
Llamar librerías
library(WDI)
## Warning: package 'WDI' was built under R version 4.2.3
library(wbstats)
## Warning: package 'wbstats' was built under R version 4.2.3
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.2.3
## Warning: package 'ggplot2' was built under R version 4.2.3
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.0 ✔ readr 2.1.4
## ✔ forcats 1.0.0 ✔ stringr 1.5.0
## ✔ ggplot2 3.4.1 ✔ tibble 3.1.8
## ✔ lubridate 1.9.2 ✔ tidyr 1.3.0
## ✔ purrr 1.0.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the ]8;;http://conflicted.r-lib.org/conflicted package]8;; to force all conflicts to become errors
library(forecast)
## Warning: package 'forecast' was built under R version 4.2.3
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
library(ggplot2)
Pronóstico #1: PIB en México
gdp_data <- wb_data(country = "MX", indicator = "NY.GDP.PCAP.CD", start_date="1950", end_date=2022 )
# https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
#Consultar el indicador en https://data.worldbank.org/indicator7
summary(gdp_data)
## iso2c iso3c country date
## Length:62 Length:62 Length:62 Min. :1960
## Class :character Class :character Class :character 1st Qu.:1975
## Mode :character Mode :character Mode :character Median :1990
## Mean :1990
## 3rd Qu.:2006
## Max. :2021
## NY.GDP.PCAP.CD unit obs_status footnote
## Min. : 359.5 Length:62 Length:62 Length:62
## 1st Qu.: 1353.7 Class :character Class :character Class :character
## Median : 3784.7 Mode :character Mode :character Mode :character
## Mean : 4724.5
## 3rd Qu.: 8267.6
## Max. :11076.1
## last_updated
## Min. :2023-03-01
## 1st Qu.:2023-03-01
## Median :2023-03-01
## Mean :2023-03-01
## 3rd Qu.:2023-03-01
## Max. :2023-03-01
head(gdp_data)
## # A tibble: 6 × 9
## iso2c iso3c country date NY.GDP.PCAP.CD unit obs_status footnote last_upda…¹
## <chr> <chr> <chr> <dbl> <dbl> <chr> <chr> <chr> <date>
## 1 MX MEX Mexico 1960 360. <NA> <NA> <NA> 2023-03-01
## 2 MX MEX Mexico 1961 378. <NA> <NA> <NA> 2023-03-01
## 3 MX MEX Mexico 1962 393. <NA> <NA> <NA> 2023-03-01
## 4 MX MEX Mexico 1963 424. <NA> <NA> <NA> 2023-03-01
## 5 MX MEX Mexico 1964 486. <NA> <NA> <NA> 2023-03-01
## 6 MX MEX Mexico 1965 511. <NA> <NA> <NA> 2023-03-01
## # … with abbreviated variable name ¹last_updated
PIB <- gdp_data$NY.GDP.PCAP.CD
#Para generar serie de tiempo se necesita una variable de una columna.
#Generar serie de tiempo (funcion ts)
PIB_st<-ts(data= PIB, start = c(1960), frequency = 1)
PIB_st
## Time Series:
## Start = 1960
## End = 2021
## Frequency = 1
## [1] 359.5451 378.2120 392.9346 424.1896 485.8001 511.0207
## [7] 550.4699 581.7295 622.4251 666.7434 706.3132 755.3325
## [13] 844.1744 1000.9379 1264.3584 1499.3556 1472.6589 1314.0197
## [19] 1598.4655 2039.6463 3029.8874 3812.5808 2612.7592 2166.4613
## [25] 2507.3121 2607.3803 1765.1849 1902.4381 2302.0270 2759.4457
## [31] 3196.9189 3756.8899 4272.7860 5778.9387 5976.5236 4002.1743
## [37] 4487.2918 5370.2175 5555.7372 6230.6956 7232.8788 7613.1769
## [43] 7650.8988 7120.3848 7525.4652 8321.8535 9125.4226 9719.9205
## [49] 10119.8362 8104.9076 9399.9709 10341.5210 10376.0577 10865.6802
## [55] 11076.0925 9753.3800 8875.0623 9434.3865 9857.0288 10145.1702
## [61] 8655.0007 10045.6805
## attr(,"label")
## [1] GDP per capita (current US$)
# Generar pronóstico
modelo_PIB <- auto.arima(PIB_st, D=1) #0 Si no hay presencia, 1 Si hay
modelo_PIB
## Series: PIB_st
## ARIMA(0,1,0) with drift
##
## Coefficients:
## drift
## 158.7891
## s.e. 88.9207
##
## sigma^2 = 490358: log likelihood = -485.69
## AIC=975.38 AICc=975.59 BIC=979.6
pronostico_PIB <- forecast(modelo_PIB, level=c(95), h=5) #h 5 es para 5 años, pronósticos del 95%
pronostico_PIB
## Point Forecast Lo 95 Hi 95
## 2022 10204.47 8831.993 11576.95
## 2023 10363.26 8422.284 12304.23
## 2024 10522.05 8144.849 12899.25
## 2025 10680.84 7935.884 13425.79
## 2026 10839.63 7770.675 13908.58
plot(pronostico_PIB, main="Pronóstico a 5 años del PIB en México")

LS0tDQp0aXRsZTogIkFjdGl2aWRhZCBJbmRpdmlkdWFsIDUiDQphdXRob3I6ICJKZXPDunMgRGFuaWVsIEZhcsOtYXMgQnVzdGFtYW50ZSB8IEEwMTIzNjMyNyINCmRhdGU6ICIyMDIzLTAzLTIyIg0Kb3V0cHV0OiANCiAgaHRtbF9kb2N1bWVudDoNCiAgICB0b2M6IHRydWUNCiAgICB0b2NfZmxvYXQ6IHRydWUNCiAgICBjb2RlX2Rvd25sb2FkOiB0cnVlDQotLS0NCiFbXShDOlxVc2Vyc1xEYW5pZWwgRmFyaWFzXERvY3VtZW50c1xCdXNpbmVzcyBJbnRlbGxpZ2VuY2VcQ3VhcnRvIFNlbWVzdHJlXFNlbWFuYSBUZWMgUHJvZ3JhXFRTLnBuZykNCg0KIyMjIExsYW1hciBsaWJyZXLDrWFzDQpgYGB7cn0NCmxpYnJhcnkoV0RJKQ0KbGlicmFyeSh3YnN0YXRzKQ0KbGlicmFyeSh0aWR5dmVyc2UpDQpsaWJyYXJ5KGZvcmVjYXN0KQ0KbGlicmFyeShnZ3Bsb3QyKQ0KYGBgDQoNCiMjIyBQcm9uw7NzdGljbyAjMTogUElCIGVuIE3DqXhpY28NCmBgYHtyfQ0KZ2RwX2RhdGEgPC0gd2JfZGF0YShjb3VudHJ5ID0gIk1YIiwgaW5kaWNhdG9yID0gIk5ZLkdEUC5QQ0FQLkNEIiwgc3RhcnRfZGF0ZT0iMTk1MCIsIGVuZF9kYXRlPTIwMjIgKQ0KIyBodHRwczovL2VuLndpa2lwZWRpYS5vcmcvd2lraS9JU09fMzE2Ni0xX2FscGhhLTINCiNDb25zdWx0YXIgZWwgaW5kaWNhZG9yIGVuIGh0dHBzOi8vZGF0YS53b3JsZGJhbmsub3JnL2luZGljYXRvcjcNCnN1bW1hcnkoZ2RwX2RhdGEpDQpoZWFkKGdkcF9kYXRhKQ0KUElCIDwtIGdkcF9kYXRhJE5ZLkdEUC5QQ0FQLkNEDQojUGFyYSBnZW5lcmFyIHNlcmllIGRlIHRpZW1wbyBzZSBuZWNlc2l0YSB1bmEgdmFyaWFibGUgZGUgdW5hIGNvbHVtbmEuDQoNCiNHZW5lcmFyIHNlcmllIGRlIHRpZW1wbyAoZnVuY2lvbiB0cykNClBJQl9zdDwtdHMoZGF0YT0gUElCLCBzdGFydCA9IGMoMTk2MCksIGZyZXF1ZW5jeSA9IDEpDQpQSUJfc3QNCg0KIyBHZW5lcmFyIHByb27Ds3N0aWNvDQptb2RlbG9fUElCIDwtIGF1dG8uYXJpbWEoUElCX3N0LCBEPTEpICMwIFNpIG5vIGhheSBwcmVzZW5jaWEsIDEgU2kgaGF5DQptb2RlbG9fUElCDQoNCnByb25vc3RpY29fUElCIDwtIGZvcmVjYXN0KG1vZGVsb19QSUIsIGxldmVsPWMoOTUpLCBoPTUpICNoIDUgZXMgcGFyYSA1IGHDsW9zLCBwcm9uw7NzdGljb3MgZGVsIDk1JQ0KcHJvbm9zdGljb19QSUINCg0KcGxvdChwcm9ub3N0aWNvX1BJQiwgbWFpbj0iUHJvbsOzc3RpY28gYSA1IGHDsW9zIGRlbCBQSUIgZW4gTcOpeGljbyIpDQpgYGANCg0KIyMjIEluZm9ybWFjacOzbiBkZSB2YXJpb3MgcGHDrXNlcw0KYGBge3J9DQptb3JlX2dkcF9kYXRhPC13Yl9kYXRhKGNvdW50cnk9IGMoIk5HIiwgIkhUIiwiS0UiKSxpbmRpY2F0b3I9Ik5ZLkdEUC5QQ0FQLkNEIiwgc3RhcnRfZGF0ZT0xOTUwLCBlbmRfZGF0ZT0yMDIyKQ0KDQpnZ3Bsb3QoZGF0YSA9IG1vcmVfZ2RwX2RhdGEpICsNCiAgZ2VvbV9wYXRoKG1hcHBpbmc9IGFlcyh4PWRhdGUsIHk9TlkuR0RQLlBDQVAuQ0QsIGNvbG9yPSBjb3VudHJ5KSkgKw0KICBsYWJzKCB4PSJBw7FvIiwgeT0gIlBJQiIsIHRpdGxlPSJDb21wYXJhY2nDs24gZGVsIFBJQiBkZSBOaWdlcmlhLCBIYWl0w60geSBLZW5pYSIpDQpgYGANCg0K