Question 1.

NUMBER1<- DATA%>%
  filter(AveFK != "NA")%>%
  mutate(AveFKFrequency=ifelse(AveFK<=1.49, "VERY POOR",
                               ifelse(AveFK<=2.49, "BELOW AVERAGE",
                                      ifelse(AveFK<=3.49, "AVERAGE",
                                             ifelse(AveFK<=4.49, "ABOVE AVERAGE", "EXCELLENT")))))%>%
  group_by(School, AveFKFrequency)%>%
  summarise(Frequency=n())%>%
  mutate(Percentage=round(Frequency/sum(Frequency)*100,2))
## `summarise()` has grouped output by 'School'. You can override using the
## `.groups` argument.
NUMBER1
## # A tibble: 7 × 4
## # Groups:   School [2]
##   School AveFKFrequency Frequency Percentage
##   <chr>  <chr>              <int>      <dbl>
## 1 VCCS   ABOVE AVERAGE         41      66.1 
## 2 VCCS   AVERAGE                7      11.3 
## 3 VCCS   EXCELLENT             14      22.6 
## 4 VNHS   ABOVE AVERAGE         68      70.8 
## 5 VNHS   AVERAGE                7       7.29
## 6 VNHS   BELOW AVERAGE          2       2.08
## 7 VNHS   EXCELLENT             19      19.8

Question 2.

NUMBER2<- DATA%>%
  filter(AveSC != "NA")%>%
  mutate(AveSCFrequency=ifelse(AveFK<=1.49, "VERY POOR",
                               ifelse(AveSC<=2.49, "BELOW AVERAGE",
                                      ifelse(AveSC<=3.49, "AVERAGE",
                                             ifelse(AveSC<=4.49, "ABOVE AVERAGE", "EXCELLENT")))))%>%
  group_by(School, AveSCFrequency)%>%
  summarise(Frequency=n())%>%
  mutate(Percentage=round(Frequency/sum(Frequency)*100,2))
## `summarise()` has grouped output by 'School'. You can override using the
## `.groups` argument.
NUMBER2
## # A tibble: 8 × 4
## # Groups:   School [2]
##   School AveSCFrequency Frequency Percentage
##   <chr>  <chr>              <int>      <dbl>
## 1 VCCS   ABOVE AVERAGE         38      61.3 
## 2 VCCS   AVERAGE               14      22.6 
## 3 VCCS   BELOW AVERAGE          1       1.61
## 4 VCCS   EXCELLENT              9      14.5 
## 5 VNHS   ABOVE AVERAGE         58      60.4 
## 6 VNHS   AVERAGE               24      25   
## 7 VNHS   BELOW AVERAGE          1       1.04
## 8 VNHS   EXCELLENT             13      13.5

Question 3.

NUMBER3<- DATA%>%
  filter(AvePI != "NA")%>%
  mutate(AvePIFrequency=ifelse(AvePI<=1.49, "VERY POOR",
                               ifelse(AvePI<=2.49, "BELOW AVERAGE",
                                      ifelse(AvePI<=3.49, "AVERAGE",
                                             ifelse(AvePI<=4.49, "ABOVE AVERAGE", "EXCELLENT")))))%>%
  group_by(School, AvePIFrequency)%>%
  summarise(Frequency=n())%>%
  mutate(Percentage=round(Frequency/sum(Frequency)*100,2))
## `summarise()` has grouped output by 'School'. You can override using the
## `.groups` argument.
NUMBER3
## # A tibble: 9 × 4
## # Groups:   School [2]
##   School AvePIFrequency Frequency Percentage
##   <chr>  <chr>              <int>      <dbl>
## 1 VCCS   ABOVE AVERAGE         39      62.9 
## 2 VCCS   AVERAGE               15      24.2 
## 3 VCCS   BELOW AVERAGE          1       1.61
## 4 VCCS   EXCELLENT              7      11.3 
## 5 VNHS   ABOVE AVERAGE         49      51.0 
## 6 VNHS   AVERAGE               34      35.4 
## 7 VNHS   BELOW AVERAGE          7       7.29
## 8 VNHS   EXCELLENT              5       5.21
## 9 VNHS   VERY POOR              1       1.04

Question 4.

NUMBER4<- DATA%>%
  filter(AveRR != "NA")%>%
  mutate(AveRRFrequency=ifelse(AveRR<=1.49, "VERY POOR",
                               ifelse(AveRR<=2.49, "BELOW AVERAGE",
                                      ifelse(AveRR<=3.49, "AVERAGE",
                                             ifelse(AveRR<=4.49, "ABOVE AVERAGE", "EXCELLENT")))))%>%
  group_by(School, AveRRFrequency)%>%
  summarise(Frequency=n())%>%
  mutate(Percentage=round(Frequency/sum(Frequency)*100,2))
## `summarise()` has grouped output by 'School'. You can override using the
## `.groups` argument.
NUMBER4
## # A tibble: 7 × 4
## # Groups:   School [2]
##   School AveRRFrequency Frequency Percentage
##   <chr>  <chr>              <int>      <dbl>
## 1 VCCS   ABOVE AVERAGE         43      69.4 
## 2 VCCS   AVERAGE               11      17.7 
## 3 VCCS   EXCELLENT              8      12.9 
## 4 VNHS   ABOVE AVERAGE         67      69.8 
## 5 VNHS   AVERAGE               21      21.9 
## 6 VNHS   BELOW AVERAGE          3       3.12
## 7 VNHS   EXCELLENT              5       5.21
library(rstatix)
Phase<- DATA1%>%
  gather(key="Phase", value="CFUCount", "Adlay with wash","Adlay with milk","Adlay with milk and molasses")%>%
  convert_as_factor(Phase)
Phase
## # A tibble: 192 × 11
##    PhaseInterval Tempe…¹ ...6  ...7  ...8  ...9  ...10 ...11 ...12 Phase CFUCo…²
##    <chr>         <chr>   <lgl> <lgl> <chr> <chr> <chr> <chr> <chr> <fct>   <dbl>
##  1 3- day        25°C    NA    NA    <NA>  <NA>  <NA>  <NA>  <NA>  Adla…     759
##  2 3- day        25°C    NA    NA    Conc… dip   Day   Weig… Color Adla…     736
##  3 3- day        25°C    NA    NA    1     15    4     <NA>  <NA>  Adla…     891
##  4 3- day        30°C    NA    NA    1     15    4     <NA>  <NA>  Adla…     573
##  5 3- day        30°C    NA    NA    1     15    4     <NA>  <NA>  Adla…     584
##  6 3- day        30°C    NA    NA    1     15    4     <NA>  <NA>  Adla…     482
##  7 3- day        35°C    NA    NA    1     30    4     <NA>  <NA>  Adla…     384
##  8 3- day        35°C    NA    NA    1     30    4     <NA>  <NA>  Adla…     264
##  9 3- day        35°C    NA    NA    1     30    4     <NA>  <NA>  Adla…     208
## 10 5-day         25°C    NA    NA    1     30    4     <NA>  <NA>  Adla…     888
## # … with 182 more rows, and abbreviated variable names ¹​Temperature, ²​CFUCount

Question 5.

NUMBER5<- Phase %>%
  group_by(PhaseInterval)%>%
  get_summary_stats(CFUCount, type="mean_sd")
NUMBER5
## # A tibble: 3 × 5
##   PhaseInterval variable     n  mean    sd
##   <chr>         <fct>    <dbl> <dbl> <dbl>
## 1 3- day        CFUCount    26  488.  264.
## 2 5-day         CFUCount    27  284.  269.
## 3 7-day         CFUCount    27  182.  271.

Question 6.

NUMBER6<- Phase %>%
  group_by(Temperature)%>%
  get_summary_stats(CFUCount, type="mean_sd")
NUMBER6
## # A tibble: 3 × 5
##   Temperature variable     n  mean    sd
##   <chr>       <fct>    <dbl> <dbl> <dbl>
## 1 25°C        CFUCount    27  480.  353.
## 2 30°C        CFUCount    26  235.  194.
## 3 35°C        CFUCount    27  229.  243.

Question 7.

NUMBER7<- Phase %>%
  group_by(Phase)%>%
  get_summary_stats(CFUCount, type="mean_sd")
NUMBER7
## # A tibble: 3 × 5
##   Phase                        variable     n  mean    sd
##   <fct>                        <fct>    <dbl> <dbl> <dbl>
## 1 Adlay with milk              CFUCount    26  190   232.
## 2 Adlay with milk and molasses CFUCount    27  293.  261.
## 3 Adlay with wash              CFUCount    27  459.  323.

Question 8.

NUMBER8<- Phase %>%
  group_by(PhaseInterval, Temperature)%>%
  get_summary_stats(CFUCount, type="mean_sd")
NUMBER8
## # A tibble: 9 × 6
##   PhaseInterval Temperature variable     n  mean    sd
##   <chr>         <chr>       <fct>    <dbl> <dbl> <dbl>
## 1 3- day        25°C        CFUCount     9 641.  244. 
## 2 3- day        30°C        CFUCount     8 347.  187. 
## 3 3- day        35°C        CFUCount     9 459.  282. 
## 4 5-day         25°C        CFUCount     9 460.  346. 
## 5 5-day         30°C        CFUCount     9 250.  218. 
## 6 5-day         35°C        CFUCount     9 142.   98.7
## 7 7-day         25°C        CFUCount     9 340.  416. 
## 8 7-day         30°C        CFUCount     9 120.  108. 
## 9 7-day         35°C        CFUCount     9  85.4 104.

Question 9.

NUMBER9<- Phase %>%
  group_by(Temperature,Phase)%>%
  get_summary_stats(CFUCount, type="mean_sd")
NUMBER9
## # A tibble: 9 × 6
##   Temperature Phase                        variable     n  mean    sd
##   <chr>       <fct>                        <fct>    <dbl> <dbl> <dbl>
## 1 25°C        Adlay with milk              CFUCount     9  243. 230. 
## 2 25°C        Adlay with milk and molasses CFUCount     9  416. 330. 
## 3 25°C        Adlay with wash              CFUCount     9  783. 267. 
## 4 30°C        Adlay with milk              CFUCount     8   84   57.6
## 5 30°C        Adlay with milk and molasses CFUCount     9  193.  98.9
## 6 30°C        Adlay with wash              CFUCount     9  410. 213. 
## 7 35°C        Adlay with milk              CFUCount     9  232. 309. 
## 8 35°C        Adlay with milk and molasses CFUCount     9  269. 271. 
## 9 35°C        Adlay with wash              CFUCount     9  186. 135.

Question 10.

Refer to DATA Number 2

A <- c(34,58,14,24,1,1,9,13)
B <- c("ABOVE AVERAGE", "ABOVE AVERAGE", "AVERAGE", "AVERAGE", "BELOW AVERAGE","BELOW AVERAGE", "EXCELLENT", "EXCELLENT")
C = c("black", "yellow", "black", "yellow", "black", "yellow", "black", "yellow")

barplot(A, main = "Comparison of AveSCFrequency of VCCS & VNHS", names.arg = B,
        xlab = "AveSCFrequency", ylab = "Frequency",
        col = C) 
legend("topright", c("VCCS", "VNHS"), cex = 0.8,
   fill = C )

Refer to Data Number 5

X<- c(26,27,27)
Y<- c("3-day", "5-day", "7-day")
Z = c("khaki", "orange", "tan")

barplot(X, main = "Phase Interval of CFUcount", names.arg = Y,
        xlab = "PhaseInterval", ylab = "CFUcount",
        col = Z)