Student Workload

Fall 2013

This is how much the students work

rd <- read.xlsx("MA-CMHC Readings.xlsx", sheetIndex = 1)[, 1:8]
rd <- subset(rd, !(is.na(Class) | is.na(rd$Type)))
rd$Week <- ordered(rd$Week)
rd$time <- 0
rd$X..Pages[rd$X..Pages == "NA"] <- "0"
rd$X..Pages[is.na(rd$X..Pages)] <- "0"
rd$X..Pages <- as.numeric(as.character(rd$X..Pages))
rd$Work[is.na(rd$Work)] <- 0
rd$time[rd$Type == "JA"] <- rd$X..Pages[rd$Type == "JA"]/10
rd$time[rd$Type == "ET"] <- rd$X..Pages[rd$Type == "ET"]/10
rd$time[rd$Type == "TT"] <- rd$X..Pages[rd$Type == "TT"]/15
rd$time <- rd$time + rd$Work

Here is a summary by week

summary(time ~ Week * Cohort.Year, rd, fun = sum, method = "cross")
## 
##  sum by Week, Cohort.Year 
## 
## +----+
## |N   |
## |time|
## +----+
## +----+-------+-------+-------+
## |Week|   1   |   2   |  ALL  |
## +----+-------+-------+-------+
## | 1  |  2    |  4    |  6    |
## |    |  7.200|  4.833| 12.033|
## +----+-------+-------+-------+
## | 2  |  5    |  5    | 10    |
## |    | 15.700| 16.933| 32.633|
## +----+-------+-------+-------+
## | 3  |  5    |  5    | 10    |
## |    | 18.033| 16.233| 34.267|
## +----+-------+-------+-------+
## | 4  |  6    |  6    | 12    |
## |    | 24.967| 10.000| 34.967|
## +----+-------+-------+-------+
## | 5  |  6    |  5    | 11    |
## |    | 13.267| 11.767| 25.033|
## +----+-------+-------+-------+
## | 6  |  7    |  5    | 12    |
## |    | 15.667| 11.500| 27.167|
## +----+-------+-------+-------+
## | 7  |  2    |  4    |  6    |
## |    |  6.467| 11.467| 17.933|
## +----+-------+-------+-------+
## | 8  |  7    |  6    | 13    |
## |    | 18.300| 14.533| 32.833|
## +----+-------+-------+-------+
## | 9  |  4    |  2    |  6    |
## |    | 20.733|  2.900| 23.633|
## +----+-------+-------+-------+
## | 10 |  5    |  2    |  7    |
## |    | 16.200|  3.133| 19.333|
## +----+-------+-------+-------+
## | 11 |  3    |  1    |  4    |
## |    | 12.200|  0.000| 12.200|
## +----+-------+-------+-------+
## | 12 |  5    |  2    |  7    |
## |    | 24.067|  2.000| 26.067|
## +----+-------+-------+-------+
## | 13 |  5    |  2    |  7    |
## |    | 16.267| 12.500| 28.767|
## +----+-------+-------+-------+
## | 14 |  2    |  2    |  4    |
## |    |  3.567| 12.500| 16.067|
## +----+-------+-------+-------+
## | 15 |  3    |  2    |  5    |
## |    |  0.600| 10.000| 10.600|
## +----+-------+-------+-------+
## | ALL| 67    | 53    |120    |
## |    |213.233|140.300|353.533|
## +----+-------+-------+-------+

Or by type

summary(time ~ Week * Class, rd, fun = sum, method = "cross")
## 
##  sum by Week, Class 
## 
## +----+
## |N   |
## |time|
## +----+
## +----+--------+--------+--------+--------+--------+-------+
## |Week|Psy 6000|Psy 6200|Psy 6320|Psy 6341|Psy 6360|  ALL  |
## +----+--------+--------+--------+--------+--------+-------+
## | 1  |   0    |   0    |   3    |   1    |   2    |  6    |
## |    |        |        |   4.833|   0.000|   7.200| 12.033|
## +----+--------+--------+--------+--------+--------+-------+
## | 2  |   0    |   1    |   3    |   2    |   4    | 10    |
## |    |        |   2.400|   6.000|  10.933|  13.300| 32.633|
## +----+--------+--------+--------+--------+--------+-------+
## | 3  |   1    |   1    |   3    |   2    |   3    | 10    |
## |    |   3.300|   4.133|   7.000|   9.233|  10.600| 34.267|
## +----+--------+--------+--------+--------+--------+-------+
## | 4  |   1    |   2    |   3    |   3    |   3    | 12    |
## |    |   2.200|   7.533|   5.500|   4.500|  15.233| 34.967|
## +----+--------+--------+--------+--------+--------+-------+
## | 5  |   1    |   2    |   3    |   2    |   3    | 11    |
## |    |   1.400|   4.233|   7.100|   4.667|   7.633| 25.033|
## +----+--------+--------+--------+--------+--------+-------+
## | 6  |   1    |   4    |   3    |   2    |   2    | 12    |
## |    |   1.533|   6.700|   6.100|   5.400|   7.433| 27.167|
## +----+--------+--------+--------+--------+--------+-------+
## | 7  |   0    |   1    |   2    |   2    |   1    |  6    |
## |    |        |   4.267|   8.000|   3.467|   2.200| 17.933|
## +----+--------+--------+--------+--------+--------+-------+
## | 8  |   1    |   3    |   3    |   3    |   3    | 13    |
## |    |   4.533|   6.133|   7.433|   7.100|   7.633| 32.833|
## +----+--------+--------+--------+--------+--------+-------+
## | 9  |   1    |   1    |   0    |   2    |   2    |  6    |
## |    |   4.867|   8.533|        |   2.900|   7.333| 23.633|
## +----+--------+--------+--------+--------+--------+-------+
## | 10 |   1    |   2    |   0    |   2    |   2    |  7    |
## |    |   1.400|   6.600|        |   3.133|   8.200| 19.333|
## +----+--------+--------+--------+--------+--------+-------+
## | 11 |   1    |   0    |   0    |   1    |   2    |  4    |
## |    |   3.800|        |        |   0.000|   8.400| 12.200|
## +----+--------+--------+--------+--------+--------+-------+
## | 12 |   1    |   2    |   0    |   2    |   2    |  7    |
## |    |   1.733|   7.700|        |   2.000|  14.633| 26.067|
## +----+--------+--------+--------+--------+--------+-------+
## | 13 |   1    |   2    |   0    |   2    |   2    |  7    |
## |    |   2.267|   1.500|        |  12.500|  12.500| 28.767|
## +----+--------+--------+--------+--------+--------+-------+
## | 14 |   0    |   1    |   0    |   2    |   1    |  4    |
## |    |        |   0.500|        |  12.500|   3.067| 16.067|
## +----+--------+--------+--------+--------+--------+-------+
## | 15 |   0    |   3    |   0    |   2    |   0    |  5    |
## |    |        |   0.600|        |  10.000|        | 10.600|
## +----+--------+--------+--------+--------+--------+-------+
## | ALL|  10    |  25    |  23    |  30    |  32    |120    |
## |    |  27.033|  60.833|  51.967|  88.333| 125.367|353.533|
## +----+--------+--------+--------+--------+--------+-------+

We can plot overall summing over courses.

rd.pd <- with(rd, summarize(time, by = llist(Cohort.Year, Week), FUN = sum, 
    stat.name = "time"))
rd.pd <- subset(rd.pd, !is.na(time))
rd.pd$Week <- as.numeric(rd.pd$Week)
xyplot(time ~ Week, rd.pd, group = Cohort.Year, type = "b", auto.key = TRUE)

plot of chunk unnamed-chunk-5

Now, without summing over courses

rd.pd <- with(rd, summarize(time, by = llist(Cohort.Year, Class, Week), FUN = sum, 
    stat.name = "time"))
rd.pd$Week <- as.numeric(rd.pd$Week)
rd.pd$Cohort.Year <- ordered(rd.pd$Cohort.Year)
xyplot(time ~ Week | Cohort.Year, rd.pd, group = Class, type = "b", auto.key = TRUE)

plot of chunk unnamed-chunk-6