Llamar librerías

library(WDI)
library(wbstats)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.0     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.1     ✔ tibble    3.1.8
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.1     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the ]8;;http://conflicted.r-lib.org/conflicted package]8;; to force all conflicts to become errors
library(forecast)
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
library(ggplot2)

Pronóstico #1: PIB en México

gdp_data <- wb_data(country = "MX", indicator = "NY.GDP.PCAP.CD", start_date = 1973, end_date = 2022)
# Consultar country en
# Condultar indicator en


PIB <- gdp_data$NY.GDP.PCAP.CD

#Generar serie de tiempo
PIB_st <- ts(data = PIB, start = c(1973), frequency = 1)
PIB_st
## Time Series:
## Start = 1973 
## End = 2021 
## Frequency = 1 
##  [1]  1000.938  1264.358  1499.356  1472.659  1314.020  1598.466  2039.646
##  [8]  3029.887  3812.581  2612.759  2166.461  2507.312  2607.380  1765.185
## [15]  1902.438  2302.027  2759.446  3196.919  3756.890  4272.786  5778.939
## [22]  5976.524  4002.174  4487.292  5370.218  5555.737  6230.696  7232.879
## [29]  7613.177  7650.899  7120.385  7525.465  8321.853  9125.423  9719.920
## [36] 10119.836  8104.908  9399.971 10341.521 10376.058 10865.680 11076.092
## [43]  9753.380  8875.062  9434.386  9857.029 10145.170  8655.001 10045.681
## attr(,"label")
## [1] GDP per capita (current US$)
#Generar pronóstico
modelo_pib <- auto.arima(PIB_st, D=1)
modelo_pib
## Series: PIB_st 
## ARIMA(0,1,0) with drift 
## 
## Coefficients:
##          drift
##       188.4321
## s.e.  112.5901
## 
## sigma^2 = 621419:  log likelihood = -387.76
## AIC=779.52   AICc=779.78   BIC=783.26
pronostico_pib <- forecast(modelo_pib, level=c(95), h=5)
pronostico_pib
##      Point Forecast    Lo 95    Hi 95
## 2022       10234.11 8689.071 11779.15
## 2023       10422.54 8237.526 12607.56
## 2024       10610.98 7934.886 13287.07
## 2025       10799.41 7709.325 13889.49
## 2026       10987.84 7533.023 14442.66
plot(pronostico_pib, main = "Pronóstico a 5 años del PIB en México")

### Información varios países

more_gdp_data <- wb_data(country = c("NG", "HT", "KE"), indicator = "NY.GDP.PCAP.CD", start_date = 1950, end_date = 2022)

ggplot(data = more_gdp_data) + 
  geom_point(mapping = aes(x = date, y = NY.GDP.PCAP.CD, color = country, shape = country)) +
  labs(x="Año", y = "PIB", title = "Comparación del PIB de Nigeria, Haití y Kenia")

LS0tCnRpdGxlOiAiQWN0aXZpZGFkIEluZGl2aWR1YWwgNSIKYXV0aG9yOiAiSHVnbyBFbnJpcXVlIEVzcHJvbmNlZGEgQW5heWEgLyBBMDEyODQ4MjciCmRhdGU6ICIyMDIzLTAzLTIyIgpvdXRwdXQ6IAogIGh0bWxfZG9jdW1lbnQ6CiAgICB0b2M6IHRydWUKICAgIHRvY19mbG9hdDogdHJ1ZQogICAgY29kZV9kb3dubG9hZDogdHJ1ZQotLS0KIVtdKC9Vc2Vycy9odWdvZW5yaXF1ZS9EZXNrdG9wLzR0byBzZW1lc3RyZS9TZW1hbmFzIFRlYy9Cb290Y2FtcCBkZSBwcm9ncmFtYWNpb8yBbi9zZXJpZS5wbmcpCgojIyMgTGxhbWFyIGxpYnJlcsOtYXMKYGBge3J9CmxpYnJhcnkoV0RJKQpsaWJyYXJ5KHdic3RhdHMpCmxpYnJhcnkodGlkeXZlcnNlKQpsaWJyYXJ5KGZvcmVjYXN0KQpsaWJyYXJ5KGdncGxvdDIpCmBgYAoKIyMjIFByb27Ds3N0aWNvICMxOiBQSUIgZW4gTcOpeGljbwpgYGB7cn0KZ2RwX2RhdGEgPC0gd2JfZGF0YShjb3VudHJ5ID0gIk1YIiwgaW5kaWNhdG9yID0gIk5ZLkdEUC5QQ0FQLkNEIiwgc3RhcnRfZGF0ZSA9IDE5NzMsIGVuZF9kYXRlID0gMjAyMikKIyBDb25zdWx0YXIgY291bnRyeSBlbgojIENvbmR1bHRhciBpbmRpY2F0b3IgZW4KCgpQSUIgPC0gZ2RwX2RhdGEkTlkuR0RQLlBDQVAuQ0QKCiNHZW5lcmFyIHNlcmllIGRlIHRpZW1wbwpQSUJfc3QgPC0gdHMoZGF0YSA9IFBJQiwgc3RhcnQgPSBjKDE5NzMpLCBmcmVxdWVuY3kgPSAxKQpQSUJfc3QKCiNHZW5lcmFyIHByb27Ds3N0aWNvCm1vZGVsb19waWIgPC0gYXV0by5hcmltYShQSUJfc3QsIEQ9MSkKbW9kZWxvX3BpYgoKcHJvbm9zdGljb19waWIgPC0gZm9yZWNhc3QobW9kZWxvX3BpYiwgbGV2ZWw9Yyg5NSksIGg9NSkKcHJvbm9zdGljb19waWIKcGxvdChwcm9ub3N0aWNvX3BpYiwgbWFpbiA9ICJQcm9uw7NzdGljbyBhIDUgYcOxb3MgZGVsIFBJQiBlbiBNw6l4aWNvIikKYGBgCiMjIyBJbmZvcm1hY2nDs24gdmFyaW9zIHBhw61zZXMKYGBge3J9Cm1vcmVfZ2RwX2RhdGEgPC0gd2JfZGF0YShjb3VudHJ5ID0gYygiTkciLCAiSFQiLCAiS0UiKSwgaW5kaWNhdG9yID0gIk5ZLkdEUC5QQ0FQLkNEIiwgc3RhcnRfZGF0ZSA9IDE5NTAsIGVuZF9kYXRlID0gMjAyMikKCmdncGxvdChkYXRhID0gbW9yZV9nZHBfZGF0YSkgKyAKICBnZW9tX3BvaW50KG1hcHBpbmcgPSBhZXMoeCA9IGRhdGUsIHkgPSBOWS5HRFAuUENBUC5DRCwgY29sb3IgPSBjb3VudHJ5LCBzaGFwZSA9IGNvdW50cnkpKSArCiAgbGFicyh4PSJBw7FvIiwgeSA9ICJQSUIiLCB0aXRsZSA9ICJDb21wYXJhY2nDs24gZGVsIFBJQiBkZSBOaWdlcmlhLCBIYWl0w60geSBLZW5pYSIpCmBgYAoKCg==