Power motivations and sexual risk-taking

Published

Invalid Date

Show the code
library(papaja)
library(xtable)
library(tidyr)
library(purrr)
library(ggplot2)
library(brms)
library(bayestestR)
library(rstan)
library(readxl)
library(sjPlot)
library(cmdstanr)
library(plotly)
library(corrplot)
library(htmlwidgets)
library(bayestestR)
library(formatR)
library(kableExtra)
library(tidybayes)
library(blavaan)
library(rmarkdown)
library(tidySEM)
library(ggcorrplot)
library(ggprism)
library(htmlTable)
library(table1)
library(data.table)
library(semPlot)
library(correlation)
library(dplyr)
library(lavaan)
library(dplyr)
library(tibble)
library(stringi)
library(tidyr)
library(kableExtra)
library(rrtable)
library(sjPlot)
library(purrr)
library(stringi)
library(ggplot2)
library(tidyverse)
setwd("/Users/andrew/Documents/1_UoE/Research/PhD/Experiments/DoPL/Experiments/Experiment_2_Study_Past_Sexual_Experiences")
Experiment_4_DF_Final <- read.csv("./Analysis/Experiment_4_DF_Final.csv")
source("./Analysis/Question_index.R")
Experiment_4_DF_Final$Gender <- as.factor(Experiment_4_DF_Final$Gender)
load("Experiment_4_Analysis.RData")
Show the code
Experiment_4_DF_Final$Gender <- as.factor(Experiment_4_DF_Final$Gender)
Experiment_4_Analysis_DF <- Experiment_4_DF_Final[!grepl(5, Experiment_4_DF_Final$Gender), ]
ggplot(Experiment_4_Analysis_DF, aes(x = Gender, fill = Gender)) +
  geom_histogram(stat = "count") +
  labs(x = "Gender2") +
  scale_y_continuous(breaks = seq(0, 160, 10), guide = "prism_offset") +
  theme(legend.position = "none")

Show the code

m1_prior <- c(
# SRTB Risk
prior(normal(0, 1), coef = "Age", resp = "SRTBRiskz"), 
prior(normal(.5, .02), coef = "DoPL_Dominance_z", resp = "SRTBRiskz"), 
prior(normal(0, 1), coef = "DoPL_Leadership_z", resp = "SRTBRiskz"), 
prior(normal(0, 1), coef = "DoPL_Prestige_z", resp = "SRTBRiskz"), 
prior(normal(.5, .2), coef = "Gender2", resp = "SRTBRiskz"), 
prior(normal(0, 1), coef = "B_PNI_z", resp = "SRTBRiskz"), 
prior(normal(0, 1), class = "Intercept", resp = "SRTBRiskz"), 
prior(normal(0, 1), class = "sigma", resp = "SRTBRiskz"), 

# SRTB Benefit
prior(normal(0, 1), coef = "Age", resp = "SRTBBenefitz"), 
prior(normal(.5, .02), coef = "DoPL_Dominance_z", resp = "SRTBBenefitz"), 
prior(normal(0, 1), coef = "DoPL_Leadership_z", resp = "SRTBBenefitz"), 
prior(normal(0, 1), coef = "DoPL_Prestige_z", resp = "SRTBBenefitz"), 
prior(normal(.5, .2), coef = "Gender2", resp = "SRTBBenefitz"), 
prior(normal(0, 1), coef = "B_PNI_z", resp = "SRTBBenefitz"), 
prior(normal(0, 1), class = "Intercept", resp = "SRTBBenefitz"), 
prior(normal(0, 1), class = "sigma", resp = "SRTBBenefitz"), 

# SRTB Frequency
prior(normal(0, 1), coef = "Age", resp = "SRTBFrequencyz"), 
prior(normal(.5, .02), coef = "DoPL_Dominance_z", resp = "SRTBFrequencyz"), 
prior(normal(0, 1), coef = "DoPL_Leadership_z", resp = "SRTBFrequencyz"), 
prior(normal(0, 1), coef = "DoPL_Prestige_z", resp = "SRTBFrequencyz"), 
prior(normal(.5, .2), coef = "Gender2", resp = "SRTBFrequencyz"), 
prior(normal(0, 1), coef = "B_PNI_z", resp = "SRTBFrequencyz"), 
prior(normal(0, 1), class = "Intercept", resp = "SRTBFrequencyz"), 
prior(normal(0, 1), class = "sigma", resp = "SRTBFrequencyz"), 

# SRTB Likelihood
prior(normal(0, 1), coef = "Age", resp = "SRTBLikelihoodz"), 
prior(normal(.5, .02), coef = "DoPL_Dominance_z", resp = "SRTBLikelihoodz"), 
prior(normal(0, 1), coef = "DoPL_Leadership_z", resp = "SRTBLikelihoodz"), 
prior(normal(0, 1), coef = "DoPL_Prestige_z", resp = "SRTBLikelihoodz"), 
prior(normal(.5, .2), coef = "Gender2", resp = "SRTBLikelihoodz"), 
prior(normal(0, 1), coef = "B_PNI_z", resp = "SRTBLikelihoodz"), 
prior(normal(0, 1), class = "Intercept", resp = "SRTBLikelihoodz"), 
prior(normal(0, 1), class = "sigma", resp = "SRTBLikelihoodz")
)

m1_interaction_prior <- c(
 # SRTB Risk
 prior(normal(0, 1), coef = "Age", resp = "SRTBRiskz"),
 prior(normal(.5, .02), coef = "DoPL_Dominance_z", resp = "SRTBRiskz"),
 prior(normal(0, 1), coef = "DoPL_Leadership_z", resp = "SRTBRiskz"),
 prior(normal(0, 1), coef = "DoPL_Prestige_z", resp = "SRTBRiskz"),
 prior(normal(.5, .2), coef = "Gender2", resp = "SRTBRiskz"),
 prior(normal(0, 1), coef = "B_PNI_z", resp = "SRTBRiskz"),
 prior(normal(0, 1), class = "Intercept", resp = "SRTBRiskz"),
 prior(normal(0, 1), class = "sigma", resp = "SRTBRiskz"),
 prior(normal(.5, .02), coef = "DoPL_Dominance_z:Gender2", resp = "SRTBRiskz"),
 prior(normal(0, 1), coef = "Gender2:DoPL_Leadership_z", resp = "SRTBRiskz"),
 prior(normal(0, 1), coef = "Gender2:DoPL_Prestige_z", resp = "SRTBRiskz"),
 prior(normal(0, 1), coef = "Gender2:B_PNI_z", resp = "SRTBRiskz"),

 # SRTB Benefit
 prior(normal(0, 1), coef = "Age", resp = "SRTBBenefitz"),
 prior(normal(.5, .02), coef = "DoPL_Dominance_z", resp = "SRTBBenefitz"),
 prior(normal(0, 1), coef = "DoPL_Leadership_z", resp = "SRTBBenefitz"),
 prior(normal(0, 1), coef = "DoPL_Prestige_z", resp = "SRTBBenefitz"),
 prior(normal(.5, .2), coef = "Gender2", resp = "SRTBBenefitz"),
 prior(normal(0, 1), coef = "B_PNI_z", resp = "SRTBBenefitz"),
 prior(normal(0, 1), class = "Intercept", resp = "SRTBBenefitz"),
 prior(normal(0, 1), class = "sigma", resp = "SRTBBenefitz"),
prior(normal(.5, .02), coef = "DoPL_Dominance_z:Gender2", resp = "SRTBBenefitz"),
 prior(normal(0, 1), coef = "Gender2:DoPL_Leadership_z", resp = "SRTBBenefitz"),
 prior(normal(0, 1), coef = "Gender2:DoPL_Prestige_z", resp = "SRTBBenefitz"),
 prior(normal(0, 1), coef = "Gender2:B_PNI_z", resp = "SRTBBenefitz"),
 # SRTB Frequency
 prior(normal(0, 1), coef = "Age", resp = "SRTBFrequencyz"),
 prior(normal(.5, .02), coef = "DoPL_Dominance_z", resp = "SRTBFrequencyz"),
 prior(normal(0, 1), coef = "DoPL_Leadership_z", resp = "SRTBFrequencyz"),
 prior(normal(0, 1), coef = "DoPL_Prestige_z", resp = "SRTBFrequencyz"),
 prior(normal(.5, .2), coef = "Gender2", resp = "SRTBFrequencyz"),
 prior(normal(0, 1), coef = "B_PNI_z", resp = "SRTBFrequencyz"),
 prior(normal(0, 1), class = "Intercept", resp = "SRTBFrequencyz"),
 prior(normal(0, 1), class = "sigma", resp = "SRTBFrequencyz"),
prior(normal(.5, .02), coef = "DoPL_Dominance_z:Gender2", resp = "SRTBFrequencyz"),
 prior(normal(0, 1), coef = "Gender2:DoPL_Leadership_z", resp = "SRTBFrequencyz"),
 prior(normal(0, 1), coef = "Gender2:DoPL_Prestige_z", resp = "SRTBFrequencyz"),
 prior(normal(0, 1), coef = "Gender2:B_PNI_z", resp = "SRTBFrequencyz"),
 # SRTB Likelihood
 prior(normal(0, 1), coef = "Age", resp = "SRTBLikelihoodz"),
 prior(normal(.5, .02), coef = "DoPL_Dominance_z", resp = "SRTBLikelihoodz"),
 prior(normal(0, 1), coef = "DoPL_Leadership_z", resp = "SRTBLikelihoodz"),
 prior(normal(0, 1), coef = "DoPL_Prestige_z", resp = "SRTBLikelihoodz"),
 prior(normal(.5, .2), coef = "Gender2", resp = "SRTBLikelihoodz"),
 prior(normal(0, 1), coef = "B_PNI_z", resp = "SRTBLikelihoodz"),
 prior(normal(0, 1), class = "Intercept", resp = "SRTBLikelihoodz"),
 prior(normal(0, 1), class = "sigma", resp = "SRTBLikelihoodz"),
 prior(normal(.5, .02), coef = "DoPL_Dominance_z:Gender2", resp = "SRTBLikelihoodz"),
 prior(normal(0, 1), coef = "Gender2:DoPL_Leadership_z", resp = "SRTBLikelihoodz"),
 prior(normal(0, 1), coef = "Gender2:DoPL_Prestige_z", resp = "SRTBLikelihoodz"),
 prior(normal(0, 1), coef = "Gender2:B_PNI_z", resp = "SRTBLikelihoodz")
)

Multi model with dopl and pni as predictor variables

Show the code
Experiment_4_Analysis_DF <- Experiment_4_DF_Final[!grepl(5,Experiment_4_DF_Final$Gender), ]
m1 <- brm(mvbind(SRTB_Likelihood_z, SRTB_Risk_z, SRTB_Benefit_z, SRTB_Frequency_z) ~ DoPL_Dominance_z + DoPL_Prestige_z + DoPL_Leadership_z + B_PNI_z + Age + Gender,
 data = Experiment_4_Analysis_DF,
 prior = m1_prior,
 iter = 10000,
 warmup = 1000,
 chains = 4,
 cores = parallel::detectCores(),
 save_pars = save_pars(all = TRUE), 
 backend =  "cmdstanr"
)

::: {#tbl-SRTBDoPLPNI .cell}

Show the code
summary(m1)
##  Family: MV(gaussian, gaussian, gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: SRTB_Likelihood_z ~ DoPL_Dominance_z + DoPL_Prestige_z + DoPL_Leadership_z + B_PNI_z + Age + Gender 
##          SRTB_Risk_z ~ DoPL_Dominance_z + DoPL_Prestige_z + DoPL_Leadership_z + B_PNI_z + Age + Gender 
##          SRTB_Benefit_z ~ DoPL_Dominance_z + DoPL_Prestige_z + DoPL_Leadership_z + B_PNI_z + Age + Gender 
##          SRTB_Frequency_z ~ DoPL_Dominance_z + DoPL_Prestige_z + DoPL_Leadership_z + B_PNI_z + Age + Gender 
##    Data: Experiment_4_Analysis_DF (Number of observations: 194) 
##   Draws: 4 chains, each with iter = 10000; warmup = 1000; thin = 1;
##          total post-warmup draws = 36000
## 
## Population-Level Effects: 
##                                   Estimate Est.Error l-95% CI u-95% CI Rhat
## SRTBLikelihoodz_Intercept            -0.00      0.31    -0.61     0.60 1.00
## SRTBRiskz_Intercept                   0.02      0.27    -0.50     0.54 1.00
## SRTBBenefitz_Intercept                0.01      0.30    -0.59     0.59 1.00
## SRTBFrequencyz_Intercept             -0.14      0.31    -0.75     0.46 1.00
## SRTBLikelihoodz_DoPL_Dominance_z      0.49      0.02     0.45     0.52 1.00
## SRTBLikelihoodz_DoPL_Prestige_z      -0.07      0.11    -0.28     0.14 1.00
## SRTBLikelihoodz_DoPL_Leadership_z    -0.06      0.10    -0.26     0.14 1.00
## SRTBLikelihoodz_B_PNI_z              -0.34      0.10    -0.53    -0.15 1.00
## SRTBLikelihoodz_Age                  -0.00      0.01    -0.02     0.02 1.00
## SRTBLikelihoodz_Gender2               0.08      0.13    -0.16     0.33 1.00
## SRTBRiskz_DoPL_Dominance_z            0.47      0.02     0.43     0.51 1.00
## SRTBRiskz_DoPL_Prestige_z             0.20      0.09     0.01     0.38 1.00
## SRTBRiskz_DoPL_Leadership_z          -0.29      0.09    -0.46    -0.12 1.00
## SRTBRiskz_B_PNI_z                    -0.17      0.08    -0.33    -0.00 1.00
## SRTBRiskz_Age                        -0.01      0.01    -0.02     0.01 1.00
## SRTBRiskz_Gender2                     0.39      0.12     0.15     0.62 1.00
## SRTBBenefitz_DoPL_Dominance_z         0.48      0.02     0.44     0.52 1.00
## SRTBBenefitz_DoPL_Prestige_z          0.07      0.11    -0.14     0.28 1.00
## SRTBBenefitz_DoPL_Leadership_z       -0.26      0.10    -0.46    -0.07 1.00
## SRTBBenefitz_B_PNI_z                 -0.22      0.10    -0.41    -0.03 1.00
## SRTBBenefitz_Age                      0.00      0.01    -0.02     0.02 1.00
## SRTBBenefitz_Gender2                 -0.13      0.12    -0.37     0.11 1.00
## SRTBFrequencyz_DoPL_Dominance_z       0.49      0.02     0.45     0.53 1.00
## SRTBFrequencyz_DoPL_Prestige_z        0.08      0.11    -0.13     0.30 1.00
## SRTBFrequencyz_DoPL_Leadership_z     -0.17      0.10    -0.37     0.03 1.00
## SRTBFrequencyz_B_PNI_z               -0.33      0.10    -0.52    -0.14 1.00
## SRTBFrequencyz_Age                    0.00      0.01    -0.02     0.02 1.00
## SRTBFrequencyz_Gender2                0.20      0.12    -0.04     0.45 1.00
##                                   Bulk_ESS Tail_ESS
## SRTBLikelihoodz_Intercept            42331    29462
## SRTBRiskz_Intercept                  66606    28566
## SRTBBenefitz_Intercept               42848    32135
## SRTBFrequencyz_Intercept             43427    30280
## SRTBLikelihoodz_DoPL_Dominance_z     73786    27192
## SRTBLikelihoodz_DoPL_Prestige_z      32533    30989
## SRTBLikelihoodz_DoPL_Leadership_z    34029    30925
## SRTBLikelihoodz_B_PNI_z              38906    31802
## SRTBLikelihoodz_Age                  43242    29594
## SRTBLikelihoodz_Gender2              51666    30080
## SRTBRiskz_DoPL_Dominance_z           73922    25928
## SRTBRiskz_DoPL_Prestige_z            47084    30173
## SRTBRiskz_DoPL_Leadership_z          51221    28736
## SRTBRiskz_B_PNI_z                    53730    29357
## SRTBRiskz_Age                        68173    27448
## SRTBRiskz_Gender2                    63875    27057
## SRTBBenefitz_DoPL_Dominance_z        75645    25691
## SRTBBenefitz_DoPL_Prestige_z         29299    29542
## SRTBBenefitz_DoPL_Leadership_z       32190    30266
## SRTBBenefitz_B_PNI_z                 36779    31256
## SRTBBenefitz_Age                     43227    32075
## SRTBBenefitz_Gender2                 49978    30259
## SRTBFrequencyz_DoPL_Dominance_z      76104    25847
## SRTBFrequencyz_DoPL_Prestige_z       31512    29722
## SRTBFrequencyz_DoPL_Leadership_z     34837    29294
## SRTBFrequencyz_B_PNI_z               38559    31293
## SRTBFrequencyz_Age                   43778    31217
## SRTBFrequencyz_Gender2               51699    29651
## 
## Family Specific Parameters: 
##                       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sigma_SRTBLikelihoodz     1.15      0.06     1.04     1.28 1.00    39575
## sigma_SRTBRiskz           0.99      0.05     0.90     1.10 1.00    64274
## sigma_SRTBBenefitz        1.13      0.06     1.01     1.25 1.00    41526
## sigma_SRTBFrequencyz      1.15      0.06     1.04     1.28 1.00    44299
##                       Tail_ESS
## sigma_SRTBLikelihoodz    30089
## sigma_SRTBRiskz          27450
## sigma_SRTBBenefitz       29966
## sigma_SRTBFrequencyz     28809
## 
## Residual Correlations: 
##                                        Estimate Est.Error l-95% CI u-95% CI
## rescor(SRTBLikelihoodz,SRTBRiskz)         -0.08      0.07    -0.22     0.07
## rescor(SRTBLikelihoodz,SRTBBenefitz)       0.55      0.05     0.45     0.65
## rescor(SRTBRiskz,SRTBBenefitz)            -0.27      0.07    -0.40    -0.13
## rescor(SRTBLikelihoodz,SRTBFrequencyz)     0.53      0.05     0.43     0.63
## rescor(SRTBRiskz,SRTBFrequencyz)          -0.11      0.07    -0.26     0.03
## rescor(SRTBBenefitz,SRTBFrequencyz)        0.56      0.05     0.45     0.65
##                                        Rhat Bulk_ESS Tail_ESS
## rescor(SRTBLikelihoodz,SRTBRiskz)      1.00    56789    29764
## rescor(SRTBLikelihoodz,SRTBBenefitz)   1.00    36579    29763
## rescor(SRTBRiskz,SRTBBenefitz)         1.00    51169    30480
## rescor(SRTBLikelihoodz,SRTBFrequencyz) 1.00    39399    30072
## rescor(SRTBRiskz,SRTBFrequencyz)       1.00    52156    30155
## rescor(SRTBBenefitz,SRTBFrequencyz)    1.00    43394    31123
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

:::

Table 1: Experiment 2 | Bayesian regression of individual DOSPERT domains as response and dominance, prestige, leadership, and pathlogical narcissism as predictors.
SRTB Likelihood
SRTB Perception
SRTB Benefit
SRTB Frequency
Predictor Estimate HDI (95%) ROPE Estimate HDI (95%) ROPE Estimate HDI (95%) ROPE Estimate HDI (95&) ROPE
Intercept -0.14 -0.75, 0.46 24% 0.00 -0.61, 0.6 27% 0.01 -0.59, 0.59 28% 0.01 -0.5, 0.54 31%
Dominance 0.49 0.45, 0.53 0% 0.49 0.45, 0.52 0% 0.48 0.44, 0.52 0% 0.47 0.43, 0.51 0%
Prestige 0.08 -0.13, 0.3 54% -0.07 -0.28, 0.14 57% 0.07 -0.14, 0.28 59% 0.20 0.01, 0.38 13%
Leadership -0.17 -0.37, 0.03 22% -0.06 -0.26, 0.14 63% -0.26 -0.46, -0.07 2% -0.29 -0.46, -0.12 0%
B-PNI -0.33 -0.52, -0.14 0% -0.34 -0.53, -0.15 0% -0.22 -0.41, -0.03 8% -0.17 -0.33, 0 19%
Age 0.00 -0.02, 0.02 100% 0.00 -0.02, 0.02 100% 0.00 -0.02, 0.02 100% -0.01 -0.02, 0.01 100%
Gender 0.20 -0.04, 0.45 20% 0.08 -0.16, 0.33 50% -0.13 -0.37, 0.11 39% 0.39 0.15, 0.62 0%
Note: ROPE equates to percentage in region of practical equivalence. HDI equates to high density interval of the posterior distribution.

Multi model with dopl and pni as predictor variables and interaction terms

Show the code
Experiment_4_Analysis_DF <- Experiment_4_DF_Final[!grepl(5, Experiment_4_DF_Final$Gender), ]
m1_interaction <- brm(mvbind(SRTB_Likelihood_z, SRTB_Risk_z, SRTB_Benefit_z, SRTB_Frequency_z) ~ DoPL_Dominance_z * Gender + DoPL_Prestige_z * Gender  + DoPL_Leadership_z * Gender  + B_PNI_z * Gender  + Age,
 data = Experiment_4_Analysis_DF,
 prior = m1_interaction_prior,
 iter = 10000,
 warmup = 1000,
 chains = 4,
 cores = parallel::detectCores(),
 save_pars = save_pars(all = TRUE),
 backend = "cmdstanr"
)
## Running MCMC with 4 chains, at most 8 in parallel...
## 
## Chain 1 Iteration:    1 / 10000 [  0%]  (Warmup) 
## Chain 2 Iteration:    1 / 10000 [  0%]  (Warmup) 
## Chain 3 Iteration:    1 / 10000 [  0%]  (Warmup) 
## Chain 4 Iteration:    1 / 10000 [  0%]  (Warmup) 
## Chain 2 Iteration:  100 / 10000 [  1%]  (Warmup) 
## Chain 4 Iteration:  100 / 10000 [  1%]  (Warmup) 
## Chain 1 Iteration:  100 / 10000 [  1%]  (Warmup) 
## Chain 2 Iteration:  200 / 10000 [  2%]  (Warmup) 
## Chain 3 Iteration:  100 / 10000 [  1%]  (Warmup) 
## Chain 4 Iteration:  200 / 10000 [  2%]  (Warmup) 
## Chain 1 Iteration:  200 / 10000 [  2%]  (Warmup) 
## Chain 2 Iteration:  300 / 10000 [  3%]  (Warmup) 
## Chain 3 Iteration:  200 / 10000 [  2%]  (Warmup) 
## Chain 4 Iteration:  300 / 10000 [  3%]  (Warmup) 
## Chain 1 Iteration:  300 / 10000 [  3%]  (Warmup) 
## Chain 1 Iteration:  400 / 10000 [  4%]  (Warmup) 
## Chain 2 Iteration:  400 / 10000 [  4%]  (Warmup) 
## Chain 4 Iteration:  400 / 10000 [  4%]  (Warmup) 
## Chain 3 Iteration:  300 / 10000 [  3%]  (Warmup) 
## Chain 2 Iteration:  500 / 10000 [  5%]  (Warmup) 
## Chain 4 Iteration:  500 / 10000 [  5%]  (Warmup) 
## Chain 1 Iteration:  500 / 10000 [  5%]  (Warmup) 
## Chain 3 Iteration:  400 / 10000 [  4%]  (Warmup) 
## Chain 2 Iteration:  600 / 10000 [  6%]  (Warmup) 
## Chain 4 Iteration:  600 / 10000 [  6%]  (Warmup) 
## Chain 1 Iteration:  600 / 10000 [  6%]  (Warmup) 
## Chain 3 Iteration:  500 / 10000 [  5%]  (Warmup) 
## Chain 2 Iteration:  700 / 10000 [  7%]  (Warmup) 
## Chain 4 Iteration:  700 / 10000 [  7%]  (Warmup) 
## Chain 1 Iteration:  700 / 10000 [  7%]  (Warmup) 
## Chain 2 Iteration:  800 / 10000 [  8%]  (Warmup) 
## Chain 3 Iteration:  600 / 10000 [  6%]  (Warmup) 
## Chain 4 Iteration:  800 / 10000 [  8%]  (Warmup) 
## Chain 1 Iteration:  800 / 10000 [  8%]  (Warmup) 
## Chain 4 Iteration:  900 / 10000 [  9%]  (Warmup) 
## Chain 1 Iteration:  900 / 10000 [  9%]  (Warmup) 
## Chain 2 Iteration:  900 / 10000 [  9%]  (Warmup) 
## Chain 3 Iteration:  700 / 10000 [  7%]  (Warmup) 
## Chain 2 Iteration: 1000 / 10000 [ 10%]  (Warmup) 
## Chain 2 Iteration: 1001 / 10000 [ 10%]  (Sampling) 
## Chain 3 Iteration:  800 / 10000 [  8%]  (Warmup) 
## Chain 4 Iteration: 1000 / 10000 [ 10%]  (Warmup) 
## Chain 4 Iteration: 1001 / 10000 [ 10%]  (Sampling) 
## Chain 1 Iteration: 1000 / 10000 [ 10%]  (Warmup) 
## Chain 1 Iteration: 1001 / 10000 [ 10%]  (Sampling) 
## Chain 3 Iteration:  900 / 10000 [  9%]  (Warmup) 
## Chain 2 Iteration: 1100 / 10000 [ 11%]  (Sampling) 
## Chain 4 Iteration: 1100 / 10000 [ 11%]  (Sampling) 
## Chain 1 Iteration: 1100 / 10000 [ 11%]  (Sampling) 
## Chain 3 Iteration: 1000 / 10000 [ 10%]  (Warmup) 
## Chain 3 Iteration: 1001 / 10000 [ 10%]  (Sampling) 
## Chain 2 Iteration: 1200 / 10000 [ 12%]  (Sampling) 
## Chain 4 Iteration: 1200 / 10000 [ 12%]  (Sampling) 
## Chain 1 Iteration: 1200 / 10000 [ 12%]  (Sampling) 
## Chain 3 Iteration: 1100 / 10000 [ 11%]  (Sampling) 
## Chain 2 Iteration: 1300 / 10000 [ 13%]  (Sampling) 
## Chain 4 Iteration: 1300 / 10000 [ 13%]  (Sampling) 
## Chain 1 Iteration: 1300 / 10000 [ 13%]  (Sampling) 
## Chain 3 Iteration: 1200 / 10000 [ 12%]  (Sampling) 
## Chain 2 Iteration: 1400 / 10000 [ 14%]  (Sampling) 
## Chain 1 Iteration: 1400 / 10000 [ 14%]  (Sampling) 
## Chain 4 Iteration: 1400 / 10000 [ 14%]  (Sampling) 
## Chain 2 Iteration: 1500 / 10000 [ 15%]  (Sampling) 
## Chain 3 Iteration: 1300 / 10000 [ 13%]  (Sampling) 
## Chain 4 Iteration: 1500 / 10000 [ 15%]  (Sampling) 
## Chain 1 Iteration: 1500 / 10000 [ 15%]  (Sampling) 
## Chain 2 Iteration: 1600 / 10000 [ 16%]  (Sampling) 
## Chain 3 Iteration: 1400 / 10000 [ 14%]  (Sampling) 
## Chain 4 Iteration: 1600 / 10000 [ 16%]  (Sampling) 
## Chain 1 Iteration: 1600 / 10000 [ 16%]  (Sampling) 
## Chain 2 Iteration: 1700 / 10000 [ 17%]  (Sampling) 
## Chain 3 Iteration: 1500 / 10000 [ 15%]  (Sampling) 
## Chain 4 Iteration: 1700 / 10000 [ 17%]  (Sampling) 
## Chain 1 Iteration: 1700 / 10000 [ 17%]  (Sampling) 
## Chain 2 Iteration: 1800 / 10000 [ 18%]  (Sampling) 
## Chain 3 Iteration: 1600 / 10000 [ 16%]  (Sampling) 
## Chain 4 Iteration: 1800 / 10000 [ 18%]  (Sampling) 
## Chain 1 Iteration: 1800 / 10000 [ 18%]  (Sampling) 
## Chain 3 Iteration: 1700 / 10000 [ 17%]  (Sampling) 
## Chain 2 Iteration: 1900 / 10000 [ 19%]  (Sampling) 
## Chain 4 Iteration: 1900 / 10000 [ 19%]  (Sampling) 
## Chain 3 Iteration: 1800 / 10000 [ 18%]  (Sampling) 
## Chain 1 Iteration: 1900 / 10000 [ 19%]  (Sampling) 
## Chain 2 Iteration: 2000 / 10000 [ 20%]  (Sampling) 
## Chain 3 Iteration: 1900 / 10000 [ 19%]  (Sampling) 
## Chain 4 Iteration: 2000 / 10000 [ 20%]  (Sampling) 
## Chain 1 Iteration: 2000 / 10000 [ 20%]  (Sampling) 
## Chain 2 Iteration: 2100 / 10000 [ 21%]  (Sampling) 
## Chain 4 Iteration: 2100 / 10000 [ 21%]  (Sampling) 
## Chain 1 Iteration: 2100 / 10000 [ 21%]  (Sampling) 
## Chain 2 Iteration: 2200 / 10000 [ 22%]  (Sampling) 
## Chain 3 Iteration: 2000 / 10000 [ 20%]  (Sampling) 
## Chain 4 Iteration: 2200 / 10000 [ 22%]  (Sampling) 
## Chain 1 Iteration: 2200 / 10000 [ 22%]  (Sampling) 
## Chain 3 Iteration: 2100 / 10000 [ 21%]  (Sampling) 
## Chain 2 Iteration: 2300 / 10000 [ 23%]  (Sampling) 
## Chain 3 Iteration: 2200 / 10000 [ 22%]  (Sampling) 
## Chain 4 Iteration: 2300 / 10000 [ 23%]  (Sampling) 
## Chain 1 Iteration: 2300 / 10000 [ 23%]  (Sampling) 
## Chain 2 Iteration: 2400 / 10000 [ 24%]  (Sampling) 
## Chain 3 Iteration: 2300 / 10000 [ 23%]  (Sampling) 
## Chain 4 Iteration: 2400 / 10000 [ 24%]  (Sampling) 
## Chain 1 Iteration: 2400 / 10000 [ 24%]  (Sampling) 
## Chain 2 Iteration: 2500 / 10000 [ 25%]  (Sampling) 
## Chain 3 Iteration: 2400 / 10000 [ 24%]  (Sampling) 
## Chain 4 Iteration: 2500 / 10000 [ 25%]  (Sampling) 
## Chain 1 Iteration: 2500 / 10000 [ 25%]  (Sampling) 
## Chain 2 Iteration: 2600 / 10000 [ 26%]  (Sampling) 
## Chain 3 Iteration: 2500 / 10000 [ 25%]  (Sampling) 
## Chain 4 Iteration: 2600 / 10000 [ 26%]  (Sampling) 
## Chain 1 Iteration: 2600 / 10000 [ 26%]  (Sampling) 
## Chain 2 Iteration: 2700 / 10000 [ 27%]  (Sampling) 
## Chain 3 Iteration: 2600 / 10000 [ 26%]  (Sampling) 
## Chain 1 Iteration: 2700 / 10000 [ 27%]  (Sampling) 
## Chain 4 Iteration: 2700 / 10000 [ 27%]  (Sampling) 
## Chain 2 Iteration: 2800 / 10000 [ 28%]  (Sampling) 
## Chain 3 Iteration: 2700 / 10000 [ 27%]  (Sampling) 
## Chain 4 Iteration: 2800 / 10000 [ 28%]  (Sampling) 
## Chain 1 Iteration: 2800 / 10000 [ 28%]  (Sampling) 
## Chain 2 Iteration: 2900 / 10000 [ 29%]  (Sampling) 
## Chain 3 Iteration: 2800 / 10000 [ 28%]  (Sampling) 
## Chain 4 Iteration: 2900 / 10000 [ 29%]  (Sampling) 
## Chain 1 Iteration: 2900 / 10000 [ 29%]  (Sampling) 
## Chain 2 Iteration: 3000 / 10000 [ 30%]  (Sampling) 
## Chain 3 Iteration: 2900 / 10000 [ 29%]  (Sampling) 
## Chain 1 Iteration: 3000 / 10000 [ 30%]  (Sampling) 
## Chain 4 Iteration: 3000 / 10000 [ 30%]  (Sampling) 
## Chain 2 Iteration: 3100 / 10000 [ 31%]  (Sampling) 
## Chain 1 Iteration: 3100 / 10000 [ 31%]  (Sampling) 
## Chain 3 Iteration: 3000 / 10000 [ 30%]  (Sampling) 
## Chain 4 Iteration: 3100 / 10000 [ 31%]  (Sampling) 
## Chain 2 Iteration: 3200 / 10000 [ 32%]  (Sampling) 
## Chain 4 Iteration: 3200 / 10000 [ 32%]  (Sampling) 
## Chain 1 Iteration: 3200 / 10000 [ 32%]  (Sampling) 
## Chain 3 Iteration: 3100 / 10000 [ 31%]  (Sampling) 
## Chain 2 Iteration: 3300 / 10000 [ 33%]  (Sampling) 
## Chain 1 Iteration: 3300 / 10000 [ 33%]  (Sampling) 
## Chain 3 Iteration: 3200 / 10000 [ 32%]  (Sampling) 
## Chain 4 Iteration: 3300 / 10000 [ 33%]  (Sampling) 
## Chain 2 Iteration: 3400 / 10000 [ 34%]  (Sampling) 
## Chain 1 Iteration: 3400 / 10000 [ 34%]  (Sampling) 
## Chain 3 Iteration: 3300 / 10000 [ 33%]  (Sampling) 
## Chain 4 Iteration: 3400 / 10000 [ 34%]  (Sampling) 
## Chain 2 Iteration: 3500 / 10000 [ 35%]  (Sampling) 
## Chain 3 Iteration: 3400 / 10000 [ 34%]  (Sampling) 
## Chain 4 Iteration: 3500 / 10000 [ 35%]  (Sampling) 
## Chain 1 Iteration: 3500 / 10000 [ 35%]  (Sampling) 
## Chain 2 Iteration: 3600 / 10000 [ 36%]  (Sampling) 
## Chain 3 Iteration: 3500 / 10000 [ 35%]  (Sampling) 
## Chain 1 Iteration: 3600 / 10000 [ 36%]  (Sampling) 
## Chain 4 Iteration: 3600 / 10000 [ 36%]  (Sampling) 
## Chain 2 Iteration: 3700 / 10000 [ 37%]  (Sampling) 
## Chain 3 Iteration: 3600 / 10000 [ 36%]  (Sampling) 
## Chain 1 Iteration: 3700 / 10000 [ 37%]  (Sampling) 
## Chain 4 Iteration: 3700 / 10000 [ 37%]  (Sampling) 
## Chain 2 Iteration: 3800 / 10000 [ 38%]  (Sampling) 
## Chain 3 Iteration: 3700 / 10000 [ 37%]  (Sampling) 
## Chain 1 Iteration: 3800 / 10000 [ 38%]  (Sampling) 
## Chain 4 Iteration: 3800 / 10000 [ 38%]  (Sampling) 
## Chain 1 Iteration: 3900 / 10000 [ 39%]  (Sampling) 
## Chain 2 Iteration: 3900 / 10000 [ 39%]  (Sampling) 
## Chain 3 Iteration: 3800 / 10000 [ 38%]  (Sampling) 
## Chain 4 Iteration: 3900 / 10000 [ 39%]  (Sampling) 
## Chain 2 Iteration: 4000 / 10000 [ 40%]  (Sampling) 
## Chain 3 Iteration: 3900 / 10000 [ 39%]  (Sampling) 
## Chain 1 Iteration: 4000 / 10000 [ 40%]  (Sampling) 
## Chain 4 Iteration: 4000 / 10000 [ 40%]  (Sampling) 
## Chain 2 Iteration: 4100 / 10000 [ 41%]  (Sampling) 
## Chain 3 Iteration: 4000 / 10000 [ 40%]  (Sampling) 
## Chain 1 Iteration: 4100 / 10000 [ 41%]  (Sampling) 
## Chain 4 Iteration: 4100 / 10000 [ 41%]  (Sampling) 
## Chain 2 Iteration: 4200 / 10000 [ 42%]  (Sampling) 
## Chain 1 Iteration: 4200 / 10000 [ 42%]  (Sampling) 
## Chain 3 Iteration: 4100 / 10000 [ 41%]  (Sampling) 
## Chain 4 Iteration: 4200 / 10000 [ 42%]  (Sampling) 
## Chain 2 Iteration: 4300 / 10000 [ 43%]  (Sampling) 
## Chain 3 Iteration: 4200 / 10000 [ 42%]  (Sampling) 
## Chain 4 Iteration: 4300 / 10000 [ 43%]  (Sampling) 
## Chain 1 Iteration: 4300 / 10000 [ 43%]  (Sampling) 
## Chain 2 Iteration: 4400 / 10000 [ 44%]  (Sampling) 
## Chain 3 Iteration: 4300 / 10000 [ 43%]  (Sampling) 
## Chain 1 Iteration: 4400 / 10000 [ 44%]  (Sampling) 
## Chain 4 Iteration: 4400 / 10000 [ 44%]  (Sampling) 
## Chain 2 Iteration: 4500 / 10000 [ 45%]  (Sampling) 
## Chain 3 Iteration: 4400 / 10000 [ 44%]  (Sampling) 
## Chain 1 Iteration: 4500 / 10000 [ 45%]  (Sampling) 
## Chain 4 Iteration: 4500 / 10000 [ 45%]  (Sampling) 
## Chain 1 Iteration: 4600 / 10000 [ 46%]  (Sampling) 
## Chain 2 Iteration: 4600 / 10000 [ 46%]  (Sampling) 
## Chain 3 Iteration: 4500 / 10000 [ 45%]  (Sampling) 
## Chain 4 Iteration: 4600 / 10000 [ 46%]  (Sampling) 
## Chain 2 Iteration: 4700 / 10000 [ 47%]  (Sampling) 
## Chain 3 Iteration: 4600 / 10000 [ 46%]  (Sampling) 
## Chain 4 Iteration: 4700 / 10000 [ 47%]  (Sampling) 
## Chain 1 Iteration: 4700 / 10000 [ 47%]  (Sampling) 
## Chain 2 Iteration: 4800 / 10000 [ 48%]  (Sampling) 
## Chain 3 Iteration: 4700 / 10000 [ 47%]  (Sampling) 
## Chain 1 Iteration: 4800 / 10000 [ 48%]  (Sampling) 
## Chain 4 Iteration: 4800 / 10000 [ 48%]  (Sampling) 
## Chain 2 Iteration: 4900 / 10000 [ 49%]  (Sampling) 
## Chain 3 Iteration: 4800 / 10000 [ 48%]  (Sampling) 
## Chain 1 Iteration: 4900 / 10000 [ 49%]  (Sampling) 
## Chain 4 Iteration: 4900 / 10000 [ 49%]  (Sampling) 
## Chain 1 Iteration: 5000 / 10000 [ 50%]  (Sampling) 
## Chain 2 Iteration: 5000 / 10000 [ 50%]  (Sampling) 
## Chain 3 Iteration: 4900 / 10000 [ 49%]  (Sampling) 
## Chain 4 Iteration: 5000 / 10000 [ 50%]  (Sampling) 
## Chain 2 Iteration: 5100 / 10000 [ 51%]  (Sampling) 
## Chain 3 Iteration: 5000 / 10000 [ 50%]  (Sampling) 
## Chain 1 Iteration: 5100 / 10000 [ 51%]  (Sampling) 
## Chain 4 Iteration: 5100 / 10000 [ 51%]  (Sampling) 
## Chain 3 Iteration: 5100 / 10000 [ 51%]  (Sampling) 
## Chain 2 Iteration: 5200 / 10000 [ 52%]  (Sampling) 
## Chain 4 Iteration: 5200 / 10000 [ 52%]  (Sampling) 
## Chain 1 Iteration: 5200 / 10000 [ 52%]  (Sampling) 
## Chain 2 Iteration: 5300 / 10000 [ 53%]  (Sampling) 
## Chain 3 Iteration: 5200 / 10000 [ 52%]  (Sampling) 
## Chain 1 Iteration: 5300 / 10000 [ 53%]  (Sampling) 
## Chain 4 Iteration: 5300 / 10000 [ 53%]  (Sampling) 
## Chain 2 Iteration: 5400 / 10000 [ 54%]  (Sampling) 
## Chain 3 Iteration: 5300 / 10000 [ 53%]  (Sampling) 
## Chain 1 Iteration: 5400 / 10000 [ 54%]  (Sampling) 
## Chain 4 Iteration: 5400 / 10000 [ 54%]  (Sampling) 
## Chain 2 Iteration: 5500 / 10000 [ 55%]  (Sampling) 
## Chain 3 Iteration: 5400 / 10000 [ 54%]  (Sampling) 
## Chain 1 Iteration: 5500 / 10000 [ 55%]  (Sampling) 
## Chain 4 Iteration: 5500 / 10000 [ 55%]  (Sampling) 
## Chain 2 Iteration: 5600 / 10000 [ 56%]  (Sampling) 
## Chain 3 Iteration: 5500 / 10000 [ 55%]  (Sampling) 
## Chain 1 Iteration: 5600 / 10000 [ 56%]  (Sampling) 
## Chain 4 Iteration: 5600 / 10000 [ 56%]  (Sampling) 
## Chain 2 Iteration: 5700 / 10000 [ 57%]  (Sampling) 
## Chain 3 Iteration: 5600 / 10000 [ 56%]  (Sampling) 
## Chain 4 Iteration: 5700 / 10000 [ 57%]  (Sampling) 
## Chain 1 Iteration: 5700 / 10000 [ 57%]  (Sampling) 
## Chain 3 Iteration: 5700 / 10000 [ 57%]  (Sampling) 
## Chain 2 Iteration: 5800 / 10000 [ 58%]  (Sampling) 
## Chain 1 Iteration: 5800 / 10000 [ 58%]  (Sampling) 
## Chain 3 Iteration: 5800 / 10000 [ 58%]  (Sampling) 
## Chain 4 Iteration: 5800 / 10000 [ 58%]  (Sampling) 
## Chain 2 Iteration: 5900 / 10000 [ 59%]  (Sampling) 
## Chain 1 Iteration: 5900 / 10000 [ 59%]  (Sampling) 
## Chain 3 Iteration: 5900 / 10000 [ 59%]  (Sampling) 
## Chain 4 Iteration: 5900 / 10000 [ 59%]  (Sampling) 
## Chain 2 Iteration: 6000 / 10000 [ 60%]  (Sampling) 
## Chain 4 Iteration: 6000 / 10000 [ 60%]  (Sampling) 
## Chain 1 Iteration: 6000 / 10000 [ 60%]  (Sampling) 
## Chain 2 Iteration: 6100 / 10000 [ 61%]  (Sampling) 
## Chain 3 Iteration: 6000 / 10000 [ 60%]  (Sampling) 
## Chain 1 Iteration: 6100 / 10000 [ 61%]  (Sampling) 
## Chain 3 Iteration: 6100 / 10000 [ 61%]  (Sampling) 
## Chain 4 Iteration: 6100 / 10000 [ 61%]  (Sampling) 
## Chain 2 Iteration: 6200 / 10000 [ 62%]  (Sampling) 
## Chain 1 Iteration: 6200 / 10000 [ 62%]  (Sampling) 
## Chain 3 Iteration: 6200 / 10000 [ 62%]  (Sampling) 
## Chain 4 Iteration: 6200 / 10000 [ 62%]  (Sampling) 
## Chain 1 Iteration: 6300 / 10000 [ 63%]  (Sampling) 
## Chain 2 Iteration: 6300 / 10000 [ 63%]  (Sampling) 
## Chain 3 Iteration: 6300 / 10000 [ 63%]  (Sampling) 
## Chain 4 Iteration: 6300 / 10000 [ 63%]  (Sampling) 
## Chain 1 Iteration: 6400 / 10000 [ 64%]  (Sampling) 
## Chain 2 Iteration: 6400 / 10000 [ 64%]  (Sampling) 
## Chain 4 Iteration: 6400 / 10000 [ 64%]  (Sampling) 
## Chain 3 Iteration: 6400 / 10000 [ 64%]  (Sampling) 
## Chain 2 Iteration: 6500 / 10000 [ 65%]  (Sampling) 
## Chain 1 Iteration: 6500 / 10000 [ 65%]  (Sampling) 
## Chain 3 Iteration: 6500 / 10000 [ 65%]  (Sampling) 
## Chain 4 Iteration: 6500 / 10000 [ 65%]  (Sampling) 
## Chain 1 Iteration: 6600 / 10000 [ 66%]  (Sampling) 
## Chain 2 Iteration: 6600 / 10000 [ 66%]  (Sampling) 
## Chain 3 Iteration: 6600 / 10000 [ 66%]  (Sampling) 
## Chain 4 Iteration: 6600 / 10000 [ 66%]  (Sampling) 
## Chain 2 Iteration: 6700 / 10000 [ 67%]  (Sampling) 
## Chain 1 Iteration: 6700 / 10000 [ 67%]  (Sampling) 
## Chain 3 Iteration: 6700 / 10000 [ 67%]  (Sampling) 
## Chain 4 Iteration: 6700 / 10000 [ 67%]  (Sampling) 
## Chain 2 Iteration: 6800 / 10000 [ 68%]  (Sampling) 
## Chain 1 Iteration: 6800 / 10000 [ 68%]  (Sampling) 
## Chain 3 Iteration: 6800 / 10000 [ 68%]  (Sampling) 
## Chain 4 Iteration: 6800 / 10000 [ 68%]  (Sampling) 
## Chain 2 Iteration: 6900 / 10000 [ 69%]  (Sampling) 
## Chain 1 Iteration: 6900 / 10000 [ 69%]  (Sampling) 
## Chain 3 Iteration: 6900 / 10000 [ 69%]  (Sampling) 
## Chain 4 Iteration: 6900 / 10000 [ 69%]  (Sampling) 
## Chain 2 Iteration: 7000 / 10000 [ 70%]  (Sampling) 
## Chain 1 Iteration: 7000 / 10000 [ 70%]  (Sampling) 
## Chain 3 Iteration: 7000 / 10000 [ 70%]  (Sampling) 
## Chain 4 Iteration: 7000 / 10000 [ 70%]  (Sampling) 
## Chain 2 Iteration: 7100 / 10000 [ 71%]  (Sampling) 
## Chain 3 Iteration: 7100 / 10000 [ 71%]  (Sampling) 
## Chain 1 Iteration: 7100 / 10000 [ 71%]  (Sampling) 
## Chain 4 Iteration: 7100 / 10000 [ 71%]  (Sampling) 
## Chain 2 Iteration: 7200 / 10000 [ 72%]  (Sampling) 
## Chain 1 Iteration: 7200 / 10000 [ 72%]  (Sampling) 
## Chain 3 Iteration: 7200 / 10000 [ 72%]  (Sampling) 
## Chain 4 Iteration: 7200 / 10000 [ 72%]  (Sampling) 
## Chain 2 Iteration: 7300 / 10000 [ 73%]  (Sampling) 
## Chain 3 Iteration: 7300 / 10000 [ 73%]  (Sampling) 
## Chain 1 Iteration: 7300 / 10000 [ 73%]  (Sampling) 
## Chain 4 Iteration: 7300 / 10000 [ 73%]  (Sampling) 
## Chain 2 Iteration: 7400 / 10000 [ 74%]  (Sampling) 
## Chain 1 Iteration: 7400 / 10000 [ 74%]  (Sampling) 
## Chain 3 Iteration: 7400 / 10000 [ 74%]  (Sampling) 
## Chain 2 Iteration: 7500 / 10000 [ 75%]  (Sampling) 
## Chain 3 Iteration: 7500 / 10000 [ 75%]  (Sampling) 
## Chain 4 Iteration: 7400 / 10000 [ 74%]  (Sampling) 
## Chain 1 Iteration: 7500 / 10000 [ 75%]  (Sampling) 
## Chain 2 Iteration: 7600 / 10000 [ 76%]  (Sampling) 
## Chain 4 Iteration: 7500 / 10000 [ 75%]  (Sampling) 
## Chain 1 Iteration: 7600 / 10000 [ 76%]  (Sampling) 
## Chain 3 Iteration: 7600 / 10000 [ 76%]  (Sampling) 
## Chain 2 Iteration: 7700 / 10000 [ 77%]  (Sampling) 
## Chain 4 Iteration: 7600 / 10000 [ 76%]  (Sampling) 
## Chain 1 Iteration: 7700 / 10000 [ 77%]  (Sampling) 
## Chain 3 Iteration: 7700 / 10000 [ 77%]  (Sampling) 
## Chain 2 Iteration: 7800 / 10000 [ 78%]  (Sampling) 
## Chain 3 Iteration: 7800 / 10000 [ 78%]  (Sampling) 
## Chain 4 Iteration: 7700 / 10000 [ 77%]  (Sampling) 
## Chain 1 Iteration: 7800 / 10000 [ 78%]  (Sampling) 
## Chain 2 Iteration: 7900 / 10000 [ 79%]  (Sampling) 
## Chain 4 Iteration: 7800 / 10000 [ 78%]  (Sampling) 
## Chain 1 Iteration: 7900 / 10000 [ 79%]  (Sampling) 
## Chain 3 Iteration: 7900 / 10000 [ 79%]  (Sampling) 
## Chain 2 Iteration: 8000 / 10000 [ 80%]  (Sampling) 
## Chain 4 Iteration: 7900 / 10000 [ 79%]  (Sampling) 
## Chain 1 Iteration: 8000 / 10000 [ 80%]  (Sampling) 
## Chain 3 Iteration: 8000 / 10000 [ 80%]  (Sampling) 
## Chain 2 Iteration: 8100 / 10000 [ 81%]  (Sampling) 
## Chain 1 Iteration: 8100 / 10000 [ 81%]  (Sampling) 
## Chain 3 Iteration: 8100 / 10000 [ 81%]  (Sampling) 
## Chain 4 Iteration: 8000 / 10000 [ 80%]  (Sampling) 
## Chain 2 Iteration: 8200 / 10000 [ 82%]  (Sampling) 
## Chain 3 Iteration: 8200 / 10000 [ 82%]  (Sampling) 
## Chain 4 Iteration: 8100 / 10000 [ 81%]  (Sampling) 
## Chain 1 Iteration: 8200 / 10000 [ 82%]  (Sampling) 
## Chain 2 Iteration: 8300 / 10000 [ 83%]  (Sampling) 
## Chain 4 Iteration: 8200 / 10000 [ 82%]  (Sampling) 
## Chain 1 Iteration: 8300 / 10000 [ 83%]  (Sampling) 
## Chain 3 Iteration: 8300 / 10000 [ 83%]  (Sampling) 
## Chain 2 Iteration: 8400 / 10000 [ 84%]  (Sampling) 
## Chain 1 Iteration: 8400 / 10000 [ 84%]  (Sampling) 
## Chain 3 Iteration: 8400 / 10000 [ 84%]  (Sampling) 
## Chain 4 Iteration: 8300 / 10000 [ 83%]  (Sampling) 
## Chain 2 Iteration: 8500 / 10000 [ 85%]  (Sampling) 
## Chain 1 Iteration: 8500 / 10000 [ 85%]  (Sampling) 
## Chain 3 Iteration: 8500 / 10000 [ 85%]  (Sampling) 
## Chain 4 Iteration: 8400 / 10000 [ 84%]  (Sampling) 
## Chain 2 Iteration: 8600 / 10000 [ 86%]  (Sampling) 
## Chain 4 Iteration: 8500 / 10000 [ 85%]  (Sampling) 
## Chain 1 Iteration: 8600 / 10000 [ 86%]  (Sampling) 
## Chain 3 Iteration: 8600 / 10000 [ 86%]  (Sampling) 
## Chain 2 Iteration: 8700 / 10000 [ 87%]  (Sampling) 
## Chain 3 Iteration: 8700 / 10000 [ 87%]  (Sampling) 
## Chain 4 Iteration: 8600 / 10000 [ 86%]  (Sampling) 
## Chain 1 Iteration: 8700 / 10000 [ 87%]  (Sampling) 
## Chain 2 Iteration: 8800 / 10000 [ 88%]  (Sampling) 
## Chain 1 Iteration: 8800 / 10000 [ 88%]  (Sampling) 
## Chain 3 Iteration: 8800 / 10000 [ 88%]  (Sampling) 
## Chain 4 Iteration: 8700 / 10000 [ 87%]  (Sampling) 
## Chain 2 Iteration: 8900 / 10000 [ 89%]  (Sampling) 
## Chain 3 Iteration: 8900 / 10000 [ 89%]  (Sampling) 
## Chain 4 Iteration: 8800 / 10000 [ 88%]  (Sampling) 
## Chain 1 Iteration: 8900 / 10000 [ 89%]  (Sampling) 
## Chain 2 Iteration: 9000 / 10000 [ 90%]  (Sampling) 
## Chain 3 Iteration: 9000 / 10000 [ 90%]  (Sampling) 
## Chain 1 Iteration: 9000 / 10000 [ 90%]  (Sampling) 
## Chain 4 Iteration: 8900 / 10000 [ 89%]  (Sampling) 
## Chain 2 Iteration: 9100 / 10000 [ 91%]  (Sampling) 
## Chain 3 Iteration: 9100 / 10000 [ 91%]  (Sampling) 
## Chain 1 Iteration: 9100 / 10000 [ 91%]  (Sampling) 
## Chain 4 Iteration: 9000 / 10000 [ 90%]  (Sampling) 
## Chain 2 Iteration: 9200 / 10000 [ 92%]  (Sampling) 
## Chain 3 Iteration: 9200 / 10000 [ 92%]  (Sampling) 
## Chain 1 Iteration: 9200 / 10000 [ 92%]  (Sampling) 
## Chain 4 Iteration: 9100 / 10000 [ 91%]  (Sampling) 
## Chain 2 Iteration: 9300 / 10000 [ 93%]  (Sampling) 
## Chain 3 Iteration: 9300 / 10000 [ 93%]  (Sampling) 
## Chain 1 Iteration: 9300 / 10000 [ 93%]  (Sampling) 
## Chain 4 Iteration: 9200 / 10000 [ 92%]  (Sampling) 
## Chain 2 Iteration: 9400 / 10000 [ 94%]  (Sampling) 
## Chain 3 Iteration: 9400 / 10000 [ 94%]  (Sampling) 
## Chain 1 Iteration: 9400 / 10000 [ 94%]  (Sampling) 
## Chain 4 Iteration: 9300 / 10000 [ 93%]  (Sampling) 
## Chain 2 Iteration: 9500 / 10000 [ 95%]  (Sampling) 
## Chain 3 Iteration: 9500 / 10000 [ 95%]  (Sampling) 
## Chain 1 Iteration: 9500 / 10000 [ 95%]  (Sampling) 
## Chain 4 Iteration: 9400 / 10000 [ 94%]  (Sampling) 
## Chain 2 Iteration: 9600 / 10000 [ 96%]  (Sampling) 
## Chain 3 Iteration: 9600 / 10000 [ 96%]  (Sampling) 
## Chain 1 Iteration: 9600 / 10000 [ 96%]  (Sampling) 
## Chain 4 Iteration: 9500 / 10000 [ 95%]  (Sampling) 
## Chain 2 Iteration: 9700 / 10000 [ 97%]  (Sampling) 
## Chain 3 Iteration: 9700 / 10000 [ 97%]  (Sampling) 
## Chain 1 Iteration: 9700 / 10000 [ 97%]  (Sampling) 
## Chain 4 Iteration: 9600 / 10000 [ 96%]  (Sampling) 
## Chain 2 Iteration: 9800 / 10000 [ 98%]  (Sampling) 
## Chain 3 Iteration: 9800 / 10000 [ 98%]  (Sampling) 
## Chain 1 Iteration: 9800 / 10000 [ 98%]  (Sampling) 
## Chain 3 Iteration: 9900 / 10000 [ 99%]  (Sampling) 
## Chain 4 Iteration: 9700 / 10000 [ 97%]  (Sampling) 
## Chain 2 Iteration: 9900 / 10000 [ 99%]  (Sampling) 
## Chain 1 Iteration: 9900 / 10000 [ 99%]  (Sampling) 
## Chain 3 Iteration: 10000 / 10000 [100%]  (Sampling) 
## Chain 4 Iteration: 9800 / 10000 [ 98%]  (Sampling) 
## Chain 3 finished in 25.0 seconds.
## Chain 2 Iteration: 10000 / 10000 [100%]  (Sampling) 
## Chain 2 finished in 25.1 seconds.
## Chain 1 Iteration: 10000 / 10000 [100%]  (Sampling) 
## Chain 4 Iteration: 9900 / 10000 [ 99%]  (Sampling) 
## Chain 1 finished in 25.2 seconds.
## Chain 4 Iteration: 10000 / 10000 [100%]  (Sampling) 
## Chain 4 finished in 25.4 seconds.
## 
## All 4 chains finished successfully.
## Mean chain execution time: 25.2 seconds.
## Total execution time: 25.6 seconds.
Show the code
summary(m1_interaction)
##  Family: MV(gaussian, gaussian, gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: SRTB_Likelihood_z ~ DoPL_Dominance_z * Gender + DoPL_Prestige_z * Gender + DoPL_Leadership_z * Gender + B_PNI_z * Gender + Age 
##          SRTB_Risk_z ~ DoPL_Dominance_z * Gender + DoPL_Prestige_z * Gender + DoPL_Leadership_z * Gender + B_PNI_z * Gender + Age 
##          SRTB_Benefit_z ~ DoPL_Dominance_z * Gender + DoPL_Prestige_z * Gender + DoPL_Leadership_z * Gender + B_PNI_z * Gender + Age 
##          SRTB_Frequency_z ~ DoPL_Dominance_z * Gender + DoPL_Prestige_z * Gender + DoPL_Leadership_z * Gender + B_PNI_z * Gender + Age 
##    Data: Experiment_4_Analysis_DF (Number of observations: 194) 
##   Draws: 4 chains, each with iter = 10000; warmup = 1000; thin = 1;
##          total post-warmup draws = 36000
## 
## Population-Level Effects: 
##                                           Estimate Est.Error l-95% CI u-95% CI
## SRTBLikelihoodz_Intercept                    -0.15      0.34    -0.82     0.51
## SRTBRiskz_Intercept                          -0.11      0.29    -0.68     0.46
## SRTBBenefitz_Intercept                       -0.16      0.34    -0.83     0.50
## SRTBFrequencyz_Intercept                     -0.26      0.34    -0.93     0.41
## SRTBLikelihoodz_DoPL_Dominance_z              0.49      0.02     0.45     0.53
## SRTBLikelihoodz_Gender2                       0.15      0.13    -0.11     0.40
## SRTBLikelihoodz_DoPL_Prestige_z              -0.12      0.17    -0.45     0.20
## SRTBLikelihoodz_DoPL_Leadership_z            -0.06      0.14    -0.34     0.21
## SRTBLikelihoodz_B_PNI_z                      -0.24      0.15    -0.53     0.05
## SRTBLikelihoodz_Age                           0.00      0.01    -0.02     0.02
## SRTBLikelihoodz_DoPL_Dominance_z:Gender2      0.49      0.02     0.46     0.53
## SRTBLikelihoodz_Gender2:DoPL_Prestige_z       0.17      0.23    -0.28     0.62
## SRTBLikelihoodz_Gender2:DoPL_Leadership_z    -0.10      0.22    -0.54     0.34
## SRTBLikelihoodz_Gender2:B_PNI_z              -0.42      0.21    -0.82    -0.01
## SRTBRiskz_DoPL_Dominance_z                    0.48      0.02     0.44     0.51
## SRTBRiskz_Gender2                             0.47      0.13     0.22     0.72
## SRTBRiskz_DoPL_Prestige_z                     0.21      0.15    -0.08     0.50
## SRTBRiskz_DoPL_Leadership_z                  -0.31      0.12    -0.55    -0.07
## SRTBRiskz_B_PNI_z                            -0.23      0.13    -0.48     0.03
## SRTBRiskz_Age                                -0.01      0.01    -0.02     0.01
## SRTBRiskz_DoPL_Dominance_z:Gender2            0.48      0.02     0.44     0.52
## SRTBRiskz_Gender2:DoPL_Prestige_z             0.04      0.20    -0.35     0.43
## SRTBRiskz_Gender2:DoPL_Leadership_z          -0.05      0.20    -0.43     0.34
## SRTBRiskz_Gender2:B_PNI_z                    -0.10      0.18    -0.45     0.26
## SRTBBenefitz_DoPL_Dominance_z                 0.48      0.02     0.44     0.52
## SRTBBenefitz_Gender2                         -0.05      0.13    -0.30     0.20
## SRTBBenefitz_DoPL_Prestige_z                  0.13      0.16    -0.19     0.45
## SRTBBenefitz_DoPL_Leadership_z               -0.29      0.14    -0.56    -0.02
## SRTBBenefitz_B_PNI_z                         -0.23      0.14    -0.51     0.05
## SRTBBenefitz_Age                              0.01      0.01    -0.02     0.03
## SRTBBenefitz_DoPL_Dominance_z:Gender2         0.49      0.02     0.45     0.53
## SRTBBenefitz_Gender2:DoPL_Prestige_z         -0.05      0.23    -0.50     0.39
## SRTBBenefitz_Gender2:DoPL_Leadership_z       -0.08      0.22    -0.52     0.35
## SRTBBenefitz_Gender2:B_PNI_z                 -0.18      0.20    -0.58     0.23
## SRTBFrequencyz_DoPL_Dominance_z               0.49      0.02     0.45     0.53
## SRTBFrequencyz_Gender2                        0.26      0.13     0.01     0.52
## SRTBFrequencyz_DoPL_Prestige_z               -0.11      0.17    -0.43     0.22
## SRTBFrequencyz_DoPL_Leadership_z             -0.04      0.14    -0.32     0.23
## SRTBFrequencyz_B_PNI_z                       -0.25      0.15    -0.54     0.04
## SRTBFrequencyz_Age                            0.00      0.01    -0.02     0.02
## SRTBFrequencyz_DoPL_Dominance_z:Gender2       0.49      0.02     0.45     0.53
## SRTBFrequencyz_Gender2:DoPL_Prestige_z        0.44      0.23    -0.01     0.88
## SRTBFrequencyz_Gender2:DoPL_Leadership_z     -0.42      0.22    -0.86     0.01
## SRTBFrequencyz_Gender2:B_PNI_z               -0.37      0.21    -0.77     0.04
##                                           Rhat Bulk_ESS Tail_ESS
## SRTBLikelihoodz_Intercept                 1.00    37056    29518
## SRTBRiskz_Intercept                       1.00    56027    28434
## SRTBBenefitz_Intercept                    1.00    36139    28201
## SRTBFrequencyz_Intercept                  1.00    36552    28506
## SRTBLikelihoodz_DoPL_Dominance_z          1.00    63894    26284
## SRTBLikelihoodz_Gender2                   1.00    46628    28825
## SRTBLikelihoodz_DoPL_Prestige_z           1.00    21783    25167
## SRTBLikelihoodz_DoPL_Leadership_z         1.00    24438    26559
## SRTBLikelihoodz_B_PNI_z                   1.00    26250    28283
## SRTBLikelihoodz_Age                       1.00    37534    29296
## SRTBLikelihoodz_DoPL_Dominance_z:Gender2  1.00    63725    26604
## SRTBLikelihoodz_Gender2:DoPL_Prestige_z   1.00    22870    26671
## SRTBLikelihoodz_Gender2:DoPL_Leadership_z 1.00    26467    28330
## SRTBLikelihoodz_Gender2:B_PNI_z           1.00    25940    27073
## SRTBRiskz_DoPL_Dominance_z                1.00    60766    26221
## SRTBRiskz_Gender2                         1.00    57915    27195
## SRTBRiskz_DoPL_Prestige_z                 1.00    35124    29638
## SRTBRiskz_DoPL_Leadership_z               1.00    37248    28974
## SRTBRiskz_B_PNI_z                         1.00    40969    28660
## SRTBRiskz_Age                             1.00    57177    26937
## SRTBRiskz_DoPL_Dominance_z:Gender2        1.00    62465    27011
## SRTBRiskz_Gender2:DoPL_Prestige_z         1.00    36443    30549
## SRTBRiskz_Gender2:DoPL_Leadership_z       1.00    41288    28542
## SRTBRiskz_Gender2:B_PNI_z                 1.00    40680    28322
## SRTBBenefitz_DoPL_Dominance_z             1.00    66813    27803
## SRTBBenefitz_Gender2                      1.00    46608    29275
## SRTBBenefitz_DoPL_Prestige_z              1.00    22616    25403
## SRTBBenefitz_DoPL_Leadership_z            1.00    24132    26836
## SRTBBenefitz_B_PNI_z                      1.00    25791    28168
## SRTBBenefitz_Age                          1.00    36709    28537
## SRTBBenefitz_DoPL_Dominance_z:Gender2     1.00    66494    25793
## SRTBBenefitz_Gender2:DoPL_Prestige_z      1.00    22954    25028
## SRTBBenefitz_Gender2:DoPL_Leadership_z    1.00    26168    27902
## SRTBBenefitz_Gender2:B_PNI_z              1.00    25194    26749
## SRTBFrequencyz_DoPL_Dominance_z           1.00    63824    28152
## SRTBFrequencyz_Gender2                    1.00    47881    28823
## SRTBFrequencyz_DoPL_Prestige_z            1.00    21523    26928
## SRTBFrequencyz_DoPL_Leadership_z          1.00    24100    27984
## SRTBFrequencyz_B_PNI_z                    1.00    25590    27936
## SRTBFrequencyz_Age                        1.00    37118    29498
## SRTBFrequencyz_DoPL_Dominance_z:Gender2   1.00    66395    25091
## SRTBFrequencyz_Gender2:DoPL_Prestige_z    1.00    22053    26053
## SRTBFrequencyz_Gender2:DoPL_Leadership_z  1.00    26115    27479
## SRTBFrequencyz_Gender2:B_PNI_z            1.00    24779    28055
## 
## Family Specific Parameters: 
##                       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sigma_SRTBLikelihoodz     1.30      0.07     1.17     1.45 1.00    36287
## sigma_SRTBRiskz           1.10      0.06     0.99     1.22 1.00    55208
## sigma_SRTBBenefitz        1.28      0.07     1.15     1.43 1.00    36365
## sigma_SRTBFrequencyz      1.30      0.07     1.17     1.44 1.00    36878
##                       Tail_ESS
## sigma_SRTBLikelihoodz    30112
## sigma_SRTBRiskz          27329
## sigma_SRTBBenefitz       29800
## sigma_SRTBFrequencyz     30574
## 
## Residual Correlations: 
##                                        Estimate Est.Error l-95% CI u-95% CI
## rescor(SRTBLikelihoodz,SRTBRiskz)          0.13      0.07    -0.01     0.27
## rescor(SRTBLikelihoodz,SRTBBenefitz)       0.65      0.04     0.56     0.73
## rescor(SRTBRiskz,SRTBBenefitz)            -0.02      0.07    -0.16     0.13
## rescor(SRTBLikelihoodz,SRTBFrequencyz)     0.63      0.04     0.54     0.72
## rescor(SRTBRiskz,SRTBFrequencyz)           0.11      0.07    -0.03     0.25
## rescor(SRTBBenefitz,SRTBFrequencyz)        0.66      0.04     0.57     0.74
##                                        Rhat Bulk_ESS Tail_ESS
## rescor(SRTBLikelihoodz,SRTBRiskz)      1.00    52845    30572
## rescor(SRTBLikelihoodz,SRTBBenefitz)   1.00    36134    30450
## rescor(SRTBRiskz,SRTBBenefitz)         1.00    50388    29321
## rescor(SRTBLikelihoodz,SRTBFrequencyz) 1.00    34925    29531
## rescor(SRTBRiskz,SRTBFrequencyz)       1.00    50179    29869
## rescor(SRTBBenefitz,SRTBFrequencyz)    1.00    36998    29178
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
Table 2: Experiment 2 | Bayesian regression of individual DOSPERT domains as response and dominance, prestige, leadership, and pathlogical narcissism as predictors.
SRTB Likelihood
SRTB Perception
SRTB Benefit
SRTB Frequency
Predictor Estimate HDI (95%) ROPE Estimate HDI (95%) ROPE Estimate HDI (95%) ROPE Estimate HDI (95&) ROPE
Intercept -0.26 -0.93, 0.41 19% -0.15 -0.82, 0.51 22% -0.16 -0.83, 0.5 22% -0.11 -0.68, 0.46 26%
Dominance 0.49 0.45, 0.53 0% 0.49 0.45, 0.53 0% 0.48 0.44, 0.52 0% 0.48 0.44, 0.51 0%
Gender 0.26 0.01, 0.52 8% 0.15 -0.11, 0.4 35% -0.06 -0.3, 0.2 55% 0.47 0.22, 0.72 0%
Prestige -0.11 -0.43, 0.22 39% -0.12 -0.45, 0.2 38% 0.13 -0.19, 0.45 37% 0.21 -0.08, 0.5 21%
Leadership -0.04 -0.32, 0.23 53% -0.06 -0.34, 0.21 51% -0.29 -0.56, -0.02 6% -0.31 -0.55, -0.07 2%
B-PNI -0.25 -0.54, 0.04 14% -0.24 -0.53, 0.05 15% -0.23 -0.51, 0.05 17% -0.23 -0.48, 0.03 15%
Age 0.00 -0.02, 0.02 100% 0.00 -0.02, 0.02 100% 0.01 -0.02, 0.03 100% -0.01 -0.02, 0.01 100%
Dominance : Gender 0.49 0.45, 0.53 0% 0.49 0.46, 0.53 0% 0.49 0.45, 0.53 0% 0.48 0.44, 0.52 0%
Gender : Prestige 0.44 -0.01, 0.88 5% 0.17 -0.28, 0.62 27% -0.05 -0.5, 0.39 35% 0.04 -0.35, 0.43 39%
Gender : Leadership -0.42 -0.86, 0.01 5% -0.10 -0.54, 0.34 33% -0.08 -0.52, 0.35 35% -0.05 -0.43, 0.34 40%
Gender : B-PNI -0.37 -0.77, 0.04 8% -0.42 -0.82, -0.01 4% -0.18 -0.58, 0.23 28% -0.10 -0.45, 0.26 38%
Note: ROPE equates to percentage in region of practical equivalence. HDI equates to high density interval of the posterior distribution.

m1 model comparison

Show the code
m1_comparison <- loo(m1, m1_interaction)
m1_comparison
Show the code
bayes_factor(m1, m1_interaction)
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Estimated Bayes factor in favor of m1 over m1_interaction: 934430191642570573392593813504.00000

Correlation

Show the code
correlation_df <- Experiment_4_DF_Final %>% rename(
"Age" = "Age",
"Dominance" = "DoPL_Dominance_z",
"Leadership" = "DoPL_Leadership_z",
"Prestige" = "DoPL_Prestige_z",
"B-PNI" = "B_PNI_z",
"Grandiosity" = "PNI_Grandiosity_z",
"Vulnerability" = "PNI_Vulnerability_z",
"UMS" = "UMS_z",
"Intimacy" = "UMS_Intimacy_z",
"Affiliation" = "UMS_Affiliation_z",
"SRTB Benefit" = "SRTB_Benefit_z",
"SRTB Risk" = "SRTB_Risk_z",
"SRTB Likelihood" = "SRTB_Likelihood_z",
"SRTB Frequency" = "SRTB_Frequency_z"
)

correlation_df <- subset(correlation_df, select = c(
"Age",
"Dominance",
"Leadership",
"Prestige",
"B-PNI",
"Grandiosity",
"Vulnerability",
"UMS",
"Intimacy",
"Affiliation",
"SRTB Benefit",
"SRTB Risk",
"SRTB Likelihood",
"SRTB Frequency"
))

correlation_df$Age <- scale(correlation_df$Age)
corr_1 <- correlation(correlation_df, bayesian = TRUE, method = "auto")
saveRDS(corr_1, "corr_1.rds")
Show the code
summary(corr_1)
## # Correlation Matrix (auto-method)
## 
## Parameter       | SRTB Frequency | SRTB Likelihood | SRTB Risk | SRTB Benefit | Affiliation |  Intimacy |     UMS | Vulnerability | Grandiosity |   B-PNI | Prestige | Leadership | Dominance
## ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
## Age             |           0.01 |            0.02 |     -0.10 |         0.01 |       -0.08 |     -0.06 |   -0.09 |       -0.19** |       -0.13 | -0.19** |    -0.09 |   8.33e-03 |     -0.07
## Dominance       |         -0.15* |         -0.19** |      0.13 |      -0.19** |     0.26*** | -4.91e-03 |  0.18** |       0.34*** |     0.40*** | 0.42*** |  0.27*** |    0.41*** |          
## Leadership      |          -0.04 |           -0.02 |     -0.04 |        -0.10 |     0.41*** |   0.26*** | 0.41*** |        0.20** |     0.47*** | 0.35*** |  0.55*** |            |          
## Prestige        |          -0.05 |           -0.13 |      0.08 |        -0.07 |     0.54*** |   0.42*** | 0.60*** |       0.34*** |     0.56*** | 0.49*** |          |            |          
## B-PNI           |         -0.14* |         -0.18** |      0.03 |        -0.07 |     0.32*** |   0.23*** | 0.34*** |       0.91*** |     0.80*** |         |          |            |          
## Grandiosity     |          -0.13 |         -0.17** |     -0.02 |        -0.05 |     0.47*** |   0.40*** | 0.51*** |       0.49*** |             |         |          |            |          
## Vulnerability   |          -0.13 |          -0.15* |      0.05 |        -0.08 |       0.15* |      0.07 |   0.15* |               |             |         |          |            |          
## UMS             |          -0.12 |           -0.10 |      0.08 |        -0.09 |     0.91*** |   0.81*** |         |               |             |         |          |            |          
## Intimacy        |          -0.01 |           -0.06 |      0.03 |        -0.03 |     0.54*** |           |         |               |             |         |          |            |          
## Affiliation     |         -0.16* |           -0.10 |      0.08 |        -0.11 |             |           |         |               |             |         |          |            |          
## SRTB Benefit    |        0.43*** |         0.41*** |  -0.52*** |              |             |           |         |               |             |         |          |            |          
## SRTB Risk       |       -0.30*** |        -0.32*** |           |              |             |           |         |               |             |         |          |            |          
## SRTB Likelihood |        0.40*** |                 |           |              |             |           |         |               |             |         |          |            |