381
## Assets - 47
## Debt - 18

As machine learning algorithms can’t use missing data to train, we need to decide what to do with these. For this lab, we’ll just exclude them, which results in the loss of about 400 observations, but in the next lab, we’ll explore methods to impute values and use these.

## Exclude the NAs

credit_data = credit_data %>%
  na.omit()

## Check 
sum(is.na(credit_data))
## [1] 0

Now set up the machine learning model.

## Set up the task
credit_task = TaskClassif$new(id = "credit",
                              backend = credit_data,
                              target = "Status")
## Set up the learner
## size = 10 nodes
## trace? 

credit_learn_nn = lrn("classif.nnet",
                      size = 10,
                      decay = 1e-5,
                      maxit = 500,
                      trace = FALSE)
## Set up the resampling
credit_rsmp_outer = rsmp("cv",
                         folds = 5)
## Set up the measure
credit_msr_auc = msr("classif.auc")
## Set up the model
credit_nn = resample(task = credit_task,
                     learner = credit_learn_nn,
                     resampling = credit_rsmp_outer)
## INFO  [10:31:00.001] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/5)
## INFO  [10:31:00.796] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 2/5)
## INFO  [10:31:02.188] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 3/5)
## INFO  [10:31:04.002] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 4/5)
## INFO  [10:31:06.403] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 5/5)
## Model performance
credit_nn$aggregate(credit_msr_auc)
## classif.auc 
##   0.7466198

And let’s try with a higher number of nodes and a greater number of iterations:

## Reset the learner to include more iterations (1000)
## Add more nodes (25)
credit_learn_nn = lrn("classif.nnet",
                      size = 25,
                      decay = 1e-5,
                      maxit = 1000,
                      trace = FALSE)

## Rerun model
credit_nn_v2 = resample(task = credit_task,
                     learner = credit_learn_nn,
                     resampling = credit_rsmp_outer)
## INFO  [10:31:08.031] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/5)
## INFO  [10:31:22.719] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 2/5)
## INFO  [10:31:30.726] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 3/5)
## INFO  [10:31:43.066] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 4/5)
## INFO  [10:31:49.715] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 5/5)
## Assess the second model
credit_nn_v2$aggregate(credit_msr_auc)
## classif.auc 
##   0.7423865

Interpretation Note: Not much improvement

Exercise

Credit Neural Network Model Tune

## Tune the following parameters credit score neural network
## Size of the hidden layer (size)
## Number of iterations (maxit)
## Decay Function (decay) (balancing between over/underfitting)
## Later runs - decay set to 1e-6

tune_credit_ps = ParamSet$new(list(
  ParamInt$new("size", lower = 1, upper = 25),
  ParamInt$new("maxit", lower = 50, upper = 1000),
  ParamDbl$new("decay", lower = 0, upper = 1e-6)
))

## Check
tune_credit_ps
## <ParamSet>
##       id    class lower   upper nlevels        default value
## 1:  size ParamInt     1 2.5e+01      25 <NoDefault[3]>      
## 2: maxit ParamInt    50 1.0e+03     951 <NoDefault[3]>      
## 3: decay ParamDbl     0 1.0e-06     Inf <NoDefault[3]>
## Tuner setup
## Grid Search (grid_search)
## From the mlr3 book -
## Discretizes the range of each configuration and exhaustively evaluates each combination.

tuner_credit = tnr("grid_search")

## Bayesian Optimzation 
## Creating this tuner to try
## From the mlr3 book -
## Iterative algorithms that make use of a continuously updated surrogate model built for the objective function. By optimizing a (comparably cheap to evaluate) acquisition function defined on the surrogate prediction, the next candidate is chosen for evaluation, resulting in good sample efficiency.

library(mlr3mbo)
## Loading required package: mlr3tuning
tuner_credit_mbo = tnr("mbo")

## Tuner setup - random_search
## Note: Samples configurations from a uniform distribution randomly

tuner_credit_random = tnr("random_search")
## Set this for 30 iterations
## Later set and run with 25 and 20 evaluations
evals_credit = trm("evals",
                   n_evals = 20)

## Set a run time terminator to experiment with
time_credit = trm("run_time",
                  secs = 90)
## Cross Validation
##  folds

rsmp_inner_credit = rsmp("cv",
                         folds = 3)

## Holdout strategy for testing
rsmp_inner_credit_holdout = rsmp("holdout",
                                 ratio = 0.8)

Build the autotuner!

## AutoTuner

credit_at_nn = AutoTuner$new(tuner = tuner_credit_random,
                            learner = credit_learn_nn,
                            resampling = rsmp_inner_credit_holdout,
                            measure = credit_msr_auc,
                            search_space = tune_credit_ps,
                            terminator = time_credit)
## Reproducability?
set.seed(2)

## Time Start
start = Sys.time()

## Resample Re-run

credit_nn_v3 = resample(task = credit_task,
                       learner = credit_at_nn,
                       resampling = credit_rsmp_outer,
                       store_models = TRUE)
## INFO  [10:32:04.169] [mlr3] Applying learner 'classif.nnet.tuned' on task 'credit' (iter 1/5)
## INFO  [10:32:04.219] [bbotk] Starting to optimize 3 parameter(s) with '<OptimizerRandomSearch>' and '<TerminatorRunTime> [secs=90]'
## INFO  [10:32:04.226] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:32:04.233] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:32:04.235] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:32:10.114] [mlr3] Finished benchmark
## INFO  [10:32:10.123] [bbotk] Result of batch 1:
## INFO  [10:32:10.124] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:32:10.124] [bbotk]    25   454 1.123396e-07   0.7649401        0      0            5.875
## INFO  [10:32:10.124] [bbotk]                                 uhash
## INFO  [10:32:10.124] [bbotk]  b857cde5-42de-46c0-a03e-90189ca0b108
## INFO  [10:32:10.126] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:32:10.133] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:32:10.135] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:32:12.381] [mlr3] Finished benchmark
## INFO  [10:32:12.392] [bbotk] Result of batch 2:
## INFO  [10:32:12.393] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:32:12.393] [bbotk]    11   646 4.072748e-07   0.7542556        0      0            2.242
## INFO  [10:32:12.393] [bbotk]                                 uhash
## INFO  [10:32:12.393] [bbotk]  99d5fc9b-4e45-4d06-ac21-bc41ccae13aa
## INFO  [10:32:12.394] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:32:12.401] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:32:12.404] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:32:12.613] [mlr3] Finished benchmark
## INFO  [10:32:12.623] [bbotk] Result of batch 3:
## INFO  [10:32:12.624] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:32:12.624] [bbotk]     9   477 4.934742e-07   0.6265038        0      0              0.2
## INFO  [10:32:12.624] [bbotk]                                 uhash
## INFO  [10:32:12.624] [bbotk]  21b9c788-77c9-4ef0-ace7-e374bab622f4
## INFO  [10:32:12.626] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:32:12.632] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:32:12.635] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:32:12.662] [mlr3] Finished benchmark
## INFO  [10:32:12.672] [bbotk] Result of batch 4:
## INFO  [10:32:12.673] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:32:12.673] [bbotk]     2   431 7.577693e-07   0.6019567        0      0            0.024
## INFO  [10:32:12.673] [bbotk]                                 uhash
## INFO  [10:32:12.673] [bbotk]  1138b565-13f4-4488-8fc1-020d1e3d00d5
## INFO  [10:32:12.675] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:32:12.682] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:32:12.684] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:32:13.053] [mlr3] Finished benchmark
## INFO  [10:32:13.064] [bbotk] Result of batch 5:
## INFO  [10:32:13.065] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:32:13.065] [bbotk]    12   408 3.925037e-07   0.6324579        0      0            0.365
## INFO  [10:32:13.065] [bbotk]                                 uhash
## INFO  [10:32:13.065] [bbotk]  b063042a-b058-4551-887e-a10ab475c600
## INFO  [10:32:13.066] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:32:13.073] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:32:13.076] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:32:18.727] [mlr3] Finished benchmark
## INFO  [10:32:18.738] [bbotk] Result of batch 6:
## INFO  [10:32:18.739] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:32:18.739] [bbotk]    22   524 9.115486e-07   0.7170149        0      0            5.648
## INFO  [10:32:18.739] [bbotk]                                 uhash
## INFO  [10:32:18.739] [bbotk]  dba96095-9ef6-4b61-911b-405ca382fd3c
## INFO  [10:32:18.741] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:32:18.747] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:32:18.750] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:32:18.770] [mlr3] Finished benchmark
## INFO  [10:32:18.780] [bbotk] Result of batch 7:
## INFO  [10:32:18.781] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:32:18.781] [bbotk]     2   781 7.851298e-07         0.5        0      0            0.016
## INFO  [10:32:18.781] [bbotk]                                 uhash
## INFO  [10:32:18.781] [bbotk]  73890ed9-c07e-42ad-87dd-6ff07c4e9f92
## INFO  [10:32:18.783] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:32:18.789] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:32:18.792] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:32:19.532] [mlr3] Finished benchmark
## INFO  [10:32:19.542] [bbotk] Result of batch 8:
## INFO  [10:32:19.543] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:32:19.543] [bbotk]    14   459 6.694759e-07   0.6481468        0      0            0.736
## INFO  [10:32:19.543] [bbotk]                                 uhash
## INFO  [10:32:19.543] [bbotk]  b6685d89-aa5b-42f0-8fef-4e3909db954b
## INFO  [10:32:19.544] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:32:19.551] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:32:19.554] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:32:23.528] [mlr3] Finished benchmark
## INFO  [10:32:23.539] [bbotk] Result of batch 9:
## INFO  [10:32:23.540] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:32:23.540] [bbotk]    24   422 6.918985e-07   0.8224722        0      0            3.969
## INFO  [10:32:23.540] [bbotk]                                 uhash
## INFO  [10:32:23.540] [bbotk]  42eff6be-d633-4d35-8aaf-492b1f870a74
## INFO  [10:32:23.541] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:32:23.548] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:32:23.551] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:32:25.536] [mlr3] Finished benchmark
## INFO  [10:32:25.549] [bbotk] Result of batch 10:
## INFO  [10:32:25.549] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:32:25.549] [bbotk]    21   477 1.994285e-07   0.6174021        0      0            1.983
## INFO  [10:32:25.549] [bbotk]                                 uhash
## INFO  [10:32:25.549] [bbotk]  76b05587-716c-406a-8ed7-6ae1e75d8cdd
## INFO  [10:32:25.551] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:32:25.558] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:32:25.561] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:32:31.634] [mlr3] Finished benchmark
## INFO  [10:32:31.645] [bbotk] Result of batch 11:
## INFO  [10:32:31.645] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:32:31.645] [bbotk]    19   682 5.976915e-07   0.6244399        0      0             6.07
## INFO  [10:32:31.645] [bbotk]                                 uhash
## INFO  [10:32:31.645] [bbotk]  b9199268-ae3d-4380-8d37-1bcf8856bf82
## INFO  [10:32:31.647] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:32:31.654] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:32:31.656] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:32:31.684] [mlr3] Finished benchmark
## INFO  [10:32:31.694] [bbotk] Result of batch 12:
## INFO  [10:32:31.695] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:32:31.695] [bbotk]     5   714 3.358172e-07   0.5013637        0      0            0.023
## INFO  [10:32:31.695] [bbotk]                                 uhash
## INFO  [10:32:31.695] [bbotk]  e8783f46-a344-4cd6-bf0a-4a730d04db6f
## INFO  [10:32:31.697] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:32:31.704] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:32:31.706] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:32:32.025] [mlr3] Finished benchmark
## INFO  [10:32:32.050] [bbotk] Result of batch 13:
## INFO  [10:32:32.051] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:32:32.051] [bbotk]     7   534 3.532281e-08   0.6794029        0      0            0.315
## INFO  [10:32:32.051] [bbotk]                                 uhash
## INFO  [10:32:32.051] [bbotk]  b4cfe7d8-a9c2-4192-88b1-4625b9897ee3
## INFO  [10:32:32.053] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:32:32.060] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:32:32.063] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:32:34.483] [mlr3] Finished benchmark
## INFO  [10:32:34.494] [bbotk] Result of batch 14:
## INFO  [10:32:34.494] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:32:34.494] [bbotk]    13   504 7.923116e-07   0.6629773        0      0            2.416
## INFO  [10:32:34.494] [bbotk]                                 uhash
## INFO  [10:32:34.494] [bbotk]  aeb19b8a-eafa-4165-8084-f18ffc923e38
## INFO  [10:32:34.496] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:32:34.503] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:32:34.505] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:32:35.787] [mlr3] Finished benchmark
## INFO  [10:32:35.804] [bbotk] Result of batch 15:
## INFO  [10:32:35.806] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:32:35.806] [bbotk]    18   469 1.345405e-07   0.7312427        0      0            1.278
## INFO  [10:32:35.806] [bbotk]                                 uhash
## INFO  [10:32:35.806] [bbotk]  775e2221-abda-4182-a489-f1582e7745c2
## INFO  [10:32:35.808] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:32:35.816] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:32:35.818] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:32:42.397] [mlr3] Finished benchmark
## INFO  [10:32:42.408] [bbotk] Result of batch 16:
## INFO  [10:32:42.409] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:32:42.409] [bbotk]    24   744 9.700011e-07   0.7733781        0      0            6.576
## INFO  [10:32:42.409] [bbotk]                                 uhash
## INFO  [10:32:42.409] [bbotk]  456e3e83-0275-45c4-b655-5948ce4e4cfd
## INFO  [10:32:42.410] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:32:42.417] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:32:42.420] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:32:44.260] [mlr3] Finished benchmark
## INFO  [10:32:44.279] [bbotk] Result of batch 17:
## INFO  [10:32:44.279] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:32:44.279] [bbotk]    16   326 3.324379e-07   0.6344608        0      0            1.837
## INFO  [10:32:44.279] [bbotk]                                 uhash
## INFO  [10:32:44.279] [bbotk]  cc079773-d378-42f3-99d2-b2c1454cc7de
## INFO  [10:32:44.281] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:32:44.288] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:32:44.290] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:32:45.785] [mlr3] Finished benchmark
## INFO  [10:32:45.796] [bbotk] Result of batch 18:
## INFO  [10:32:45.796] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:32:45.796] [bbotk]    10   524 8.752843e-07    0.837461        0      0            1.491
## INFO  [10:32:45.796] [bbotk]                                 uhash
## INFO  [10:32:45.796] [bbotk]  ceb03f5f-ae75-42d9-a236-0f4ccba05f65
## INFO  [10:32:45.798] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:32:45.805] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:32:45.807] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:32:45.961] [mlr3] Finished benchmark
## INFO  [10:32:45.976] [bbotk] Result of batch 19:
## INFO  [10:32:45.977] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:32:45.977] [bbotk]     3   870 6.285876e-07   0.6621615        0      0             0.15
## INFO  [10:32:45.977] [bbotk]                                 uhash
## INFO  [10:32:45.977] [bbotk]  d12057d0-24c9-4213-8754-425913cd6270
## INFO  [10:32:45.980] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:32:45.989] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:32:45.991] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:32:48.142] [mlr3] Finished benchmark
## INFO  [10:32:48.153] [bbotk] Result of batch 20:
## INFO  [10:32:48.154] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:32:48.154] [bbotk]    21   198 6.344985e-07    0.604879        0      0            2.148
## INFO  [10:32:48.154] [bbotk]                                 uhash
## INFO  [10:32:48.154] [bbotk]  bdd15550-5941-498f-92ac-5153e9167e85
## INFO  [10:32:48.155] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:32:48.162] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:32:48.165] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:32:51.927] [mlr3] Finished benchmark
## INFO  [10:32:51.940] [bbotk] Result of batch 21:
## INFO  [10:32:51.941] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:32:51.941] [bbotk]    20   418 5.725342e-08   0.7030428        0      0            3.758
## INFO  [10:32:51.941] [bbotk]                                 uhash
## INFO  [10:32:51.941] [bbotk]  c66f2306-c36c-4f36-9aa8-a929ea9b55fe
## INFO  [10:32:51.943] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:32:51.949] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:32:51.952] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:32:53.665] [mlr3] Finished benchmark
## INFO  [10:32:53.676] [bbotk] Result of batch 22:
## INFO  [10:32:53.677] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:32:53.677] [bbotk]    22   145 4.778899e-07   0.6682861        0      0             1.71
## INFO  [10:32:53.677] [bbotk]                                 uhash
## INFO  [10:32:53.677] [bbotk]  2d82bc0a-3409-4f59-bdde-07c96bd5de98
## INFO  [10:32:53.678] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:32:53.685] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:32:53.688] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:32:54.058] [mlr3] Finished benchmark
## INFO  [10:32:54.071] [bbotk] Result of batch 23:
## INFO  [10:32:54.072] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:32:54.072] [bbotk]    13    60 4.776232e-07   0.7121201        0      0            0.365
## INFO  [10:32:54.072] [bbotk]                                 uhash
## INFO  [10:32:54.072] [bbotk]  54223bb2-63f9-4e13-a9c7-0e881ffc1cc2
## INFO  [10:32:54.073] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:32:54.080] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:32:54.083] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:32:54.225] [mlr3] Finished benchmark
## INFO  [10:32:54.236] [bbotk] Result of batch 24:
## INFO  [10:32:54.237] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:32:54.237] [bbotk]     5   346 8.891335e-07   0.6779417        0      0            0.138
## INFO  [10:32:54.237] [bbotk]                                 uhash
## INFO  [10:32:54.237] [bbotk]  abef4589-763e-4430-b7f2-a10d92265582
## INFO  [10:32:54.239] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:32:54.246] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:32:54.248] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:32:57.882] [mlr3] Finished benchmark
## INFO  [10:32:57.895] [bbotk] Result of batch 25:
## INFO  [10:32:57.895] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:32:57.895] [bbotk]    21   391 3.940897e-07   0.6648402        0      0            3.628
## INFO  [10:32:57.895] [bbotk]                                 uhash
## INFO  [10:32:57.895] [bbotk]  d2fe4946-6431-4eca-9222-6aba4e183b80
## INFO  [10:32:57.897] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:32:57.904] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:32:57.907] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:33:00.407] [mlr3] Finished benchmark
## INFO  [10:33:00.424] [bbotk] Result of batch 26:
## INFO  [10:33:00.425] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:33:00.425] [bbotk]    25   201 7.464722e-07   0.6783009        0      0            2.497
## INFO  [10:33:00.425] [bbotk]                                 uhash
## INFO  [10:33:00.425] [bbotk]  25d01d86-a416-4557-aa5d-924281bd7dc0
## INFO  [10:33:00.427] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:33:00.435] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:33:00.438] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:33:01.021] [mlr3] Finished benchmark
## INFO  [10:33:01.032] [bbotk] Result of batch 27:
## INFO  [10:33:01.033] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:33:01.033] [bbotk]    13   132 8.965753e-07    0.666344        0      0             0.58
## INFO  [10:33:01.033] [bbotk]                                 uhash
## INFO  [10:33:01.033] [bbotk]  cf6e9218-a9b8-47f4-b20c-35fce7ee05e8
## INFO  [10:33:01.035] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:33:01.042] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:33:01.045] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:33:02.578] [mlr3] Finished benchmark
## INFO  [10:33:02.590] [bbotk] Result of batch 28:
## INFO  [10:33:02.591] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:33:02.591] [bbotk]    10   770 4.922726e-07   0.6645054        0      0            1.529
## INFO  [10:33:02.591] [bbotk]                                 uhash
## INFO  [10:33:02.591] [bbotk]  eeb8ba8c-2b9f-4c0f-873c-3cc300ba02ec
## INFO  [10:33:02.593] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:33:02.600] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:33:02.602] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:33:05.268] [mlr3] Finished benchmark
## INFO  [10:33:05.288] [bbotk] Result of batch 29:
## INFO  [10:33:05.289] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:33:05.289] [bbotk]    11   532 3.387596e-07   0.6340529        0      0            2.662
## INFO  [10:33:05.289] [bbotk]                                 uhash
## INFO  [10:33:05.289] [bbotk]  51d4289c-f1dd-4eca-bc1c-f5c029fa8aa1
## INFO  [10:33:05.292] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:33:05.302] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:33:05.305] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:33:06.518] [mlr3] Finished benchmark
## INFO  [10:33:06.529] [bbotk] Result of batch 30:
## INFO  [10:33:06.530] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:33:06.530] [bbotk]    14   864 9.696513e-07   0.6531268        0      0            1.209
## INFO  [10:33:06.530] [bbotk]                                 uhash
## INFO  [10:33:06.530] [bbotk]  85139130-3d8e-453c-ad2c-90595d4839e1
## INFO  [10:33:06.531] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:33:06.538] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:33:06.541] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:33:09.349] [mlr3] Finished benchmark
## INFO  [10:33:09.365] [bbotk] Result of batch 31:
## INFO  [10:33:09.365] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:33:09.365] [bbotk]    25   257 1.312043e-07   0.6720363        0      0            2.803
## INFO  [10:33:09.365] [bbotk]                                 uhash
## INFO  [10:33:09.365] [bbotk]  f38b5bcc-5433-48e5-a551-47294481b8a0
## INFO  [10:33:09.367] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:33:09.374] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:33:09.376] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:33:09.452] [mlr3] Finished benchmark
## INFO  [10:33:09.463] [bbotk] Result of batch 32:
## INFO  [10:33:09.464] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:33:09.464] [bbotk]     2   790 6.673123e-07   0.6257975        0      0            0.072
## INFO  [10:33:09.464] [bbotk]                                 uhash
## INFO  [10:33:09.464] [bbotk]  a54d8bf1-d7e5-4959-b14f-e29f85a6d60d
## INFO  [10:33:09.466] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:33:09.472] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:33:09.475] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:33:12.189] [mlr3] Finished benchmark
## INFO  [10:33:12.204] [bbotk] Result of batch 33:
## INFO  [10:33:12.205] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:33:12.205] [bbotk]    24   200 6.699734e-07   0.6594341        0      0             2.71
## INFO  [10:33:12.205] [bbotk]                                 uhash
## INFO  [10:33:12.205] [bbotk]  d7dac8ae-df44-41f9-b194-64caa91869e9
## INFO  [10:33:12.207] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:33:12.214] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:33:12.217] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:33:13.511] [mlr3] Finished benchmark
## INFO  [10:33:13.522] [bbotk] Result of batch 34:
## INFO  [10:33:13.522] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:33:13.522] [bbotk]    16   224 9.341452e-08    0.638065        0      0            1.291
## INFO  [10:33:13.522] [bbotk]                                 uhash
## INFO  [10:33:13.522] [bbotk]  bd4828bd-5ea0-46d7-919b-f3a7188609a2
## INFO  [10:33:13.524] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:33:13.531] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:33:13.534] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:33:15.271] [mlr3] Finished benchmark
## INFO  [10:33:15.286] [bbotk] Result of batch 35:
## INFO  [10:33:15.287] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:33:15.287] [bbotk]    23   148 1.259278e-07   0.6513613        0      0            1.733
## INFO  [10:33:15.287] [bbotk]                                 uhash
## INFO  [10:33:15.287] [bbotk]  143de62b-487b-46d4-af71-4522deebaaf9
## INFO  [10:33:15.288] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:33:15.295] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:33:15.298] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:33:22.589] [mlr3] Finished benchmark
## INFO  [10:33:22.607] [bbotk] Result of batch 36:
## INFO  [10:33:22.608] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:33:22.608] [bbotk]    20   908 2.488918e-07   0.6516718        0      0            7.287
## INFO  [10:33:22.608] [bbotk]                                 uhash
## INFO  [10:33:22.608] [bbotk]  fbc6ec29-d1c7-4df8-b3e6-ba977377f685
## INFO  [10:33:22.610] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:33:22.620] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:33:22.623] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:33:26.767] [mlr3] Finished benchmark
## INFO  [10:33:26.778] [bbotk] Result of batch 37:
## INFO  [10:33:26.779] [bbotk]  size maxit       decay classif.auc warnings errors runtime_learners
## INFO  [10:33:26.779] [bbotk]    15   768 8.54268e-08    0.698495        0      0            4.141
## INFO  [10:33:26.779] [bbotk]                                 uhash
## INFO  [10:33:26.779] [bbotk]  9dd56343-7d70-452f-b91c-bfd429f425c7
## INFO  [10:33:26.781] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:33:26.787] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:33:26.790] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:33:30.900] [mlr3] Finished benchmark
## INFO  [10:33:30.915] [bbotk] Result of batch 38:
## INFO  [10:33:30.916] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:33:30.916] [bbotk]    22   568 6.677052e-07   0.7149815        0      0            4.106
## INFO  [10:33:30.916] [bbotk]                                 uhash
## INFO  [10:33:30.916] [bbotk]  6922a4f1-0ba4-4b23-91af-8cfad490edd1
## INFO  [10:33:30.917] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:33:30.924] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:33:30.927] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:33:31.965] [mlr3] Finished benchmark
## INFO  [10:33:31.976] [bbotk] Result of batch 39:
## INFO  [10:33:31.977] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:33:31.977] [bbotk]    14   129 3.448113e-07   0.6955667        0      0            1.036
## INFO  [10:33:31.977] [bbotk]                                 uhash
## INFO  [10:33:31.977] [bbotk]  906afcac-5b3f-4638-a3b9-dc3240b4bb9a
## INFO  [10:33:31.987] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:33:31.999] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:33:32.003] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:33:35.873] [mlr3] Finished benchmark
## INFO  [10:33:35.884] [bbotk] Result of batch 40:
## INFO  [10:33:35.885] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:33:35.885] [bbotk]    11   921 8.092531e-08   0.6210245        0      0            3.867
## INFO  [10:33:35.885] [bbotk]                                 uhash
## INFO  [10:33:35.885] [bbotk]  60842ea1-5fab-40f6-80b3-816b8efaaf1d
## INFO  [10:33:35.888] [bbotk] Finished optimizing after 40 evaluation(s)
## INFO  [10:33:35.888] [bbotk] Result:
## INFO  [10:33:35.889] [bbotk]  size maxit        decay learner_param_vals  x_domain classif.auc
## INFO  [10:33:35.889] [bbotk]    10   524 8.752843e-07          <list[4]> <list[3]>    0.837461
## INFO  [10:33:38.801] [mlr3] Applying learner 'classif.nnet.tuned' on task 'credit' (iter 2/5)
## INFO  [10:33:38.825] [bbotk] Starting to optimize 3 parameter(s) with '<OptimizerRandomSearch>' and '<TerminatorRunTime> [secs=90]'
## INFO  [10:33:38.831] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:33:38.838] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:33:38.841] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:33:43.425] [mlr3] Finished benchmark
## INFO  [10:33:43.435] [bbotk] Result of batch 1:
## INFO  [10:33:43.436] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:33:43.436] [bbotk]    25   927 4.968778e-07    0.633816        0      0            4.581
## INFO  [10:33:43.436] [bbotk]                                 uhash
## INFO  [10:33:43.436] [bbotk]  1fb9e815-14ea-4918-9be4-334c251e9e61
## INFO  [10:33:43.438] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:33:43.445] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:33:43.448] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:33:43.624] [mlr3] Finished benchmark
## INFO  [10:33:43.635] [bbotk] Result of batch 2:
## INFO  [10:33:43.636] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:33:43.636] [bbotk]     2   226 8.826677e-07   0.5741103        0      0            0.172
## INFO  [10:33:43.636] [bbotk]                                 uhash
## INFO  [10:33:43.636] [bbotk]  5472a9c1-2944-434f-a7e6-34720eb27d2e
## INFO  [10:33:43.637] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:33:43.644] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:33:43.647] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:33:44.022] [mlr3] Finished benchmark
## INFO  [10:33:44.033] [bbotk] Result of batch 3:
## INFO  [10:33:44.034] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:33:44.034] [bbotk]     8    92 2.256231e-07   0.6690626        0      0            0.372
## INFO  [10:33:44.034] [bbotk]                                 uhash
## INFO  [10:33:44.034] [bbotk]  f036d229-598e-4362-8e8f-d5feb56c0360
## INFO  [10:33:44.035] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:33:44.042] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:33:44.044] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:33:44.063] [mlr3] Finished benchmark
## INFO  [10:33:44.074] [bbotk] Result of batch 4:
## INFO  [10:33:44.075] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:33:44.075] [bbotk]     4   121 8.236629e-07         0.5        0      0            0.015
## INFO  [10:33:44.075] [bbotk]                                 uhash
## INFO  [10:33:44.075] [bbotk]  348f83f0-e6f9-4c5f-81d3-f5100d6860d2
## INFO  [10:33:44.077] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:33:44.085] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:33:44.088] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:33:46.368] [mlr3] Finished benchmark
## INFO  [10:33:46.379] [bbotk] Result of batch 5:
## INFO  [10:33:46.380] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:33:46.380] [bbotk]    16   517 6.949358e-08   0.6523656        0      0            2.273
## INFO  [10:33:46.380] [bbotk]                                 uhash
## INFO  [10:33:46.380] [bbotk]  4bee7743-c705-45c6-9f0d-585c75f5824b
## INFO  [10:33:46.382] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:33:46.389] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:33:46.392] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:33:49.224] [mlr3] Finished benchmark
## INFO  [10:33:49.235] [bbotk] Result of batch 6:
## INFO  [10:33:49.236] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:33:49.236] [bbotk]    14   473 6.225143e-07   0.6473471        0      0            2.828
## INFO  [10:33:49.236] [bbotk]                                 uhash
## INFO  [10:33:49.236] [bbotk]  bccd5cdb-4dca-4c57-9dad-d51129a112a3
## INFO  [10:33:49.237] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:33:49.244] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:33:49.247] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:33:52.267] [mlr3] Finished benchmark
## INFO  [10:33:52.278] [bbotk] Result of batch 7:
## INFO  [10:33:52.278] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:33:52.278] [bbotk]    24   240 6.460873e-07   0.6432315        0      0            3.016
## INFO  [10:33:52.278] [bbotk]                                 uhash
## INFO  [10:33:52.278] [bbotk]  2ae2922d-32c7-4629-b410-26a013af4f02
## INFO  [10:33:52.280] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:33:52.291] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:33:52.293] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:33:53.516] [mlr3] Finished benchmark
## INFO  [10:33:53.527] [bbotk] Result of batch 8:
## INFO  [10:33:53.527] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:33:53.527] [bbotk]    10   785 8.753094e-07   0.6977429        0      0            1.219
## INFO  [10:33:53.527] [bbotk]                                 uhash
## INFO  [10:33:53.527] [bbotk]  97a98381-8c48-48e5-97cd-f720a20de5ca
## INFO  [10:33:53.529] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:33:53.536] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:33:53.539] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:33:54.785] [mlr3] Finished benchmark
## INFO  [10:33:54.796] [bbotk] Result of batch 9:
## INFO  [10:33:54.796] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:33:54.796] [bbotk]     8   744 8.059288e-07   0.7980125        0      0            1.243
## INFO  [10:33:54.796] [bbotk]                                 uhash
## INFO  [10:33:54.796] [bbotk]  56e1e2b9-a86d-49c4-aceb-04e9ead5792e
## INFO  [10:33:54.798] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:33:54.805] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:33:54.807] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:33:56.791] [mlr3] Finished benchmark
## INFO  [10:33:56.802] [bbotk] Result of batch 10:
## INFO  [10:33:56.803] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:33:56.803] [bbotk]    18   195 9.529746e-07   0.7046784        0      0             1.98
## INFO  [10:33:56.803] [bbotk]                                 uhash
## INFO  [10:33:56.803] [bbotk]  66ab68b9-4d3a-4472-a896-4b71095197cc
## INFO  [10:33:56.804] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:33:56.815] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:33:56.817] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:33:59.122] [mlr3] Finished benchmark
## INFO  [10:33:59.133] [bbotk] Result of batch 11:
## INFO  [10:33:59.134] [bbotk]  size maxit       decay classif.auc warnings errors runtime_learners
## INFO  [10:33:59.134] [bbotk]    16   671 8.08948e-07   0.6921557        0      0            2.302
## INFO  [10:33:59.134] [bbotk]                                 uhash
## INFO  [10:33:59.134] [bbotk]  1f758703-75fa-46bd-8289-62097420fc8e
## INFO  [10:33:59.135] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:33:59.142] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:33:59.144] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:34:02.322] [mlr3] Finished benchmark
## INFO  [10:34:02.333] [bbotk] Result of batch 12:
## INFO  [10:34:02.333] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:34:02.333] [bbotk]    18   864 2.931686e-07   0.6273847        0      0            3.174
## INFO  [10:34:02.333] [bbotk]                                 uhash
## INFO  [10:34:02.333] [bbotk]  2817f550-ca95-4c65-8d71-f540ff9143cf
## INFO  [10:34:02.335] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:34:02.342] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:34:02.344] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:34:02.640] [mlr3] Finished benchmark
## INFO  [10:34:02.654] [bbotk] Result of batch 13:
## INFO  [10:34:02.655] [bbotk]  size maxit       decay classif.auc warnings errors runtime_learners
## INFO  [10:34:02.655] [bbotk]    10   895 4.81355e-07   0.5769713        0      0            0.292
## INFO  [10:34:02.655] [bbotk]                                 uhash
## INFO  [10:34:02.655] [bbotk]  132df872-573f-474c-92ec-d689588ec991
## INFO  [10:34:02.657] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:34:02.663] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:34:02.666] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:34:02.767] [mlr3] Finished benchmark
## INFO  [10:34:02.778] [bbotk] Result of batch 14:
## INFO  [10:34:02.779] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:34:02.779] [bbotk]     4   138 2.959204e-07    0.621135        0      0            0.097
## INFO  [10:34:02.779] [bbotk]                                 uhash
## INFO  [10:34:02.779] [bbotk]  7f096ac4-5deb-4d6d-b2db-6e57fa0b1f99
## INFO  [10:34:02.780] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:34:02.787] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:34:02.790] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:34:03.155] [mlr3] Finished benchmark
## INFO  [10:34:03.165] [bbotk] Result of batch 15:
## INFO  [10:34:03.166] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:34:03.166] [bbotk]     6   944 2.432946e-07   0.6579352        0      0            0.362
## INFO  [10:34:03.166] [bbotk]                                 uhash
## INFO  [10:34:03.166] [bbotk]  b1733146-c921-4303-9fc3-1c71c48a2c98
## INFO  [10:34:03.168] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:34:03.175] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:34:03.177] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:34:03.189] [mlr3] Finished benchmark
## INFO  [10:34:03.204] [bbotk] Result of batch 16:
## INFO  [10:34:03.205] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:34:03.205] [bbotk]     2    71 6.558129e-08   0.4989154        0      0            0.008
## INFO  [10:34:03.205] [bbotk]                                 uhash
## INFO  [10:34:03.205] [bbotk]  f5a85dca-9682-4e5a-865a-ddb2106f8fae
## INFO  [10:34:03.206] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:34:03.214] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:34:03.216] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:34:04.571] [mlr3] Finished benchmark
## INFO  [10:34:04.582] [bbotk] Result of batch 17:
## INFO  [10:34:04.583] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:34:04.583] [bbotk]    16   925 4.462652e-07   0.6320865        0      0            1.351
## INFO  [10:34:04.583] [bbotk]                                 uhash
## INFO  [10:34:04.583] [bbotk]  20b5cae2-a14b-4654-a363-8dcf44ed080a
## INFO  [10:34:04.584] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:34:04.591] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:34:04.594] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:34:04.605] [mlr3] Finished benchmark
## INFO  [10:34:04.616] [bbotk] Result of batch 18:
## INFO  [10:34:04.616] [bbotk]  size maxit       decay classif.auc warnings errors runtime_learners
## INFO  [10:34:04.616] [bbotk]     1   571 7.33617e-07         0.5        0      0            0.008
## INFO  [10:34:04.616] [bbotk]                                 uhash
## INFO  [10:34:04.616] [bbotk]  2b3ba89a-ffe2-4072-8ce8-aea89a01e510
## INFO  [10:34:04.618] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:34:04.625] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:34:04.628] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:34:04.790] [mlr3] Finished benchmark
## INFO  [10:34:04.801] [bbotk] Result of batch 19:
## INFO  [10:34:04.801] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:34:04.801] [bbotk]    15   556 8.621237e-07   0.5902972        0      0             0.16
## INFO  [10:34:04.801] [bbotk]                                 uhash
## INFO  [10:34:04.801] [bbotk]  c4d0a969-81b4-4daa-aaef-fad521f187ea
## INFO  [10:34:04.803] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:34:04.810] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:34:04.812] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:34:04.853] [mlr3] Finished benchmark
## INFO  [10:34:04.864] [bbotk] Result of batch 20:
## INFO  [10:34:04.865] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:34:04.865] [bbotk]     4   736 7.943745e-07   0.5772469        0      0            0.038
## INFO  [10:34:04.865] [bbotk]                                 uhash
## INFO  [10:34:04.865] [bbotk]  90ce1a26-7e99-4837-84e9-e71b20934f03
## INFO  [10:34:04.866] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:34:04.873] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:34:04.876] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:34:09.492] [mlr3] Finished benchmark
## INFO  [10:34:09.503] [bbotk] Result of batch 21:
## INFO  [10:34:09.503] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:34:09.503] [bbotk]    15   991 4.896444e-07   0.8164859        0      0            4.613
## INFO  [10:34:09.503] [bbotk]                                 uhash
## INFO  [10:34:09.503] [bbotk]  3dfd46a6-8604-4474-be2c-21e8180aa018
## INFO  [10:34:09.505] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:34:09.516] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:34:09.519] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:34:09.687] [mlr3] Finished benchmark
## INFO  [10:34:09.698] [bbotk] Result of batch 22:
## INFO  [10:34:09.699] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:34:09.699] [bbotk]     6   521 4.253133e-07   0.5848918        0      0            0.165
## INFO  [10:34:09.699] [bbotk]                                 uhash
## INFO  [10:34:09.699] [bbotk]  1c60bdf0-5152-4303-87e4-c3ac96ef8201
## INFO  [10:34:09.700] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:34:09.707] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:34:09.709] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:34:09.752] [mlr3] Finished benchmark
## INFO  [10:34:09.763] [bbotk] Result of batch 23:
## INFO  [10:34:09.763] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:34:09.763] [bbotk]     1   396 5.185286e-07   0.6478103        0      0             0.04
## INFO  [10:34:09.763] [bbotk]                                 uhash
## INFO  [10:34:09.763] [bbotk]  7f752f2a-50d6-4934-a058-c0ac5cbad6e3
## INFO  [10:34:09.765] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:34:09.772] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:34:09.774] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:34:12.224] [mlr3] Finished benchmark
## INFO  [10:34:12.238] [bbotk] Result of batch 24:
## INFO  [10:34:12.239] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:34:12.239] [bbotk]    23   265 2.863235e-07   0.6061382        0      0            2.446
## INFO  [10:34:12.239] [bbotk]                                 uhash
## INFO  [10:34:12.239] [bbotk]  3c17da97-9b29-4792-9573-e9f5e3ccd4b8
## INFO  [10:34:12.241] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:34:12.248] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:34:12.250] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:34:12.327] [mlr3] Finished benchmark
## INFO  [10:34:12.338] [bbotk] Result of batch 25:
## INFO  [10:34:12.338] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:34:12.338] [bbotk]     5   885 9.570446e-07   0.5797854        0      0            0.073
## INFO  [10:34:12.338] [bbotk]                                 uhash
## INFO  [10:34:12.338] [bbotk]  47433b8d-a56f-4ba0-a270-95ca65a2da95
## INFO  [10:34:12.340] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:34:12.347] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:34:12.349] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:34:14.749] [mlr3] Finished benchmark
## INFO  [10:34:14.760] [bbotk] Result of batch 26:
## INFO  [10:34:14.760] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:34:14.760] [bbotk]    14   994 6.003776e-07    0.821305        0      0            2.395
## INFO  [10:34:14.760] [bbotk]                                 uhash
## INFO  [10:34:14.760] [bbotk]  3de381c5-99c6-4935-8b05-6c768ababda5
## INFO  [10:34:14.762] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:34:14.769] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:34:14.772] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:34:20.311] [mlr3] Finished benchmark
## INFO  [10:34:20.325] [bbotk] Result of batch 27:
## INFO  [10:34:20.326] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:34:20.326] [bbotk]    20   864 4.072446e-07   0.6749897        0      0            5.536
## INFO  [10:34:20.326] [bbotk]                                 uhash
## INFO  [10:34:20.326] [bbotk]  30f0dd44-bfc6-45ba-a0bc-f216a5e8c9c5
## INFO  [10:34:20.327] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:34:20.334] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:34:20.337] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:34:20.349] [mlr3] Finished benchmark
## INFO  [10:34:20.360] [bbotk] Result of batch 28:
## INFO  [10:34:20.361] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:34:20.361] [bbotk]     2   200 9.340425e-07         0.5        0      0            0.009
## INFO  [10:34:20.361] [bbotk]                                 uhash
## INFO  [10:34:20.361] [bbotk]  29bedee9-2867-49b8-b280-625b4d0871b7
## INFO  [10:34:20.363] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:34:20.371] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:34:20.373] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:34:22.865] [mlr3] Finished benchmark
## INFO  [10:34:22.876] [bbotk] Result of batch 29:
## INFO  [10:34:22.877] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:34:22.877] [bbotk]    25   798 7.546768e-07   0.6440699        0      0            2.489
## INFO  [10:34:22.877] [bbotk]                                 uhash
## INFO  [10:34:22.877] [bbotk]  21c64758-dfdc-4570-b2bf-3667ab47d0c9
## INFO  [10:34:22.879] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:34:22.886] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:34:22.892] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:34:26.426] [mlr3] Finished benchmark
## INFO  [10:34:26.438] [bbotk] Result of batch 30:
## INFO  [10:34:26.439] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:34:26.439] [bbotk]    11   793 2.860464e-07   0.7213285        0      0             3.53
## INFO  [10:34:26.439] [bbotk]                                 uhash
## INFO  [10:34:26.439] [bbotk]  83596aec-d6e8-4de6-a346-99d57f5ef803
## INFO  [10:34:26.440] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:34:26.448] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:34:26.450] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:34:27.051] [mlr3] Finished benchmark
## INFO  [10:34:27.063] [bbotk] Result of batch 31:
## INFO  [10:34:27.064] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:34:27.064] [bbotk]     9   158 2.927323e-08   0.7420473        0      0            0.597
## INFO  [10:34:27.064] [bbotk]                                 uhash
## INFO  [10:34:27.064] [bbotk]  4143351e-8314-49a6-b57b-18a7929e1f6e
## INFO  [10:34:27.066] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:34:27.073] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:34:27.076] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:34:28.371] [mlr3] Finished benchmark
## INFO  [10:34:28.382] [bbotk] Result of batch 32:
## INFO  [10:34:28.383] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:34:28.383] [bbotk]    15   193 1.790674e-07    0.630058        0      0            1.292
## INFO  [10:34:28.383] [bbotk]                                 uhash
## INFO  [10:34:28.383] [bbotk]  f7e0c6eb-fc27-45c0-bfe8-35ff7d016a58
## INFO  [10:34:28.385] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:34:28.396] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:34:28.398] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:34:29.067] [mlr3] Finished benchmark
## INFO  [10:34:29.080] [bbotk] Result of batch 33:
## INFO  [10:34:29.081] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:34:29.081] [bbotk]     5   412 7.070222e-07   0.7702879        0      0            0.665
## INFO  [10:34:29.081] [bbotk]                                 uhash
## INFO  [10:34:29.081] [bbotk]  7dae7187-3e84-425d-9ac4-4d98a6193d27
## INFO  [10:34:29.083] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:34:29.091] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:34:29.094] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:34:31.221] [mlr3] Finished benchmark
## INFO  [10:34:31.233] [bbotk] Result of batch 34:
## INFO  [10:34:31.234] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:34:31.234] [bbotk]    16   818 6.579328e-07    0.677411        0      0            2.124
## INFO  [10:34:31.234] [bbotk]                                 uhash
## INFO  [10:34:31.234] [bbotk]  1c418a9b-1bd1-499d-86e8-4f5c6c32f2b7
## INFO  [10:34:31.235] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:34:31.242] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:34:31.245] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:34:33.401] [mlr3] Finished benchmark
## INFO  [10:34:33.423] [bbotk] Result of batch 35:
## INFO  [10:34:33.424] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:34:33.424] [bbotk]    10   744 3.422352e-07   0.6227883        0      0            2.152
## INFO  [10:34:33.424] [bbotk]                                 uhash
## INFO  [10:34:33.424] [bbotk]  654deacf-c708-4441-b729-8b52609797e1
## INFO  [10:34:33.426] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:34:33.434] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:34:33.437] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:34:34.329] [mlr3] Finished benchmark
## INFO  [10:34:34.342] [bbotk] Result of batch 36:
## INFO  [10:34:34.343] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:34:34.343] [bbotk]    17   110 2.016451e-07   0.6242774        0      0            0.886
## INFO  [10:34:34.343] [bbotk]                                 uhash
## INFO  [10:34:34.343] [bbotk]  804066f2-64e2-4cee-af81-a72e3bc9f4b3
## INFO  [10:34:34.344] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:34:34.352] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:34:34.355] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:34:35.448] [mlr3] Finished benchmark
## INFO  [10:34:35.460] [bbotk] Result of batch 37:
## INFO  [10:34:35.461] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:34:35.461] [bbotk]    14   253 2.232124e-07   0.6307088        0      0            1.088
## INFO  [10:34:35.461] [bbotk]                                 uhash
## INFO  [10:34:35.461] [bbotk]  c2b4add6-c48f-4a7e-8384-dc344b7126f7
## INFO  [10:34:35.463] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:34:35.471] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:34:35.474] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:34:35.606] [mlr3] Finished benchmark
## INFO  [10:34:35.618] [bbotk] Result of batch 38:
## INFO  [10:34:35.618] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:34:35.618] [bbotk]     3   558 6.560051e-07   0.6303101        0      0            0.124
## INFO  [10:34:35.618] [bbotk]                                 uhash
## INFO  [10:34:35.618] [bbotk]  8ae9873c-e08f-404d-8a36-51f1b604bfbc
## INFO  [10:34:35.620] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:34:35.627] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:34:35.630] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:34:40.257] [mlr3] Finished benchmark
## INFO  [10:34:40.271] [bbotk] Result of batch 39:
## INFO  [10:34:40.272] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:34:40.272] [bbotk]    18   728 3.559142e-07   0.7363077        0      0            4.623
## INFO  [10:34:40.272] [bbotk]                                 uhash
## INFO  [10:34:40.272] [bbotk]  689330da-11f3-4e5e-9781-5e78c8cc4a23
## INFO  [10:34:40.274] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:34:40.282] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:34:40.285] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:34:42.990] [mlr3] Finished benchmark
## INFO  [10:34:43.008] [bbotk] Result of batch 40:
## INFO  [10:34:43.009] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:34:43.009] [bbotk]    23   206 8.864399e-08   0.6760861        0      0            2.701
## INFO  [10:34:43.009] [bbotk]                                 uhash
## INFO  [10:34:43.009] [bbotk]  5401bb22-7d85-4620-ab52-61c93c0a7919
## INFO  [10:34:43.010] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:34:43.018] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:34:43.021] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:34:48.385] [mlr3] Finished benchmark
## INFO  [10:34:48.397] [bbotk] Result of batch 41:
## INFO  [10:34:48.398] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:34:48.398] [bbotk]    25   474 8.199991e-07   0.6257314        0      0            5.358
## INFO  [10:34:48.398] [bbotk]                                 uhash
## INFO  [10:34:48.398] [bbotk]  a362a6d9-2c8a-4624-a5dc-5926aaa5bc12
## INFO  [10:34:48.400] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:34:48.409] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:34:48.412] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:34:48.975] [mlr3] Finished benchmark
## INFO  [10:34:48.988] [bbotk] Result of batch 42:
## INFO  [10:34:48.989] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:34:48.989] [bbotk]    10   144 2.504268e-07   0.6374216        0      0             0.56
## INFO  [10:34:48.989] [bbotk]                                 uhash
## INFO  [10:34:48.989] [bbotk]  94bb701d-6fba-4c91-b3b3-a55f99ebe38b
## INFO  [10:34:48.991] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:34:48.999] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:34:49.002] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:34:51.465] [mlr3] Finished benchmark
## INFO  [10:34:51.479] [bbotk] Result of batch 43:
## INFO  [10:34:51.480] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:34:51.480] [bbotk]    11   549 6.842607e-07   0.6548983        0      0            2.454
## INFO  [10:34:51.480] [bbotk]                                 uhash
## INFO  [10:34:51.480] [bbotk]  b0f94e12-6a42-4fc2-92a0-cefc900e8000
## INFO  [10:34:51.482] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:34:51.490] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:34:51.493] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:34:54.105] [mlr3] Finished benchmark
## INFO  [10:34:54.117] [bbotk] Result of batch 44:
## INFO  [10:34:54.118] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:34:54.118] [bbotk]     9   658 7.020464e-07   0.6175764        0      0            2.608
## INFO  [10:34:54.118] [bbotk]                                 uhash
## INFO  [10:34:54.118] [bbotk]  02f3bfd1-8453-40b3-9fcf-3cdfca1fca24
## INFO  [10:34:54.119] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:34:54.126] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:34:54.129] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:34:54.208] [mlr3] Finished benchmark
## INFO  [10:34:54.225] [bbotk] Result of batch 45:
## INFO  [10:34:54.225] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:34:54.225] [bbotk]     2   238 4.271267e-07   0.5949346        0      0            0.075
## INFO  [10:34:54.225] [bbotk]                                 uhash
## INFO  [10:34:54.225] [bbotk]  490979ee-a29a-4831-a596-8fcb607d00a9
## INFO  [10:34:54.227] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:34:54.234] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:34:54.236] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:34:54.785] [mlr3] Finished benchmark
## INFO  [10:34:54.796] [bbotk] Result of batch 46:
## INFO  [10:34:54.796] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:34:54.796] [bbotk]    14   258 5.879298e-07   0.6124231        0      0            0.544
## INFO  [10:34:54.796] [bbotk]                                 uhash
## INFO  [10:34:54.796] [bbotk]  23e02095-4540-4a6e-949e-31b76597555b
## INFO  [10:34:54.798] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:34:54.805] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:34:54.808] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:34:59.179] [mlr3] Finished benchmark
## INFO  [10:34:59.190] [bbotk] Result of batch 47:
## INFO  [10:34:59.191] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:34:59.191] [bbotk]    20   468 9.309008e-07   0.6440699        0      0            4.368
## INFO  [10:34:59.191] [bbotk]                                 uhash
## INFO  [10:34:59.191] [bbotk]  0d405473-35fa-4934-bbc8-af7e23b5dfa4
## INFO  [10:34:59.193] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:34:59.200] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:34:59.202] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:35:01.212] [mlr3] Finished benchmark
## INFO  [10:35:01.223] [bbotk] Result of batch 48:
## INFO  [10:35:01.224] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:35:01.224] [bbotk]    14   566 6.168894e-07   0.6212523        0      0            2.006
## INFO  [10:35:01.224] [bbotk]                                 uhash
## INFO  [10:35:01.224] [bbotk]  2e3141b6-3025-44ce-ba7d-512184943949
## INFO  [10:35:01.225] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:35:01.232] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:35:01.235] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:35:01.474] [mlr3] Finished benchmark
## INFO  [10:35:01.485] [bbotk] Result of batch 49:
## INFO  [10:35:01.486] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:35:01.486] [bbotk]     6   160 9.403406e-07   0.6189248        0      0            0.236
## INFO  [10:35:01.486] [bbotk]                                 uhash
## INFO  [10:35:01.486] [bbotk]  5a868113-22ca-4ba4-adcf-1db200e216a0
## INFO  [10:35:01.487] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:35:01.494] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:35:01.497] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:35:02.706] [mlr3] Finished benchmark
## INFO  [10:35:02.718] [bbotk] Result of batch 50:
## INFO  [10:35:02.718] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:35:02.718] [bbotk]     8   795 7.388082e-07   0.6945829        0      0            1.206
## INFO  [10:35:02.718] [bbotk]                                 uhash
## INFO  [10:35:02.718] [bbotk]  5ee01bc8-9e9f-4d16-b9c6-503cd4bb3507
## INFO  [10:35:02.720] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:35:02.731] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:35:02.734] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:35:10.904] [mlr3] Finished benchmark
## INFO  [10:35:10.915] [bbotk] Result of batch 51:
## INFO  [10:35:10.916] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:35:10.916] [bbotk]    25   721 2.787597e-07   0.8114674        0      0            8.167
## INFO  [10:35:10.916] [bbotk]                                 uhash
## INFO  [10:35:10.916] [bbotk]  79509879-7022-480e-a76a-7943daeaec0a
## INFO  [10:35:10.919] [bbotk] Finished optimizing after 51 evaluation(s)
## INFO  [10:35:10.919] [bbotk] Result:
## INFO  [10:35:10.920] [bbotk]  size maxit        decay learner_param_vals  x_domain classif.auc
## INFO  [10:35:10.920] [bbotk]    14   994 6.003776e-07          <list[4]> <list[3]>    0.821305
## INFO  [10:35:13.496] [mlr3] Applying learner 'classif.nnet.tuned' on task 'credit' (iter 3/5)
## INFO  [10:35:13.514] [bbotk] Starting to optimize 3 parameter(s) with '<OptimizerRandomSearch>' and '<TerminatorRunTime> [secs=90]'
## INFO  [10:35:13.525] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:35:13.532] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:35:13.534] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:35:18.870] [mlr3] Finished benchmark
## INFO  [10:35:18.879] [bbotk] Result of batch 1:
## INFO  [10:35:18.880] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:35:18.880] [bbotk]    21   619 8.604745e-07   0.6693897        0      0            5.332
## INFO  [10:35:18.880] [bbotk]                                 uhash
## INFO  [10:35:18.880] [bbotk]  40585a89-ba12-4c0c-affb-89959647b998
## INFO  [10:35:18.882] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:35:18.889] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:35:18.891] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:35:25.442] [mlr3] Finished benchmark
## INFO  [10:35:25.453] [bbotk] Result of batch 2:
## INFO  [10:35:25.453] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:35:25.453] [bbotk]    21   686 6.762934e-08   0.6680772        0      0            6.547
## INFO  [10:35:25.453] [bbotk]                                 uhash
## INFO  [10:35:25.453] [bbotk]  559feb07-20bb-4c1c-8854-303a2ac91159
## INFO  [10:35:25.455] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:35:25.462] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:35:25.465] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:35:27.136] [mlr3] Finished benchmark
## INFO  [10:35:27.147] [bbotk] Result of batch 3:
## INFO  [10:35:27.147] [bbotk]  size maxit       decay classif.auc warnings errors runtime_learners
## INFO  [10:35:27.147] [bbotk]    22   149 8.90793e-07   0.6546953        0      0            1.668
## INFO  [10:35:27.147] [bbotk]                                 uhash
## INFO  [10:35:27.147] [bbotk]  4d2c8e66-d956-40a9-8598-8a902b9d43a6
## INFO  [10:35:27.149] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:35:27.156] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:35:27.159] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:35:36.483] [mlr3] Finished benchmark
## INFO  [10:35:36.494] [bbotk] Result of batch 4:
## INFO  [10:35:36.495] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:35:36.495] [bbotk]    22   867 2.589757e-07    0.655327        0      0            9.321
## INFO  [10:35:36.495] [bbotk]                                 uhash
## INFO  [10:35:36.495] [bbotk]  66dd4703-4dd6-4e4a-83b3-cdd7eec9ec40
## INFO  [10:35:36.497] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:35:36.503] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:35:36.506] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:35:38.176] [mlr3] Finished benchmark
## INFO  [10:35:38.188] [bbotk] Result of batch 5:
## INFO  [10:35:38.189] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:35:38.189] [bbotk]    20   617 2.031858e-07   0.6327703        0      0            1.665
## INFO  [10:35:38.189] [bbotk]                                 uhash
## INFO  [10:35:38.189] [bbotk]  1fe608f4-213c-45a0-ae1c-dbd16c35f759
## INFO  [10:35:38.190] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:35:38.197] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:35:38.200] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:35:40.447] [mlr3] Finished benchmark
## INFO  [10:35:40.459] [bbotk] Result of batch 6:
## INFO  [10:35:40.459] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:35:40.459] [bbotk]    18   707 6.042394e-07   0.6977787        0      0            2.244
## INFO  [10:35:40.459] [bbotk]                                 uhash
## INFO  [10:35:40.459] [bbotk]  b18d15b2-1159-42b3-838f-413948e39a61
## INFO  [10:35:40.461] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:35:40.469] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:35:40.473] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:35:41.114] [mlr3] Finished benchmark
## INFO  [10:35:41.129] [bbotk] Result of batch 7:
## INFO  [10:35:41.130] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:35:41.130] [bbotk]    19    70 3.139536e-07   0.6707328        0      0            0.636
## INFO  [10:35:41.130] [bbotk]                                 uhash
## INFO  [10:35:41.130] [bbotk]  a83462ab-e3fb-47f5-a055-35e741287af8
## INFO  [10:35:41.143] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:35:41.158] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:35:41.161] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:35:44.050] [mlr3] Finished benchmark
## INFO  [10:35:44.061] [bbotk] Result of batch 8:
## INFO  [10:35:44.062] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:35:44.062] [bbotk]    23   240 9.909161e-07   0.6674455        0      0            2.885
## INFO  [10:35:44.062] [bbotk]                                 uhash
## INFO  [10:35:44.062] [bbotk]  0645f2c4-41ca-4575-a520-a18e448685e8
## INFO  [10:35:44.063] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:35:44.070] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:35:44.073] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:35:44.750] [mlr3] Finished benchmark
## INFO  [10:35:44.761] [bbotk] Result of batch 9:
## INFO  [10:35:44.761] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:35:44.761] [bbotk]     8   580 5.917572e-08   0.7946043        0      0            0.673
## INFO  [10:35:44.761] [bbotk]                                 uhash
## INFO  [10:35:44.761] [bbotk]  10d1a268-9cc3-4677-9d01-dbbcb8bc91b6
## INFO  [10:35:44.763] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:35:44.770] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:35:44.772] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:35:48.045] [mlr3] Finished benchmark
## INFO  [10:35:48.064] [bbotk] Result of batch 10:
## INFO  [10:35:48.065] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:35:48.065] [bbotk]    12   658 1.062217e-07   0.8128864        0      0            3.269
## INFO  [10:35:48.065] [bbotk]                                 uhash
## INFO  [10:35:48.065] [bbotk]  4ccd2464-8362-49fd-8f63-72c48e8f6af7
## INFO  [10:35:48.068] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:35:48.075] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:35:48.077] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:35:48.616] [mlr3] Finished benchmark
## INFO  [10:35:48.627] [bbotk] Result of batch 11:
## INFO  [10:35:48.627] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:35:48.627] [bbotk]    17    62 9.190348e-07   0.6449379        0      0            0.535
## INFO  [10:35:48.627] [bbotk]                                 uhash
## INFO  [10:35:48.627] [bbotk]  c3179d52-f8e0-4ea8-adf5-64d423a4fada
## INFO  [10:35:48.629] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:35:48.636] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:35:48.638] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:35:48.707] [mlr3] Finished benchmark
## INFO  [10:35:48.718] [bbotk] Result of batch 12:
## INFO  [10:35:48.719] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:35:48.719] [bbotk]     2   286 9.424395e-07   0.6366402        0      0            0.065
## INFO  [10:35:48.719] [bbotk]                                 uhash
## INFO  [10:35:48.719] [bbotk]  0729192e-fae2-45b6-b4d4-8d4f27b44bb8
## INFO  [10:35:48.720] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:35:48.727] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:35:48.730] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:35:50.695] [mlr3] Finished benchmark
## INFO  [10:35:50.710] [bbotk] Result of batch 13:
## INFO  [10:35:50.710] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:35:50.710] [bbotk]    10   406 9.855678e-07   0.8431704        0      0            1.961
## INFO  [10:35:50.710] [bbotk]                                 uhash
## INFO  [10:35:50.710] [bbotk]  40fed0e3-89d5-4f43-a879-668478dc01b5
## INFO  [10:35:50.712] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:35:50.719] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:35:50.721] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:35:51.110] [mlr3] Finished benchmark
## INFO  [10:35:51.120] [bbotk] Result of batch 14:
## INFO  [10:35:51.121] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:35:51.121] [bbotk]     4   577 3.886486e-07   0.6845624        0      0            0.385
## INFO  [10:35:51.121] [bbotk]                                 uhash
## INFO  [10:35:51.121] [bbotk]  25eca6f5-3af7-4330-b32c-cdacb56bbbdb
## INFO  [10:35:51.123] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:35:51.130] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:35:51.132] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:35:51.175] [mlr3] Finished benchmark
## INFO  [10:35:51.186] [bbotk] Result of batch 15:
## INFO  [10:35:51.186] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:35:51.186] [bbotk]     4   265 3.582679e-07   0.6197196        0      0             0.04
## INFO  [10:35:51.186] [bbotk]                                 uhash
## INFO  [10:35:51.186] [bbotk]  a2a3793d-a72c-4878-9d7e-e5e5a8be177b
## INFO  [10:35:51.188] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:35:51.198] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:35:51.202] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:35:53.076] [mlr3] Finished benchmark
## INFO  [10:35:53.087] [bbotk] Result of batch 16:
## INFO  [10:35:53.088] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:35:53.088] [bbotk]    16   214 7.303307e-07   0.6300657        0      0            1.868
## INFO  [10:35:53.088] [bbotk]                                 uhash
## INFO  [10:35:53.088] [bbotk]  0e3e9b3c-5b88-4b52-94a4-614ccc11338d
## INFO  [10:35:53.089] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:35:53.096] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:35:53.099] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:35:57.594] [mlr3] Finished benchmark
## INFO  [10:35:57.606] [bbotk] Result of batch 17:
## INFO  [10:35:57.606] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:35:57.606] [bbotk]    18   962 7.246753e-07   0.6566333        0      0            4.492
## INFO  [10:35:57.606] [bbotk]                                 uhash
## INFO  [10:35:57.606] [bbotk]  018f1754-2284-426c-8a73-0557264d6852
## INFO  [10:35:57.608] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:35:57.615] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:35:57.618] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:35:58.195] [mlr3] Finished benchmark
## INFO  [10:35:58.214] [bbotk] Result of batch 18:
## INFO  [10:35:58.216] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:35:58.216] [bbotk]    12   108 7.257929e-07   0.6724684        0      0            0.575
## INFO  [10:35:58.216] [bbotk]                                 uhash
## INFO  [10:35:58.216] [bbotk]  8fa1ce5a-5d55-44d8-90a8-5e524dc4b408
## INFO  [10:35:58.218] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:35:58.224] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:35:58.227] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:36:01.432] [mlr3] Finished benchmark
## INFO  [10:36:01.443] [bbotk] Result of batch 19:
## INFO  [10:36:01.443] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:36:01.443] [bbotk]    21   286 5.155031e-07   0.7036294        0      0            3.201
## INFO  [10:36:01.443] [bbotk]                                 uhash
## INFO  [10:36:01.443] [bbotk]  837ae4e5-d681-4898-896a-8d13b8eed274
## INFO  [10:36:01.445] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:36:01.452] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:36:01.454] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:36:04.453] [mlr3] Finished benchmark
## INFO  [10:36:04.464] [bbotk] Result of batch 20:
## INFO  [10:36:04.465] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:36:04.465] [bbotk]    22   299 5.659666e-07   0.6749583        0      0            2.996
## INFO  [10:36:04.465] [bbotk]                                 uhash
## INFO  [10:36:04.465] [bbotk]  14c9985f-fd06-4540-919c-f730de153d32
## INFO  [10:36:04.467] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:36:04.474] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:36:04.476] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:36:05.129] [mlr3] Finished benchmark
## INFO  [10:36:05.142] [bbotk] Result of batch 21:
## INFO  [10:36:05.143] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:36:05.143] [bbotk]     7   484 3.701028e-07   0.7396845        0      0            0.645
## INFO  [10:36:05.143] [bbotk]                                 uhash
## INFO  [10:36:05.143] [bbotk]  2e69c3aa-53f7-4911-9b7b-233a10dcd11b
## INFO  [10:36:05.144] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:36:05.151] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:36:05.154] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:36:07.650] [mlr3] Finished benchmark
## INFO  [10:36:07.661] [bbotk] Result of batch 22:
## INFO  [10:36:07.662] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:36:07.662] [bbotk]    13   545 8.379664e-07   0.8060298        0      0            2.493
## INFO  [10:36:07.662] [bbotk]                                 uhash
## INFO  [10:36:07.662] [bbotk]  948cef2d-f847-49a5-933e-27ff258fbb11
## INFO  [10:36:07.663] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:36:07.670] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:36:07.673] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:36:08.183] [mlr3] Finished benchmark
## INFO  [10:36:08.194] [bbotk] Result of batch 23:
## INFO  [10:36:08.194] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:36:08.194] [bbotk]    13    94 9.123807e-07   0.7293752        0      0            0.506
## INFO  [10:36:08.194] [bbotk]                                 uhash
## INFO  [10:36:08.194] [bbotk]  ad6f0175-f624-4e32-9915-4643dba59986
## INFO  [10:36:08.196] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:36:08.210] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:36:08.214] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:36:09.342] [mlr3] Finished benchmark
## INFO  [10:36:09.352] [bbotk] Result of batch 24:
## INFO  [10:36:09.353] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:36:09.353] [bbotk]    16   145 9.683526e-07   0.7318467        0      0            1.124
## INFO  [10:36:09.353] [bbotk]                                 uhash
## INFO  [10:36:09.353] [bbotk]  9fe9e3e2-5394-48ad-be04-05d105d632a3
## INFO  [10:36:09.355] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:36:09.362] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:36:09.364] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:36:09.418] [mlr3] Finished benchmark
## INFO  [10:36:09.429] [bbotk] Result of batch 25:
## INFO  [10:36:09.430] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:36:09.430] [bbotk]     4    56 6.422795e-07   0.6077973        0      0             0.05
## INFO  [10:36:09.430] [bbotk]                                 uhash
## INFO  [10:36:09.430] [bbotk]  fd4b2898-c183-4ac9-a0be-7f336af95254
## INFO  [10:36:09.432] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:36:09.439] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:36:09.441] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:36:11.178] [mlr3] Finished benchmark
## INFO  [10:36:11.193] [bbotk] Result of batch 26:
## INFO  [10:36:11.193] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:36:11.193] [bbotk]    18   373 3.008377e-07   0.8462737        0      0            1.733
## INFO  [10:36:11.193] [bbotk]                                 uhash
## INFO  [10:36:11.193] [bbotk]  4ce956aa-c9e6-4afd-a4d5-6ebab7ce9c7e
## INFO  [10:36:11.195] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:36:11.202] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:36:11.204] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:36:17.706] [mlr3] Finished benchmark
## INFO  [10:36:17.718] [bbotk] Result of batch 27:
## INFO  [10:36:17.719] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:36:17.719] [bbotk]    24   840 8.142941e-08   0.8347194        0      0            6.498
## INFO  [10:36:17.719] [bbotk]                                 uhash
## INFO  [10:36:17.719] [bbotk]  4e6c5cf2-b2f8-48ca-811a-84983cd207fa
## INFO  [10:36:17.721] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:36:17.729] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:36:17.731] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:36:18.853] [mlr3] Finished benchmark
## INFO  [10:36:18.864] [bbotk] Result of batch 28:
## INFO  [10:36:18.865] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:36:18.865] [bbotk]    12   297 5.171562e-07   0.6476303        0      0            1.118
## INFO  [10:36:18.865] [bbotk]                                 uhash
## INFO  [10:36:18.865] [bbotk]  ea7f5b8b-20a2-4daf-a40a-543675d6c16e
## INFO  [10:36:18.866] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:36:18.880] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:36:18.884] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:36:19.464] [mlr3] Finished benchmark
## INFO  [10:36:19.475] [bbotk] Result of batch 29:
## INFO  [10:36:19.476] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:36:19.476] [bbotk]    20    60 5.757237e-07   0.6457229        0      0            0.576
## INFO  [10:36:19.476] [bbotk]                                 uhash
## INFO  [10:36:19.476] [bbotk]  b4bf2e5a-168e-4b8f-8c8a-dbc6a149f346
## INFO  [10:36:19.478] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:36:19.485] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:36:19.487] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:36:19.716] [mlr3] Finished benchmark
## INFO  [10:36:19.729] [bbotk] Result of batch 30:
## INFO  [10:36:19.730] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:36:19.730] [bbotk]     3   608 6.570584e-07    0.850395        0      0            0.225
## INFO  [10:36:19.730] [bbotk]                                 uhash
## INFO  [10:36:19.730] [bbotk]  d279d9b3-f117-47a3-8e06-6afa39777bbc
## INFO  [10:36:19.733] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:36:19.743] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:36:19.746] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:36:24.896] [mlr3] Finished benchmark
## INFO  [10:36:24.909] [bbotk] Result of batch 31:
## INFO  [10:36:24.909] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:36:24.909] [bbotk]    21   407 6.066348e-07   0.8304632        0      0            5.146
## INFO  [10:36:24.909] [bbotk]                                 uhash
## INFO  [10:36:24.909] [bbotk]  73b56bb3-9b77-4b14-a645-f8b4ebdd7beb
## INFO  [10:36:24.911] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:36:24.918] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:36:24.920] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:36:26.686] [mlr3] Finished benchmark
## INFO  [10:36:26.697] [bbotk] Result of batch 32:
## INFO  [10:36:26.698] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:36:26.698] [bbotk]    13   270 9.820237e-07   0.7719311        0      0            1.762
## INFO  [10:36:26.698] [bbotk]                                 uhash
## INFO  [10:36:26.698] [bbotk]  a3c96ae1-38bd-4ee2-a556-b0d290b74cf0
## INFO  [10:36:26.700] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:36:26.707] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:36:26.710] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:36:31.212] [mlr3] Finished benchmark
## INFO  [10:36:31.245] [bbotk] Result of batch 33:
## INFO  [10:36:31.246] [bbotk]  size maxit       decay classif.auc warnings errors runtime_learners
## INFO  [10:36:31.246] [bbotk]    24   308 9.99459e-07   0.6649801        0      0            4.497
## INFO  [10:36:31.246] [bbotk]                                 uhash
## INFO  [10:36:31.246] [bbotk]  3e4261b2-3957-4790-91f0-0b1adb09e6ac
## INFO  [10:36:31.248] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:36:31.256] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:36:31.259] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:36:31.982] [mlr3] Finished benchmark
## INFO  [10:36:32.000] [bbotk] Result of batch 34:
## INFO  [10:36:32.000] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:36:32.000] [bbotk]     9   840 6.315352e-07   0.6839552        0      0            0.718
## INFO  [10:36:32.000] [bbotk]                                 uhash
## INFO  [10:36:32.000] [bbotk]  b1b84d71-a1b1-4daa-a081-51bf0fda6f31
## INFO  [10:36:32.002] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:36:32.011] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:36:32.014] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:36:32.373] [mlr3] Finished benchmark
## INFO  [10:36:32.385] [bbotk] Result of batch 35:
## INFO  [10:36:32.386] [bbotk]  size maxit       decay classif.auc warnings errors runtime_learners
## INFO  [10:36:32.386] [bbotk]     9   130 2.96043e-07   0.6249939        0      0            0.355
## INFO  [10:36:32.386] [bbotk]                                 uhash
## INFO  [10:36:32.386] [bbotk]  b336595e-b452-45a3-a62d-9a02b7df6718
## INFO  [10:36:32.388] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:36:32.403] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:36:32.408] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:36:32.528] [mlr3] Finished benchmark
## INFO  [10:36:32.540] [bbotk] Result of batch 36:
## INFO  [10:36:32.541] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:36:32.541] [bbotk]     2   122 8.019102e-07   0.6521195        0      0            0.114
## INFO  [10:36:32.541] [bbotk]                                 uhash
## INFO  [10:36:32.541] [bbotk]  45321983-3afe-4fb6-9436-b3b260df2ecd
## INFO  [10:36:32.542] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:36:32.550] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:36:32.552] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:36:33.518] [mlr3] Finished benchmark
## INFO  [10:36:33.529] [bbotk] Result of batch 37:
## INFO  [10:36:33.530] [bbotk]  size maxit       decay classif.auc warnings errors runtime_learners
## INFO  [10:36:33.530] [bbotk]    11   934 8.63858e-07   0.6629195        0      0            0.962
## INFO  [10:36:33.530] [bbotk]                                 uhash
## INFO  [10:36:33.530] [bbotk]  60205a90-02c3-40c5-b71e-efea7351922d
## INFO  [10:36:33.532] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:36:33.539] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:36:33.541] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:36:41.883] [mlr3] Finished benchmark
## INFO  [10:36:41.896] [bbotk] Result of batch 38:
## INFO  [10:36:41.897] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:36:41.897] [bbotk]    21   962 1.511911e-07   0.6519233        0      0            8.336
## INFO  [10:36:41.897] [bbotk]                                 uhash
## INFO  [10:36:41.897] [bbotk]  c9c4272f-d1d7-441b-8cac-0d34eaa04c10
## INFO  [10:36:41.899] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:36:41.906] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:36:41.909] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:36:42.373] [mlr3] Finished benchmark
## INFO  [10:36:42.384] [bbotk] Result of batch 39:
## INFO  [10:36:42.385] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:36:42.385] [bbotk]     8   179 8.049895e-07   0.7791372        0      0             0.46
## INFO  [10:36:42.385] [bbotk]                                 uhash
## INFO  [10:36:42.385] [bbotk]  5228a022-5b9f-443e-9bb5-731a446d7311
## INFO  [10:36:42.387] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:36:42.394] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:36:42.397] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:36:43.187] [mlr3] Finished benchmark
## INFO  [10:36:43.200] [bbotk] Result of batch 40:
## INFO  [10:36:43.201] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:36:43.201] [bbotk]     5   986 1.818982e-07   0.6516596        0      0            0.786
## INFO  [10:36:43.201] [bbotk]                                 uhash
## INFO  [10:36:43.201] [bbotk]  dda43667-87ad-46a6-83f7-efec2dd05a27
## INFO  [10:36:43.202] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:36:43.209] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:36:43.212] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:36:44.187] [mlr3] Finished benchmark
## INFO  [10:36:44.199] [bbotk] Result of batch 41:
## INFO  [10:36:44.199] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:36:44.199] [bbotk]    16   481 3.168327e-07   0.6586204        0      0            0.971
## INFO  [10:36:44.199] [bbotk]                                 uhash
## INFO  [10:36:44.199] [bbotk]  cfb95e86-2af7-45c3-b68e-d94497fd6df4
## INFO  [10:36:44.203] [bbotk] Finished optimizing after 41 evaluation(s)
## INFO  [10:36:44.203] [bbotk] Result:
## INFO  [10:36:44.203] [bbotk]  size maxit        decay learner_param_vals  x_domain classif.auc
## INFO  [10:36:44.203] [bbotk]     3   608 6.570584e-07          <list[4]> <list[3]>    0.850395
## INFO  [10:36:44.377] [mlr3] Applying learner 'classif.nnet.tuned' on task 'credit' (iter 4/5)
## INFO  [10:36:44.395] [bbotk] Starting to optimize 3 parameter(s) with '<OptimizerRandomSearch>' and '<TerminatorRunTime> [secs=90]'
## INFO  [10:36:44.401] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:36:44.408] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:36:44.411] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:36:45.468] [mlr3] Finished benchmark
## INFO  [10:36:45.478] [bbotk] Result of batch 1:
## INFO  [10:36:45.479] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:36:45.479] [bbotk]    13   933 5.873121e-07   0.7072606        0      0            1.054
## INFO  [10:36:45.479] [bbotk]                                 uhash
## INFO  [10:36:45.479] [bbotk]  b676b8da-8d5f-4aab-9e9b-fcbfca75cae6
## INFO  [10:36:45.481] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:36:45.512] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:36:45.516] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:36:45.580] [mlr3] Finished benchmark
## INFO  [10:36:45.592] [bbotk] Result of batch 2:
## INFO  [10:36:45.593] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:36:45.593] [bbotk]     4   271 4.296047e-07   0.5957941        0      0            0.057
## INFO  [10:36:45.593] [bbotk]                                 uhash
## INFO  [10:36:45.593] [bbotk]  c79d9ff4-43e4-491c-b707-bbc8d1aff350
## INFO  [10:36:45.595] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:36:45.602] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:36:45.604] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:36:49.387] [mlr3] Finished benchmark
## INFO  [10:36:49.398] [bbotk] Result of batch 3:
## INFO  [10:36:49.399] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:36:49.399] [bbotk]    18   740 1.411941e-07   0.6741889        0      0             3.78
## INFO  [10:36:49.399] [bbotk]                                 uhash
## INFO  [10:36:49.399] [bbotk]  1fd57de3-6aff-442b-979e-d7279f716903
## INFO  [10:36:49.401] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:36:49.408] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:36:49.411] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:36:49.604] [mlr3] Finished benchmark
## INFO  [10:36:49.620] [bbotk] Result of batch 4:
## INFO  [10:36:49.621] [bbotk]  size maxit       decay classif.auc warnings errors runtime_learners
## INFO  [10:36:49.621] [bbotk]     8    74 8.99349e-08   0.6161565        0      0             0.19
## INFO  [10:36:49.621] [bbotk]                                 uhash
## INFO  [10:36:49.621] [bbotk]  f2e65bd5-5c95-4404-ba69-d8dc2b94712f
## INFO  [10:36:49.624] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:36:49.637] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:36:49.640] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:36:52.035] [mlr3] Finished benchmark
## INFO  [10:36:52.046] [bbotk] Result of batch 5:
## INFO  [10:36:52.047] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:36:52.047] [bbotk]    17   567 7.599954e-07   0.6566981        0      0            2.391
## INFO  [10:36:52.047] [bbotk]                                 uhash
## INFO  [10:36:52.047] [bbotk]  792c0c17-a671-454d-bbb7-ab16045c3e47
## INFO  [10:36:52.049] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:36:52.056] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:36:52.058] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:36:52.166] [mlr3] Finished benchmark
## INFO  [10:36:52.177] [bbotk] Result of batch 6:
## INFO  [10:36:52.178] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:36:52.178] [bbotk]     6   608 6.955612e-07   0.5906136        0      0            0.104
## INFO  [10:36:52.178] [bbotk]                                 uhash
## INFO  [10:36:52.178] [bbotk]  7d04a0c4-62b0-4700-a928-4c2bcae6fc59
## INFO  [10:36:52.180] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:36:52.187] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:36:52.190] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:36:52.598] [mlr3] Finished benchmark
## INFO  [10:36:52.620] [bbotk] Result of batch 7:
## INFO  [10:36:52.622] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:36:52.622] [bbotk]    10    91 8.047404e-07    0.613298        0      0            0.405
## INFO  [10:36:52.622] [bbotk]                                 uhash
## INFO  [10:36:52.622] [bbotk]  71c8ba89-fb1a-4cd6-b6dd-922cffda818d
## INFO  [10:36:52.625] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:36:52.633] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:36:52.636] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:36:53.940] [mlr3] Finished benchmark
## INFO  [10:36:53.951] [bbotk] Result of batch 8:
## INFO  [10:36:53.952] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:36:53.952] [bbotk]    16   145 4.668474e-07   0.6553179        0      0            1.301
## INFO  [10:36:53.952] [bbotk]                                 uhash
## INFO  [10:36:53.952] [bbotk]  772e6264-d911-4946-9727-d264d2278085
## INFO  [10:36:53.953] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:36:53.960] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:36:53.963] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:36:55.912] [mlr3] Finished benchmark
## INFO  [10:36:55.923] [bbotk] Result of batch 9:
## INFO  [10:36:55.924] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:36:55.924] [bbotk]    10   560 5.225979e-07   0.6928964        0      0            1.945
## INFO  [10:36:55.924] [bbotk]                                 uhash
## INFO  [10:36:55.924] [bbotk]  e4faf268-32a4-4f38-b5d6-b1bb1dcd873c
## INFO  [10:36:55.925] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:36:55.933] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:36:55.939] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:37:00.441] [mlr3] Finished benchmark
## INFO  [10:37:00.455] [bbotk] Result of batch 10:
## INFO  [10:37:00.456] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:37:00.456] [bbotk]    23   458 5.701647e-07   0.6486068        0      0            4.496
## INFO  [10:37:00.456] [bbotk]                                 uhash
## INFO  [10:37:00.456] [bbotk]  59dd1b7c-6e32-4f8f-bc16-f9e63ac937b8
## INFO  [10:37:00.458] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:37:00.465] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:37:00.467] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:37:03.415] [mlr3] Finished benchmark
## INFO  [10:37:03.431] [bbotk] Result of batch 11:
## INFO  [10:37:03.432] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:37:03.432] [bbotk]    19   326 5.534848e-07   0.7228087        0      0            2.944
## INFO  [10:37:03.432] [bbotk]                                 uhash
## INFO  [10:37:03.432] [bbotk]  3fe2731f-830c-41ac-a6ad-c5d850f4bae7
## INFO  [10:37:03.436] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:37:03.444] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:37:03.447] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:37:05.367] [mlr3] Finished benchmark
## INFO  [10:37:05.385] [bbotk] Result of batch 12:
## INFO  [10:37:05.386] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:37:05.386] [bbotk]    11   578 6.760241e-07   0.7131279        0      0            1.916
## INFO  [10:37:05.386] [bbotk]                                 uhash
## INFO  [10:37:05.386] [bbotk]  cdf8a5e7-4a44-42a0-8d4d-02afa6c811f8
## INFO  [10:37:05.388] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:37:05.395] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:37:05.398] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:37:12.086] [mlr3] Finished benchmark
## INFO  [10:37:12.097] [bbotk] Result of batch 13:
## INFO  [10:37:12.098] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:37:12.098] [bbotk]    22   623 1.139261e-07   0.6635139        0      0            6.685
## INFO  [10:37:12.098] [bbotk]                                 uhash
## INFO  [10:37:12.098] [bbotk]  4ee8c390-85d4-4cba-b49a-e40bd798c685
## INFO  [10:37:12.099] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:37:12.106] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:37:12.109] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:37:12.128] [mlr3] Finished benchmark
## INFO  [10:37:12.140] [bbotk] Result of batch 14:
## INFO  [10:37:12.140] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:37:12.140] [bbotk]     4   405 2.359494e-07         0.5        0      0            0.015
## INFO  [10:37:12.140] [bbotk]                                 uhash
## INFO  [10:37:12.140] [bbotk]  20957a3a-184f-4ad8-9442-5327dd153ab4
## INFO  [10:37:12.142] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:37:12.155] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:37:12.159] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:37:16.309] [mlr3] Finished benchmark
## INFO  [10:37:16.320] [bbotk] Result of batch 15:
## INFO  [10:37:16.321] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:37:16.321] [bbotk]    24   322 4.050682e-07   0.7397436        0      0            4.145
## INFO  [10:37:16.321] [bbotk]                                 uhash
## INFO  [10:37:16.321] [bbotk]  247fa9d8-0297-4975-a8cd-091c25052ce2
## INFO  [10:37:16.323] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:37:16.330] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:37:16.332] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:37:20.913] [mlr3] Finished benchmark
## INFO  [10:37:20.924] [bbotk] Result of batch 16:
## INFO  [10:37:20.925] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:37:20.925] [bbotk]    14   796 7.433595e-07   0.8103087        0      0            4.577
## INFO  [10:37:20.925] [bbotk]                                 uhash
## INFO  [10:37:20.925] [bbotk]  3472d168-4fd1-431b-8530-4145a34b845e
## INFO  [10:37:20.927] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:37:20.934] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:37:20.937] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:37:21.364] [mlr3] Finished benchmark
## INFO  [10:37:21.382] [bbotk] Result of batch 17:
## INFO  [10:37:21.383] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:37:21.383] [bbotk]    16   363 7.358206e-07   0.6229919        0      0            0.422
## INFO  [10:37:21.383] [bbotk]                                 uhash
## INFO  [10:37:21.383] [bbotk]  a803c56f-1d49-4a0e-aa16-e403f6f0d09c
## INFO  [10:37:21.384] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:37:21.391] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:37:21.394] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:37:21.468] [mlr3] Finished benchmark
## INFO  [10:37:21.479] [bbotk] Result of batch 18:
## INFO  [10:37:21.480] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:37:21.480] [bbotk]     5   941 5.690379e-07   0.6185832        0      0            0.071
## INFO  [10:37:21.480] [bbotk]                                 uhash
## INFO  [10:37:21.480] [bbotk]  55a048df-26ad-4f49-bdd3-6460dac6d3d2
## INFO  [10:37:21.482] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:37:21.489] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:37:21.492] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:37:22.900] [mlr3] Finished benchmark
## INFO  [10:37:22.912] [bbotk] Result of batch 19:
## INFO  [10:37:22.912] [bbotk]  size maxit       decay classif.auc warnings errors runtime_learners
## INFO  [10:37:22.912] [bbotk]    10   982 2.85527e-07   0.8262428        0      0            1.404
## INFO  [10:37:22.912] [bbotk]                                 uhash
## INFO  [10:37:22.912] [bbotk]  92fbecf1-7850-434b-8999-3809a8a25924
## INFO  [10:37:22.914] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:37:22.928] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:37:22.932] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:37:28.264] [mlr3] Finished benchmark
## INFO  [10:37:28.277] [bbotk] Result of batch 20:
## INFO  [10:37:28.277] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:37:28.277] [bbotk]    23   487 4.052291e-07   0.6749869        0      0            5.325
## INFO  [10:37:28.277] [bbotk]                                 uhash
## INFO  [10:37:28.277] [bbotk]  f192c0bc-b7f3-4d38-bc1a-36514e235026
## INFO  [10:37:28.279] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:37:28.286] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:37:28.289] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:37:30.169] [mlr3] Finished benchmark
## INFO  [10:37:30.185] [bbotk] Result of batch 21:
## INFO  [10:37:30.186] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:37:30.186] [bbotk]     9   622 9.051214e-07   0.8196886        0      0            1.872
## INFO  [10:37:30.186] [bbotk]                                 uhash
## INFO  [10:37:30.186] [bbotk]  41d9d36a-4ba1-4910-b710-3d0a703480c3
## INFO  [10:37:30.189] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:37:30.200] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:37:30.204] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:37:30.648] [mlr3] Finished benchmark
## INFO  [10:37:30.665] [bbotk] Result of batch 22:
## INFO  [10:37:30.666] [bbotk]  size maxit       decay classif.auc warnings errors runtime_learners
## INFO  [10:37:30.666] [bbotk]     8   507 9.07732e-07   0.6089286        0      0            0.439
## INFO  [10:37:30.666] [bbotk]                                 uhash
## INFO  [10:37:30.666] [bbotk]  35b11852-8351-4fe5-b936-115200e4927e
## INFO  [10:37:30.668] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:37:30.675] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:37:30.678] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:37:34.326] [mlr3] Finished benchmark
## INFO  [10:37:34.338] [bbotk] Result of batch 23:
## INFO  [10:37:34.339] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:37:34.339] [bbotk]    23   396 6.290843e-07    0.638926        0      0            3.645
## INFO  [10:37:34.339] [bbotk]                                 uhash
## INFO  [10:37:34.339] [bbotk]  0515713e-50d0-4b55-bf0c-6e75a0c1d68a
## INFO  [10:37:34.341] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:37:34.349] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:37:34.351] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:37:34.384] [mlr3] Finished benchmark
## INFO  [10:37:34.401] [bbotk] Result of batch 24:
## INFO  [10:37:34.402] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:37:34.402] [bbotk]     4   375 1.842409e-07   0.5970761        0      0            0.029
## INFO  [10:37:34.402] [bbotk]                                 uhash
## INFO  [10:37:34.402] [bbotk]  64fa2760-cb49-4e9d-925d-fadde6190b8b
## INFO  [10:37:34.405] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:37:34.419] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:37:34.422] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:37:36.122] [mlr3] Finished benchmark
## INFO  [10:37:36.133] [bbotk] Result of batch 25:
## INFO  [10:37:36.134] [bbotk]  size maxit       decay classif.auc warnings errors runtime_learners
## INFO  [10:37:36.134] [bbotk]     9   539 9.52047e-07   0.7998299        0      0            1.696
## INFO  [10:37:36.134] [bbotk]                                 uhash
## INFO  [10:37:36.134] [bbotk]  b994aa0f-b5e1-46b5-8e4b-d9149a242b78
## INFO  [10:37:36.136] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:37:36.143] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:37:36.146] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:37:38.666] [mlr3] Finished benchmark
## INFO  [10:37:38.678] [bbotk] Result of batch 26:
## INFO  [10:37:38.678] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:37:38.678] [bbotk]    12   890 8.666457e-07   0.6906986        0      0            2.517
## INFO  [10:37:38.678] [bbotk]                                 uhash
## INFO  [10:37:38.678] [bbotk]  2584956f-e710-4275-8355-b00454688ed3
## INFO  [10:37:38.680] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:37:38.688] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:37:38.690] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:37:40.472] [mlr3] Finished benchmark
## INFO  [10:37:40.492] [bbotk] Result of batch 27:
## INFO  [10:37:40.493] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:37:40.493] [bbotk]    13   929 4.726298e-07   0.8223312        0      0            1.776
## INFO  [10:37:40.493] [bbotk]                                 uhash
## INFO  [10:37:40.493] [bbotk]  d617db0a-4b53-4c0a-9edf-b8bd79ba21d7
## INFO  [10:37:40.495] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:37:40.502] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:37:40.505] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:37:43.794] [mlr3] Finished benchmark
## INFO  [10:37:43.805] [bbotk] Result of batch 28:
## INFO  [10:37:43.806] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:37:43.806] [bbotk]    21   349 5.958981e-07   0.6802198        0      0            3.285
## INFO  [10:37:43.806] [bbotk]                                 uhash
## INFO  [10:37:43.806] [bbotk]  08e9f687-20f8-4454-adcb-dec35ce32723
## INFO  [10:37:43.808] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:37:43.815] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:37:43.817] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:37:47.558] [mlr3] Finished benchmark
## INFO  [10:37:47.576] [bbotk] Result of batch 29:
## INFO  [10:37:47.577] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:37:47.577] [bbotk]    23   550 6.140905e-07   0.6744309        0      0            3.737
## INFO  [10:37:47.577] [bbotk]                                 uhash
## INFO  [10:37:47.577] [bbotk]  55163de8-0f35-4b59-95a4-17c5712a8710
## INFO  [10:37:47.578] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:37:47.585] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:37:47.588] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:37:47.780] [mlr3] Finished benchmark
## INFO  [10:37:47.791] [bbotk] Result of batch 30:
## INFO  [10:37:47.792] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:37:47.792] [bbotk]     4   547 4.933017e-08   0.6349621        0      0            0.188
## INFO  [10:37:47.792] [bbotk]                                 uhash
## INFO  [10:37:47.792] [bbotk]  92cbfc61-02bf-4775-9070-c82c574d705e
## INFO  [10:37:47.793] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:37:47.801] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:37:47.803] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:37:49.918] [mlr3] Finished benchmark
## INFO  [10:37:49.936] [bbotk] Result of batch 31:
## INFO  [10:37:49.937] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:37:49.937] [bbotk]    15   263 3.291115e-07    0.757411        0      0             2.11
## INFO  [10:37:49.937] [bbotk]                                 uhash
## INFO  [10:37:49.937] [bbotk]  d96d0752-9c93-4d49-b37e-38c2fac8d143
## INFO  [10:37:49.938] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:37:49.945] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:37:49.948] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:37:50.612] [mlr3] Finished benchmark
## INFO  [10:37:50.623] [bbotk] Result of batch 32:
## INFO  [10:37:50.624] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:37:50.624] [bbotk]     9   619 1.933113e-07   0.7094715        0      0            0.661
## INFO  [10:37:50.624] [bbotk]                                 uhash
## INFO  [10:37:50.624] [bbotk]  403d09ce-98d2-4b1b-8985-cb007e99d8a0
## INFO  [10:37:50.625] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:37:50.633] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:37:50.635] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:37:51.344] [mlr3] Finished benchmark
## INFO  [10:37:51.362] [bbotk] Result of batch 33:
## INFO  [10:37:51.363] [bbotk]  size maxit       decay classif.auc warnings errors runtime_learners
## INFO  [10:37:51.363] [bbotk]     8   784 8.29537e-07   0.6883111        0      0            0.704
## INFO  [10:37:51.363] [bbotk]                                 uhash
## INFO  [10:37:51.363] [bbotk]  5c85fd4c-5d59-4acd-8b1f-e6982952d498
## INFO  [10:37:51.364] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:37:51.371] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:37:51.374] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:37:51.589] [mlr3] Finished benchmark
## INFO  [10:37:51.600] [bbotk] Result of batch 34:
## INFO  [10:37:51.601] [bbotk]  size maxit       decay classif.auc warnings errors runtime_learners
## INFO  [10:37:51.601] [bbotk]     4   685 8.94751e-07   0.6449045        0      0            0.212
## INFO  [10:37:51.601] [bbotk]                                 uhash
## INFO  [10:37:51.601] [bbotk]  c6554c3c-4caa-4b7f-b0f5-8590b49d204b
## INFO  [10:37:51.603] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:37:51.610] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:37:51.613] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:37:54.281] [mlr3] Finished benchmark
## INFO  [10:37:54.299] [bbotk] Result of batch 35:
## INFO  [10:37:54.300] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:37:54.300] [bbotk]    24   235 5.644007e-09   0.6707025        0      0            2.664
## INFO  [10:37:54.300] [bbotk]                                 uhash
## INFO  [10:37:54.300] [bbotk]  ba83cb0c-84f2-48ef-87fc-a3acd5a84f59
## INFO  [10:37:54.303] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:37:54.311] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:37:54.313] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:37:55.276] [mlr3] Finished benchmark
## INFO  [10:37:55.287] [bbotk] Result of batch 36:
## INFO  [10:37:55.288] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:37:55.288] [bbotk]    13   986 9.530623e-09   0.6329409        0      0            0.959
## INFO  [10:37:55.288] [bbotk]                                 uhash
## INFO  [10:37:55.288] [bbotk]  7b3d3589-e70f-456c-b699-109fd44dcf89
## INFO  [10:37:55.290] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:37:55.297] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:37:55.299] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:37:57.276] [mlr3] Finished benchmark
## INFO  [10:37:57.294] [bbotk] Result of batch 37:
## INFO  [10:37:57.295] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:37:57.295] [bbotk]    14   536 3.549375e-08   0.6490188        0      0            1.973
## INFO  [10:37:57.295] [bbotk]                                 uhash
## INFO  [10:37:57.295] [bbotk]  5ee95648-3279-4655-9033-0f20dcabf10a
## INFO  [10:37:57.298] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:37:57.308] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:37:57.310] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:38:00.564] [mlr3] Finished benchmark
## INFO  [10:38:00.575] [bbotk] Result of batch 38:
## INFO  [10:38:00.576] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:38:00.576] [bbotk]    11   858 1.806053e-07   0.6637755        0      0            3.251
## INFO  [10:38:00.576] [bbotk]                                 uhash
## INFO  [10:38:00.576] [bbotk]  e8cb8a47-8856-4696-9ba5-8a0cd8578f1a
## INFO  [10:38:00.578] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:38:00.585] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:38:00.588] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:38:01.680] [mlr3] Finished benchmark
## INFO  [10:38:01.691] [bbotk] Result of batch 39:
## INFO  [10:38:01.692] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:38:01.692] [bbotk]     6   724 6.365011e-07   0.8211931        0      0            1.089
## INFO  [10:38:01.692] [bbotk]                                 uhash
## INFO  [10:38:01.692] [bbotk]  cd9cc947-33fc-4860-8a23-b9b49a9a948d
## INFO  [10:38:01.694] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:38:01.706] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:38:01.710] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:38:02.643] [mlr3] Finished benchmark
## INFO  [10:38:02.658] [bbotk] Result of batch 40:
## INFO  [10:38:02.659] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:38:02.659] [bbotk]    11   217 9.315255e-07   0.8274987        0      0            0.926
## INFO  [10:38:02.659] [bbotk]                                 uhash
## INFO  [10:38:02.659] [bbotk]  8ddf00c8-f6a3-4dce-bf83-7ab38451d253
## INFO  [10:38:02.661] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:38:02.668] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:38:02.670] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:38:04.947] [mlr3] Finished benchmark
## INFO  [10:38:04.958] [bbotk] Result of batch 41:
## INFO  [10:38:04.959] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:38:04.959] [bbotk]    10   565 3.508323e-07   0.8152669        0      0            2.274
## INFO  [10:38:04.959] [bbotk]                                 uhash
## INFO  [10:38:04.959] [bbotk]  869c489f-2dcb-4060-8a68-613ef0155e50
## INFO  [10:38:04.961] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:38:04.968] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:38:04.970] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:38:08.310] [mlr3] Finished benchmark
## INFO  [10:38:08.328] [bbotk] Result of batch 42:
## INFO  [10:38:08.329] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:38:08.329] [bbotk]    17   802 1.271779e-07   0.7218472        0      0            3.334
## INFO  [10:38:08.329] [bbotk]                                 uhash
## INFO  [10:38:08.329] [bbotk]  ef0cd30c-c07b-4a2f-bee1-f1d8b7079b41
## INFO  [10:38:08.332] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:38:08.339] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:38:08.342] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:38:08.416] [mlr3] Finished benchmark
## INFO  [10:38:08.427] [bbotk] Result of batch 43:
## INFO  [10:38:08.428] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:38:08.428] [bbotk]     1   176 4.740726e-08   0.5961931        0      0             0.07
## INFO  [10:38:08.428] [bbotk]                                 uhash
## INFO  [10:38:08.428] [bbotk]  64789539-d74e-46cf-b894-f2caea87a9bb
## INFO  [10:38:08.430] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:38:08.437] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:38:08.439] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:38:09.218] [mlr3] Finished benchmark
## INFO  [10:38:09.236] [bbotk] Result of batch 44:
## INFO  [10:38:09.238] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:38:09.238] [bbotk]    10   724 8.951984e-07   0.6751832        0      0            0.776
## INFO  [10:38:09.238] [bbotk]                                 uhash
## INFO  [10:38:09.238] [bbotk]  ed728861-37e8-41d8-aed1-fe9029e8763c
## INFO  [10:38:09.241] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:38:09.254] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:38:09.257] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:38:09.322] [mlr3] Finished benchmark
## INFO  [10:38:09.333] [bbotk] Result of batch 45:
## INFO  [10:38:09.333] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:38:09.333] [bbotk]     8   260 3.043118e-08   0.5918956        0      0            0.061
## INFO  [10:38:09.333] [bbotk]                                 uhash
## INFO  [10:38:09.333] [bbotk]  3559981d-0118-425a-9d21-2ad6238c7aa9
## INFO  [10:38:09.335] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:38:09.342] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:38:09.344] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:38:09.426] [mlr3] Finished benchmark
## INFO  [10:38:09.438] [bbotk] Result of batch 46:
## INFO  [10:38:09.439] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:38:09.439] [bbotk]     4   441 8.399596e-07   0.5915489        0      0            0.078
## INFO  [10:38:09.439] [bbotk]                                 uhash
## INFO  [10:38:09.439] [bbotk]  f968bc22-c41c-4f03-b365-ca49d53439dc
## INFO  [10:38:09.440] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:38:09.448] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:38:09.450] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:38:10.083] [mlr3] Finished benchmark
## INFO  [10:38:10.100] [bbotk] Result of batch 47:
## INFO  [10:38:10.101] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:38:10.101] [bbotk]     8   235 9.788883e-07   0.7599621        0      0            0.624
## INFO  [10:38:10.101] [bbotk]                                 uhash
## INFO  [10:38:10.101] [bbotk]  d7a61330-7711-4d29-88ed-cb0bfa48a9a4
## INFO  [10:38:10.104] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:38:10.111] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:38:10.114] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:38:14.599] [mlr3] Finished benchmark
## INFO  [10:38:14.610] [bbotk] Result of batch 48:
## INFO  [10:38:14.611] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:38:14.611] [bbotk]    23   352 5.996979e-07   0.8171507        0      0            4.482
## INFO  [10:38:14.611] [bbotk]                                 uhash
## INFO  [10:38:14.611] [bbotk]  058d21f4-10dc-4280-8b30-54f5d4697bc8
## INFO  [10:38:14.614] [bbotk] Finished optimizing after 48 evaluation(s)
## INFO  [10:38:14.614] [bbotk] Result:
## INFO  [10:38:14.615] [bbotk]  size maxit        decay learner_param_vals  x_domain classif.auc
## INFO  [10:38:14.615] [bbotk]    11   217 9.315255e-07          <list[4]> <list[3]>   0.8274987
## INFO  [10:38:16.134] [mlr3] Applying learner 'classif.nnet.tuned' on task 'credit' (iter 5/5)
## INFO  [10:38:16.158] [bbotk] Starting to optimize 3 parameter(s) with '<OptimizerRandomSearch>' and '<TerminatorRunTime> [secs=90]'
## INFO  [10:38:16.164] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:38:16.171] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:38:16.174] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:38:24.818] [mlr3] Finished benchmark
## INFO  [10:38:24.828] [bbotk] Result of batch 1:
## INFO  [10:38:24.829] [bbotk]  size maxit       decay classif.auc warnings errors runtime_learners
## INFO  [10:38:24.829] [bbotk]    25   889 1.04593e-07   0.8425485        0      0             8.64
## INFO  [10:38:24.829] [bbotk]                                 uhash
## INFO  [10:38:24.829] [bbotk]  8a163aa4-64de-4fd0-90e4-bde68cdd188d
## INFO  [10:38:24.831] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:38:24.842] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:38:24.846] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:38:27.098] [mlr3] Finished benchmark
## INFO  [10:38:27.114] [bbotk] Result of batch 2:
## INFO  [10:38:27.115] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:38:27.115] [bbotk]    13   323 3.568332e-07   0.7419883        0      0            2.247
## INFO  [10:38:27.115] [bbotk]                                 uhash
## INFO  [10:38:27.115] [bbotk]  ea9ce0b4-57b8-47d5-baa2-0e8ec08d5bcf
## INFO  [10:38:27.117] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:38:27.123] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:38:27.126] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:38:33.039] [mlr3] Finished benchmark
## INFO  [10:38:33.050] [bbotk] Result of batch 3:
## INFO  [10:38:33.051] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:38:33.051] [bbotk]    21   567 2.635135e-07   0.7316282        0      0             5.91
## INFO  [10:38:33.051] [bbotk]                                 uhash
## INFO  [10:38:33.051] [bbotk]  4aa0a6d4-47f2-48d2-9c7a-da4612e50fd1
## INFO  [10:38:33.053] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:38:33.060] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:38:33.063] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:38:34.284] [mlr3] Finished benchmark
## INFO  [10:38:34.302] [bbotk] Result of batch 4:
## INFO  [10:38:34.303] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:38:34.303] [bbotk]    11   270 9.080826e-07   0.6666297        0      0            1.216
## INFO  [10:38:34.303] [bbotk]                                 uhash
## INFO  [10:38:34.303] [bbotk]  54688ffb-c95e-476f-802a-adf8a557eb74
## INFO  [10:38:34.306] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:38:34.313] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:38:34.316] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:38:36.051] [mlr3] Finished benchmark
## INFO  [10:38:36.062] [bbotk] Result of batch 5:
## INFO  [10:38:36.063] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:38:36.063] [bbotk]    14   296 4.006173e-07   0.6363989        0      0            1.732
## INFO  [10:38:36.063] [bbotk]                                 uhash
## INFO  [10:38:36.063] [bbotk]  54ee87e2-32e5-4736-94e1-f533ce5b4074
## INFO  [10:38:36.065] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:38:36.081] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:38:36.085] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:38:38.707] [mlr3] Finished benchmark
## INFO  [10:38:38.718] [bbotk] Result of batch 6:
## INFO  [10:38:38.718] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:38:38.718] [bbotk]    15   432 2.614097e-08   0.6444814        0      0            2.616
## INFO  [10:38:38.718] [bbotk]                                 uhash
## INFO  [10:38:38.718] [bbotk]  c4bb30b9-7301-4126-b550-f2e3c26114c9
## INFO  [10:38:38.720] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:38:38.727] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:38:38.730] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:38:39.498] [mlr3] Finished benchmark
## INFO  [10:38:39.525] [bbotk] Result of batch 7:
## INFO  [10:38:39.527] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:38:39.527] [bbotk]    10   165 1.146371e-07   0.6898861        0      0            0.765
## INFO  [10:38:39.527] [bbotk]                                 uhash
## INFO  [10:38:39.527] [bbotk]  fbf6879b-4009-47d7-a14e-e7b48906d53c
## INFO  [10:38:39.529] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:38:39.543] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:38:39.547] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:38:39.690] [mlr3] Finished benchmark
## INFO  [10:38:39.701] [bbotk] Result of batch 8:
## INFO  [10:38:39.702] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:38:39.702] [bbotk]     4    83 7.507029e-07   0.6635026        0      0            0.139
## INFO  [10:38:39.702] [bbotk]                                 uhash
## INFO  [10:38:39.702] [bbotk]  7fbef4e3-8bf4-4209-9bf0-e9b215c8e4e3
## INFO  [10:38:39.704] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:38:39.711] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:38:39.713] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:38:42.238] [mlr3] Finished benchmark
## INFO  [10:38:42.250] [bbotk] Result of batch 9:
## INFO  [10:38:42.251] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:38:42.251] [bbotk]    15   514 4.580805e-07   0.6798954        0      0             2.52
## INFO  [10:38:42.251] [bbotk]                                 uhash
## INFO  [10:38:42.251] [bbotk]  cd7231dd-b555-4ff6-ac77-ffc0b55a5192
## INFO  [10:38:42.252] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:38:42.261] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:38:42.268] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:38:44.630] [mlr3] Finished benchmark
## INFO  [10:38:44.647] [bbotk] Result of batch 10:
## INFO  [10:38:44.648] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:38:44.648] [bbotk]    15   408 2.319003e-07   0.8261988        0      0            2.355
## INFO  [10:38:44.648] [bbotk]                                 uhash
## INFO  [10:38:44.648] [bbotk]  2af22fdb-b405-46e0-93a2-19846476e2d5
## INFO  [10:38:44.651] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:38:44.659] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:38:44.662] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:38:45.082] [mlr3] Finished benchmark
## INFO  [10:38:45.093] [bbotk] Result of batch 11:
## INFO  [10:38:45.093] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:38:45.093] [bbotk]    12   315 1.059144e-07   0.6617051        0      0            0.417
## INFO  [10:38:45.093] [bbotk]                                 uhash
## INFO  [10:38:45.093] [bbotk]  a2c21be3-718e-41ca-934f-c8ddf96e460d
## INFO  [10:38:45.095] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:38:45.102] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:38:45.105] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:38:48.928] [mlr3] Finished benchmark
## INFO  [10:38:48.946] [bbotk] Result of batch 12:
## INFO  [10:38:48.947] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:38:48.947] [bbotk]    19   422 7.906792e-07    0.697667        0      0            3.819
## INFO  [10:38:48.947] [bbotk]                                 uhash
## INFO  [10:38:48.947] [bbotk]  e9b0a282-614a-4a0b-90cc-a4e697dd0ca8
## INFO  [10:38:48.950] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:38:48.960] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:38:48.963] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:38:48.976] [mlr3] Finished benchmark
## INFO  [10:38:48.987] [bbotk] Result of batch 13:
## INFO  [10:38:48.988] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:38:48.988] [bbotk]     1    65 5.314839e-07   0.5896584        0      0            0.011
## INFO  [10:38:48.988] [bbotk]                                 uhash
## INFO  [10:38:48.988] [bbotk]  f4587216-1371-4077-a67f-8c02fd8c559c
## INFO  [10:38:48.989] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:38:48.997] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:38:48.999] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:38:49.111] [mlr3] Finished benchmark
## INFO  [10:38:49.127] [bbotk] Result of batch 14:
## INFO  [10:38:49.128] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:38:49.128] [bbotk]     5   245 8.387533e-08   0.5834287        0      0            0.108
## INFO  [10:38:49.128] [bbotk]                                 uhash
## INFO  [10:38:49.128] [bbotk]  3f1b38e7-4d28-4d54-a297-a8ba70ca0728
## INFO  [10:38:49.131] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:38:49.144] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:38:49.148] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:38:49.301] [mlr3] Finished benchmark
## INFO  [10:38:49.312] [bbotk] Result of batch 15:
## INFO  [10:38:49.312] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:38:49.312] [bbotk]     4   884 8.925806e-07    0.569289        0      0            0.149
## INFO  [10:38:49.312] [bbotk]                                 uhash
## INFO  [10:38:49.312] [bbotk]  670bd64c-229a-4cdb-a2eb-b8906a9edc5e
## INFO  [10:38:49.314] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:38:49.321] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:38:49.323] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:38:50.410] [mlr3] Finished benchmark
## INFO  [10:38:50.421] [bbotk] Result of batch 16:
## INFO  [10:38:50.421] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:38:50.421] [bbotk]     8   344 7.310005e-07   0.7049738        0      0            1.083
## INFO  [10:38:50.421] [bbotk]                                 uhash
## INFO  [10:38:50.421] [bbotk]  2f3a47d6-20cc-4cf6-bf88-0693604dfd1c
## INFO  [10:38:50.423] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:38:50.430] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:38:50.433] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:38:50.857] [mlr3] Finished benchmark
## INFO  [10:38:50.874] [bbotk] Result of batch 17:
## INFO  [10:38:50.875] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:38:50.875] [bbotk]     8   145 1.801951e-07   0.6134503        0      0            0.419
## INFO  [10:38:50.875] [bbotk]                                 uhash
## INFO  [10:38:50.875] [bbotk]  0832715a-181e-4b07-aa95-a8ae831e15d0
## INFO  [10:38:50.878] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:38:50.887] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:38:50.890] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:38:52.822] [mlr3] Finished benchmark
## INFO  [10:38:52.833] [bbotk] Result of batch 18:
## INFO  [10:38:52.834] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:38:52.834] [bbotk]     9   839 3.180075e-07   0.7768052        0      0            1.928
## INFO  [10:38:52.834] [bbotk]                                 uhash
## INFO  [10:38:52.834] [bbotk]  db2a5337-bba2-4ddb-980c-59270d80fc35
## INFO  [10:38:52.835] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:38:52.842] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:38:52.845] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:38:56.697] [mlr3] Finished benchmark
## INFO  [10:38:56.708] [bbotk] Result of batch 19:
## INFO  [10:38:56.708] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:38:56.708] [bbotk]    23   313 7.692487e-07   0.7162696        0      0            3.848
## INFO  [10:38:56.708] [bbotk]                                 uhash
## INFO  [10:38:56.708] [bbotk]  b1e1a86e-1e09-445a-8ec2-5706d22a8f6b
## INFO  [10:38:56.710] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:38:56.717] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:38:56.719] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:38:57.066] [mlr3] Finished benchmark
## INFO  [10:38:57.077] [bbotk] Result of batch 20:
## INFO  [10:38:57.077] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:38:57.077] [bbotk]     5   493 5.379358e-07   0.6663897        0      0            0.343
## INFO  [10:38:57.077] [bbotk]                                 uhash
## INFO  [10:38:57.077] [bbotk]  71d1051e-8456-44da-ba61-6082a6931cd3
## INFO  [10:38:57.079] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:38:57.086] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:38:57.089] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:39:00.521] [mlr3] Finished benchmark
## INFO  [10:39:00.532] [bbotk] Result of batch 21:
## INFO  [10:39:00.533] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:39:00.533] [bbotk]    22   278 9.333214e-07   0.7110619        0      0            3.429
## INFO  [10:39:00.533] [bbotk]                                 uhash
## INFO  [10:39:00.533] [bbotk]  10e96384-dbcc-4a24-9f20-06528b2f4d11
## INFO  [10:39:00.535] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:39:00.542] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:39:00.544] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:39:00.555] [mlr3] Finished benchmark
## INFO  [10:39:00.567] [bbotk] Result of batch 22:
## INFO  [10:39:00.568] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:39:00.568] [bbotk]     1   417 6.741705e-07         0.5        0      0            0.007
## INFO  [10:39:00.568] [bbotk]                                 uhash
## INFO  [10:39:00.568] [bbotk]  cc2ab1d3-e6f7-4f37-865c-cde85b07e3fa
## INFO  [10:39:00.570] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:39:00.577] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:39:00.580] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:39:00.761] [mlr3] Finished benchmark
## INFO  [10:39:00.772] [bbotk] Result of batch 23:
## INFO  [10:39:00.772] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:39:00.772] [bbotk]     7   744 3.149061e-07   0.6594952        0      0            0.174
## INFO  [10:39:00.772] [bbotk]                                 uhash
## INFO  [10:39:00.772] [bbotk]  c8bd2074-6de3-4034-b8c6-5db12a8ccb76
## INFO  [10:39:00.774] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:39:00.781] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:39:00.783] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:39:04.911] [mlr3] Finished benchmark
## INFO  [10:39:04.922] [bbotk] Result of batch 24:
## INFO  [10:39:04.922] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:39:04.922] [bbotk]    16   744 4.482913e-07   0.6768544        0      0            4.124
## INFO  [10:39:04.922] [bbotk]                                 uhash
## INFO  [10:39:04.922] [bbotk]  f5bffe1f-1ff1-4783-b43d-99da3e112415
## INFO  [10:39:04.924] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:39:04.931] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:39:04.934] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:39:05.035] [mlr3] Finished benchmark
## INFO  [10:39:05.047] [bbotk] Result of batch 25:
## INFO  [10:39:05.047] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:39:05.047] [bbotk]     2   159 6.673346e-07   0.6404309        0      0            0.097
## INFO  [10:39:05.047] [bbotk]                                 uhash
## INFO  [10:39:05.047] [bbotk]  38810a8d-b1c4-4684-83b7-5df0a756eb06
## INFO  [10:39:05.049] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:39:05.056] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:39:05.059] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:39:09.073] [mlr3] Finished benchmark
## INFO  [10:39:09.084] [bbotk] Result of batch 26:
## INFO  [10:39:09.085] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:39:09.085] [bbotk]    18   690 2.191951e-07    0.623755        0      0            4.011
## INFO  [10:39:09.085] [bbotk]                                 uhash
## INFO  [10:39:09.085] [bbotk]  83c4328f-9ca3-4c18-b02f-e72c753c9bef
## INFO  [10:39:09.087] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:39:09.093] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:39:09.096] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:39:11.720] [mlr3] Finished benchmark
## INFO  [10:39:11.731] [bbotk] Result of batch 27:
## INFO  [10:39:11.731] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:39:11.731] [bbotk]    12   883 5.961912e-07   0.6770452        0      0            2.621
## INFO  [10:39:11.731] [bbotk]                                 uhash
## INFO  [10:39:11.731] [bbotk]  5f3f352e-3da6-4e25-8bc2-7537fb90a652
## INFO  [10:39:11.733] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:39:11.740] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:39:11.742] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:39:13.609] [mlr3] Finished benchmark
## INFO  [10:39:13.620] [bbotk] Result of batch 28:
## INFO  [10:39:13.621] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:39:13.621] [bbotk]    17   297 9.055221e-07   0.6353524        0      0            1.863
## INFO  [10:39:13.621] [bbotk]                                 uhash
## INFO  [10:39:13.621] [bbotk]  6ea545df-7ec8-4ef9-b843-d7390c1d762d
## INFO  [10:39:13.622] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:39:13.629] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:39:13.632] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:39:13.965] [mlr3] Finished benchmark
## INFO  [10:39:13.976] [bbotk] Result of batch 29:
## INFO  [10:39:13.976] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:39:13.976] [bbotk]     5   325 8.820898e-08   0.6500339        0      0             0.33
## INFO  [10:39:13.976] [bbotk]                                 uhash
## INFO  [10:39:13.976] [bbotk]  5bbc8410-2914-46d8-a7cf-e1c927cafbff
## INFO  [10:39:13.978] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:39:13.985] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:39:13.988] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:39:14.768] [mlr3] Finished benchmark
## INFO  [10:39:14.779] [bbotk] Result of batch 30:
## INFO  [10:39:14.780] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:39:14.780] [bbotk]     6   959 4.673044e-07    0.635414        0      0            0.777
## INFO  [10:39:14.780] [bbotk]                                 uhash
## INFO  [10:39:14.780] [bbotk]  6e3d58bd-4ec9-4edb-80a8-08f12b38a5f3
## INFO  [10:39:14.782] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:39:14.788] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:39:14.791] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:39:18.748] [mlr3] Finished benchmark
## INFO  [10:39:18.759] [bbotk] Result of batch 31:
## INFO  [10:39:18.760] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:39:18.760] [bbotk]    23   330 4.673104e-07   0.6809357        0      0            3.954
## INFO  [10:39:18.760] [bbotk]                                 uhash
## INFO  [10:39:18.760] [bbotk]  87c3be62-e127-4c09-9f4c-6f66ae5792ee
## INFO  [10:39:18.762] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:39:18.769] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:39:18.771] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:39:22.063] [mlr3] Finished benchmark
## INFO  [10:39:22.074] [bbotk] Result of batch 32:
## INFO  [10:39:22.075] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:39:22.075] [bbotk]    24   882 1.452788e-07   0.6619945        0      0            3.288
## INFO  [10:39:22.075] [bbotk]                                 uhash
## INFO  [10:39:22.075] [bbotk]  d4ee770e-a3e3-402b-aab7-464cb09affdd
## INFO  [10:39:22.076] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:39:22.083] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:39:22.086] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:39:22.872] [mlr3] Finished benchmark
## INFO  [10:39:22.885] [bbotk] Result of batch 33:
## INFO  [10:39:22.886] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:39:22.886] [bbotk]    15   892 5.986936e-07    0.675611        0      0            0.782
## INFO  [10:39:22.886] [bbotk]                                 uhash
## INFO  [10:39:22.886] [bbotk]  e8a1f72f-e428-4b48-be88-e69987844123
## INFO  [10:39:22.888] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:39:22.895] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:39:22.897] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:39:25.533] [mlr3] Finished benchmark
## INFO  [10:39:25.544] [bbotk] Result of batch 34:
## INFO  [10:39:25.545] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:39:25.545] [bbotk]    15   646 7.833465e-07   0.6322992        0      0            2.632
## INFO  [10:39:25.545] [bbotk]                                 uhash
## INFO  [10:39:25.545] [bbotk]  ed29ef1a-df82-43e1-ad3b-8191e02ee811
## INFO  [10:39:25.546] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:39:25.553] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:39:25.556] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:39:26.417] [mlr3] Finished benchmark
## INFO  [10:39:26.429] [bbotk] Result of batch 35:
## INFO  [10:39:26.430] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:39:26.430] [bbotk]    14   140 4.907423e-07   0.6210834        0      0            0.858
## INFO  [10:39:26.430] [bbotk]                                 uhash
## INFO  [10:39:26.430] [bbotk]  f6c241e4-3a8b-4442-a8e0-c8bc2094cfda
## INFO  [10:39:26.431] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:39:26.439] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:39:26.441] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:39:27.792] [mlr3] Finished benchmark
## INFO  [10:39:27.803] [bbotk] Result of batch 36:
## INFO  [10:39:27.803] [bbotk]  size maxit       decay classif.auc warnings errors runtime_learners
## INFO  [10:39:27.803] [bbotk]    15   684 9.01418e-07   0.6507479        0      0            1.347
## INFO  [10:39:27.803] [bbotk]                                 uhash
## INFO  [10:39:27.803] [bbotk]  1ea0fe91-fc9c-485e-8614-1da86498185a
## INFO  [10:39:27.805] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:39:27.812] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:39:27.815] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:39:28.020] [mlr3] Finished benchmark
## INFO  [10:39:28.034] [bbotk] Result of batch 37:
## INFO  [10:39:28.035] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:39:28.035] [bbotk]     6   100 3.740383e-07   0.6364112        0      0            0.201
## INFO  [10:39:28.035] [bbotk]                                 uhash
## INFO  [10:39:28.035] [bbotk]  62882319-b3a2-473c-9980-598e7bce1a86
## INFO  [10:39:28.037] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:39:28.043] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:39:28.046] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:39:30.917] [mlr3] Finished benchmark
## INFO  [10:39:30.928] [bbotk] Result of batch 38:
## INFO  [10:39:30.929] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:39:30.929] [bbotk]    21   305 5.184147e-07   0.7089812        0      0            2.868
## INFO  [10:39:30.929] [bbotk]                                 uhash
## INFO  [10:39:30.929] [bbotk]  d4be098e-c6dd-4dee-8306-8077b311f5f3
## INFO  [10:39:30.931] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:39:30.938] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:39:30.940] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:39:32.011] [mlr3] Finished benchmark
## INFO  [10:39:32.022] [bbotk] Result of batch 39:
## INFO  [10:39:32.022] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:39:32.022] [bbotk]    12   559 1.924962e-07   0.6899169        0      0            1.067
## INFO  [10:39:32.022] [bbotk]                                 uhash
## INFO  [10:39:32.022] [bbotk]  2fa94349-11ba-47a2-952e-1db66591fccc
## INFO  [10:39:32.024] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:39:32.031] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:39:32.034] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:39:34.320] [mlr3] Finished benchmark
## INFO  [10:39:34.331] [bbotk] Result of batch 40:
## INFO  [10:39:34.332] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:39:34.332] [bbotk]    19   217 8.266657e-08   0.7205479        0      0            2.282
## INFO  [10:39:34.332] [bbotk]                                 uhash
## INFO  [10:39:34.332] [bbotk]  ae5cc932-db0f-40fe-99f0-ad08ace32c3c
## INFO  [10:39:34.338] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:39:34.345] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:39:34.347] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:39:41.035] [mlr3] Finished benchmark
## INFO  [10:39:41.048] [bbotk] Result of batch 41:
## INFO  [10:39:41.049] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:39:41.049] [bbotk]    21   543 2.554367e-07   0.8345214        0      0            6.684
## INFO  [10:39:41.049] [bbotk]                                 uhash
## INFO  [10:39:41.049] [bbotk]  b1341b32-d71f-4b90-aeb1-282ab91a9a5a
## INFO  [10:39:41.051] [bbotk] Evaluating 1 configuration(s)
## INFO  [10:39:41.059] [mlr3] Running benchmark with 1 resampling iterations
## INFO  [10:39:41.061] [mlr3] Applying learner 'classif.nnet' on task 'credit' (iter 1/1)
## INFO  [10:39:49.531] [mlr3] Finished benchmark
## INFO  [10:39:49.542] [bbotk] Result of batch 42:
## INFO  [10:39:49.543] [bbotk]  size maxit        decay classif.auc warnings errors runtime_learners
## INFO  [10:39:49.543] [bbotk]    20   877 6.086415e-07   0.7544475        0      0            8.467
## INFO  [10:39:49.543] [bbotk]                                 uhash
## INFO  [10:39:49.543] [bbotk]  8d3b8a8c-bec8-4068-b58d-546859c486cf
## INFO  [10:39:49.546] [bbotk] Finished optimizing after 42 evaluation(s)
## INFO  [10:39:49.546] [bbotk] Result:
## INFO  [10:39:49.547] [bbotk]  size maxit       decay learner_param_vals  x_domain classif.auc
## INFO  [10:39:49.547] [bbotk]    25   889 1.04593e-07          <list[4]> <list[3]>   0.8425485
## Note - Terminator may need to be time based for efficiency sake if using mbo tuning. Running it for 30 iterations takes more time (approx 25 minutes). Tuning using this method yielded worse results
## Note - The second run we adjusted the terminator to 25 evaluations, tuner to grid search, and number of inner folds to 3. Run time - 12 minutes. Results - No improvement over the base model. Definite improvement over the first run. 
## Note - The third run we adjusted the terminator to time based evaluations and the inner resampling was adjusted to the holdout method using a 0.8 ratio. Run time - 8 minutes. This approach vastly improved our outer AUC score to approximately 0.8.


end = Sys.time()
## Amount of time to run the previous chunk

end - start
## Time difference of 7.901592 mins

Parameter Value Tuning Results

Inner CV Results

## Extract tuning results for the inner sampling

extract_inner_tuning_results(credit_nn_v3)[ , list(maxit, decay, size, classif.auc)]
##    maxit        decay size classif.auc
## 1:   524 8.752843e-07   10   0.8374610
## 2:   994 6.003776e-07   14   0.8213050
## 3:   608 6.570584e-07    3   0.8503950
## 4:   217 9.315255e-07   11   0.8274987
## 5:   889 1.045930e-07   25   0.8425485

Intepretation Note: The third fold presents the best AUC score of approximately 0.850395

Outer CV Results

## Test Data AUC
credit_nn_v3$score(credit_msr_auc)[ , list(classif.auc)]
##    classif.auc
## 1:   0.8057938
## 2:   0.7531414
## 3:   0.6709426
## 4:   0.7673972
## 5:   0.7334859

Interpretation Note: Although the 3rd fold presents the best results on the inner resampling, the 1st fold provides the best prediction as the AUC score is 0.8057938. As a result, we extracted the following values from the 1st fold to build our final model:

  • maxit: 524
  • decay: 8.752843^{-7}
  • size: 10

Aggregate Results

##Aggregate Results
credit_nn_v3$aggregate(credit_msr_auc)
## classif.auc 
##   0.7461522
## Extract the maxit, decay, and size from model ## to build our full model

credit_lrn_nn = lrn("classif.nnet", 
              size = extract_inner_tuning_results(credit_nn_v3)[1]$size,
              maxit = extract_inner_tuning_results(credit_nn_v3)[1]$maxit,
              decay = extract_inner_tuning_results(credit_nn_v3)[1]$decay)

Full Model Build and Visualization

Note: This section is additional practice for building the full model and not required for the exercise.

## Full Model Build
credit_nn.full = credit_lrn_nn$train(credit_task)
## # weights:  241
## initial  value 5056.597318 
## iter  10 value 2193.382624
## iter  20 value 2166.343852
## iter  30 value 2143.549895
## iter  40 value 2139.381161
## iter  50 value 2133.007723
## iter  60 value 2119.085102
## iter  70 value 2113.150157
## iter  80 value 2111.286632
## iter  90 value 2109.451370
## iter 100 value 2083.670665
## iter 110 value 2069.411293
## iter 120 value 2046.862996
## iter 130 value 2024.765518
## iter 140 value 2009.487852
## iter 150 value 2006.777177
## iter 160 value 2005.185488
## iter 170 value 2000.921818
## iter 180 value 2000.454021
## iter 190 value 1999.919863
## iter 200 value 1999.210326
## iter 210 value 1998.646387
## iter 220 value 1996.878936
## iter 230 value 1995.762600
## iter 240 value 1991.734060
## iter 250 value 1990.328831
## iter 260 value 1987.771345
## iter 270 value 1976.002268
## iter 280 value 1967.206486
## iter 290 value 1962.796074
## iter 300 value 1958.360302
## iter 310 value 1957.838244
## iter 320 value 1957.386225
## iter 330 value 1957.318951
## iter 340 value 1957.087311
## iter 350 value 1956.961131
## iter 360 value 1956.594081
## iter 370 value 1956.292455
## iter 380 value 1955.995223
## iter 390 value 1955.771001
## final  value 1955.642988 
## converged
## Load the required package
library(nnet)

## Rebuild the model
credit_nn_final = nnet(Status ~ ., 
                   credit_data,
                   size = extract_inner_tuning_results(credit_nn_v3)[1]$size,
                   maxit = extract_inner_tuning_results(credit_nn_v3)[1]$maxit,
                   decay = extract_inner_tuning_results(credit_nn_v3)[1]$decay)
## # weights:  241
## initial  value 2533.456963 
## iter  10 value 2177.437717
## iter  20 value 2141.319800
## iter  30 value 2124.540273
## iter  40 value 2118.550600
## iter  50 value 2104.908047
## iter  60 value 2096.268865
## iter  70 value 2075.247314
## iter  80 value 2070.856332
## iter  90 value 2049.007364
## iter 100 value 2034.468560
## iter 110 value 2027.090354
## iter 120 value 2015.270567
## iter 130 value 2008.250373
## iter 140 value 2005.466426
## iter 150 value 2000.879169
## iter 160 value 1983.672486
## iter 170 value 1966.363502
## iter 180 value 1907.614967
## iter 190 value 1815.622408
## iter 200 value 1781.986478
## iter 210 value 1772.146893
## iter 220 value 1766.454783
## iter 230 value 1761.880164
## iter 240 value 1734.991056
## iter 250 value 1721.847653
## iter 260 value 1697.310628
## iter 270 value 1687.605628
## iter 280 value 1684.522077
## iter 290 value 1679.605531
## iter 300 value 1678.550668
## iter 310 value 1676.349025
## iter 320 value 1667.612257
## iter 330 value 1661.180088
## iter 340 value 1657.527769
## iter 350 value 1656.341063
## iter 360 value 1656.169210
## iter 370 value 1655.688693
## iter 380 value 1655.165405
## iter 390 value 1654.916377
## iter 390 value 1654.916372
## iter 390 value 1654.916364
## final  value 1654.916364 
## converged
##Neural Network Plot

plot(credit_nn_final)

Summary

I tuned the size of the hidden layer, maximum number of iterations, and the decay function of the credit data three times using the following approaches:

Please note that the parameter sets were held constant through each approach. The size ranged from 1-25, the maximum iterations ranged from 50-1000, and the decay ranged from 0-1e-5. I did adjust the upper bounds of the decay function to 1e-6 on the third approach as an experiment to improve our model’s performance. Additionally, the same performance measure was used during each approach.

Approach 1: This approach used the following setup: tuner - “mbo” - Bayesian Optimization evaluation - “evals” - Set to 30 evaluations inner resampling - “cv” - Set to 5 folds

This approach yielded worse AUC scores for both our inner and outer resampling compared to our initial model. Additionally, it took approximately 25 minutes to run.

Approach 2: This approach used the following setup: tuner - “grid_search” - Grid Search evaluation - “evals” - Set to 25 evaluations inner resampling - “cv” - Set to 3 folds

This approach yielded similar AUC scores for both our inner and outer resampling compared to our initial model. The run time improved significantly as it took approximately 12 minutes to process.

Approach 3: This approach used the following setup: tuner - “random_search” - Random Search evaluation - “run_time” - Set to 90 seconds inner resampling - “holdout” - Set to a 0.8 ratio

This approach yielded better AUC scores for both our inner and outer resampling compared to our initial model. The run time improved significantly as it took approximately 8 minutes to process. This approach was selected to tune our final model as it yielded the best results and required the least computing time.

Approach 3’s tuning parameters and inner cross-validation results are listed above along with the outer cross-validation results. To reiterate, the third inner fold presents the best AUC score of approximately 0.850395. Although the 3rd fold presents the best results on the inner resampling, the 1st fold provides the best prediction as the AUC score is 0.8057938. As a result, we extracted the following values from the 1st fold to build our final model:

  • maxit: 524
  • decay: 8.752843^{-7}
  • size: 10

Future experiments on this model could include adjusting the parameter set values for the tuning and using approach 3 to see if one could improve the model performance.