
Llamar librerías
library(WDI)
## Warning: package 'WDI' was built under R version 4.1.3
library(wbstats)
## Warning: package 'wbstats' was built under R version 4.1.3
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.1.3
## Warning: package 'ggplot2' was built under R version 4.1.3
## Warning: package 'tibble' was built under R version 4.1.3
## Warning: package 'tidyr' was built under R version 4.1.3
## Warning: package 'readr' was built under R version 4.1.3
## Warning: package 'purrr' was built under R version 4.1.3
## Warning: package 'dplyr' was built under R version 4.1.3
## Warning: package 'stringr' was built under R version 4.1.3
## Warning: package 'forcats' was built under R version 4.1.3
## Warning: package 'lubridate' was built under R version 4.1.3
## -- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
## v dplyr 1.1.0 v readr 2.1.4
## v forcats 1.0.0 v stringr 1.5.0
## v ggplot2 3.4.1 v tibble 3.2.1
## v lubridate 1.9.2 v tidyr 1.3.0
## v purrr 1.0.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(forecast)
## Warning: package 'forecast' was built under R version 4.1.3
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
library(ggplot2)
Pronóstico #1: PIB en México
gdp_data <- wb_data(country = "MX", indicator = "NY.GDP.PCAP.CD", start_date= 1950, end_date=2022)
# Consultar country en: https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
# Consultar indicator en: https://data.worldbank.org/indicator
summary(gdp_data)
## iso2c iso3c country date
## Length:62 Length:62 Length:62 Min. :1960
## Class :character Class :character Class :character 1st Qu.:1975
## Mode :character Mode :character Mode :character Median :1990
## Mean :1990
## 3rd Qu.:2006
## Max. :2021
## NY.GDP.PCAP.CD unit obs_status footnote
## Min. : 359.5 Length:62 Length:62 Length:62
## 1st Qu.: 1353.7 Class :character Class :character Class :character
## Median : 3784.7 Mode :character Mode :character Mode :character
## Mean : 4724.5
## 3rd Qu.: 8267.6
## Max. :11076.1
## last_updated
## Min. :2023-03-01
## 1st Qu.:2023-03-01
## Median :2023-03-01
## Mean :2023-03-01
## 3rd Qu.:2023-03-01
## Max. :2023-03-01
head(gdp_data)
## # A tibble: 6 x 9
## iso2c iso3c country date NY.GDP.PCAP.CD unit obs_status footnote
## <chr> <chr> <chr> <dbl> <dbl> <chr> <chr> <chr>
## 1 MX MEX Mexico 1960 360. <NA> <NA> <NA>
## 2 MX MEX Mexico 1961 378. <NA> <NA> <NA>
## 3 MX MEX Mexico 1962 393. <NA> <NA> <NA>
## 4 MX MEX Mexico 1963 424. <NA> <NA> <NA>
## 5 MX MEX Mexico 1964 486. <NA> <NA> <NA>
## 6 MX MEX Mexico 1965 511. <NA> <NA> <NA>
## # i 1 more variable: last_updated <date>
PIB <- gdp_data$NY.GDP.PCAP.CD
# Generar serie de tiempo
PIB_st <- ts(data= PIB, start = c(1960), frequency = 1)
PIB_st
## Time Series:
## Start = 1960
## End = 2021
## Frequency = 1
## [1] 359.5451 378.2120 392.9346 424.1896 485.8001 511.0207
## [7] 550.4699 581.7295 622.4251 666.7434 706.3132 755.3325
## [13] 844.1744 1000.9379 1264.3584 1499.3556 1472.6589 1314.0197
## [19] 1598.4655 2039.6463 3029.8874 3812.5808 2612.7592 2166.4613
## [25] 2507.3121 2607.3803 1765.1849 1902.4381 2302.0270 2759.4457
## [31] 3196.9189 3756.8899 4272.7860 5778.9387 5976.5236 4002.1743
## [37] 4487.2918 5370.2175 5555.7372 6230.6956 7232.8788 7613.1769
## [43] 7650.8988 7120.3848 7525.4652 8321.8535 9125.4226 9719.9205
## [49] 10119.8362 8104.9076 9399.9709 10341.5210 10376.0577 10865.6802
## [55] 11076.0925 9753.3800 8875.0623 9434.3865 9857.0288 10145.1702
## [61] 8655.0007 10045.6805
## attr(,"label")
## [1] GDP per capita (current US$)
# Generar pronóstico
modelo_PIB <- auto.arima(PIB_st, D=1)
modelo_PIB
## Series: PIB_st
## ARIMA(0,1,0) with drift
##
## Coefficients:
## drift
## 158.7891
## s.e. 88.9207
##
## sigma^2 = 490358: log likelihood = -485.69
## AIC=975.38 AICc=975.59 BIC=979.6
pronostico_PIB <- forecast(modelo_PIB, level=c(95), h=5)
pronostico_PIB
## Point Forecast Lo 95 Hi 95
## 2022 10204.47 8831.993 11576.95
## 2023 10363.26 8422.284 12304.23
## 2024 10522.05 8144.849 12899.25
## 2025 10680.84 7935.884 13425.79
## 2026 10839.63 7770.675 13908.58
plot(pronostico_PIB, main="Pronóstico a 5 años del PIB en México")

LS0tDQp0aXRsZTogIkFjdGl2aWRhZCBJbmRpdmlkdWFsIDUiDQphdXRob3I6ICJSYcO6bCBBbGVqYW5kcm8gQ2FudMO6IFbDoXpxdWV6IEEwMTA4NzY4MyINCmRhdGU6ICcyMDIzLTAzLTIyJw0Kb3V0cHV0OiANCiAgaHRtbF9kb2N1bWVudDoNCiAgICB0b2M6IHRydWUNCiAgICB0b2NfZmxvYXQ6IHRydWUNCiAgICBjb2RlX2Rvd25sb2FkOiB0cnVlDQotLS0NCg0KIVtdKEM6XFxVc2Vyc1xcTDAzNTMwNjIxXFxEZXNrdG9wXFxzZXJpZXMuUE5HKQ0KDQojIyMgTGxhbWFyIGxpYnJlcsOtYXMNCmBgYHtyfQ0KbGlicmFyeShXREkpDQpsaWJyYXJ5KHdic3RhdHMpDQpsaWJyYXJ5KHRpZHl2ZXJzZSkNCmxpYnJhcnkoZm9yZWNhc3QpDQpsaWJyYXJ5KGdncGxvdDIpDQpgYGANCg0KIyMjIFByb27Ds3N0aWNvICMxOiBQSUIgZW4gTcOpeGljbw0KYGBge3J9DQpnZHBfZGF0YSA8LSB3Yl9kYXRhKGNvdW50cnkgPSAiTVgiLCBpbmRpY2F0b3IgPSAiTlkuR0RQLlBDQVAuQ0QiLCBzdGFydF9kYXRlPSAxOTUwLCBlbmRfZGF0ZT0yMDIyKQ0KIyBDb25zdWx0YXIgY291bnRyeSBlbjogaHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvSVNPXzMxNjYtMV9hbHBoYS0yDQojIENvbnN1bHRhciBpbmRpY2F0b3IgZW46IGh0dHBzOi8vZGF0YS53b3JsZGJhbmsub3JnL2luZGljYXRvcg0Kc3VtbWFyeShnZHBfZGF0YSkNCmhlYWQoZ2RwX2RhdGEpDQpQSUIgPC0gZ2RwX2RhdGEkTlkuR0RQLlBDQVAuQ0QNCg0KIyBHZW5lcmFyIHNlcmllIGRlIHRpZW1wbw0KUElCX3N0IDwtIHRzKGRhdGE9IFBJQiwgc3RhcnQgPSBjKDE5NjApLCBmcmVxdWVuY3kgPSAxKQ0KUElCX3N0DQoNCiMgR2VuZXJhciBwcm9uw7NzdGljbw0KbW9kZWxvX1BJQiA8LSBhdXRvLmFyaW1hKFBJQl9zdCwgRD0xKQ0KbW9kZWxvX1BJQg0KDQpwcm9ub3N0aWNvX1BJQiA8LSBmb3JlY2FzdChtb2RlbG9fUElCLCBsZXZlbD1jKDk1KSwgaD01KQ0KcHJvbm9zdGljb19QSUINCnBsb3QocHJvbm9zdGljb19QSUIsIG1haW49IlByb27Ds3N0aWNvIGEgNSBhw7FvcyBkZWwgUElCIGVuIE3DqXhpY28iKQ0KYGBgDQoNCiMjIyBJbmZvcm1hY2nDs24gZGUgdmFyaW9zIHBhw61zZXMNCmBgYHtyfQ0KbW9yZV9nZHBfZGF0YSA8LSB3Yl9kYXRhKGNvdW50cnkgPSBjKCJORyIsIkhUIiwiS0UiKSwgaW5kaWNhdG9yID0gIk5ZLkdEUC5QQ0FQLkNEIiwgc3RhcnRfZGF0ZT0gMTk1MCwgZW5kX2RhdGU9MjAyMikNCg0KZ2dwbG90KGRhdGEgPSBtb3JlX2dkcF9kYXRhKSArDQogIGdlb21fcG9pbnQobWFwcGluZz0gYWVzKCB4PWRhdGUsIHk9TlkuR0RQLlBDQVAuQ0QsIGNvbG9yID0gY291bnRyeSwgc2hhcGUgPSBjb3VudHJ5KSkNCmBgYA0KDQo=