What are Moving Average Processes?
One-time shock
T<-c(1:100)
e<-c(rep(0,49),100,rep(0,50))
Y<-0
for (i in 2:length(T)){
Y[i]=e[i]+0.55*e[i-1]
}
Yts<-ts(Y,start = 1,frequency = 1)
plot(Yts)

Yts
Time Series:
Start = 1
End = 100
Frequency = 1
[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[25] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[49] 0 100 55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[73] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[97] 0 0 0 0
Shock from normal distribution:
T<-c(1:100)
e<-rnorm(length(T),mean = 0,sd=10)
Y1<-0
Y2<-0
Y2[2]<-10
for (i in 2:length(T)){
Y1[i]=e[i]+0.55*e[i-1]
}
for (i in 3:length(T)){
Y2[i]=e[i]+0.55*e[i-1] +0.75*e[i-2]
}
Y1ts<-ts(Y1,start = 1,frequency = 1)
Y2ts<-ts(Y2,start = 1,frequency = 1)
plot(Y1ts)
points(Y2ts,type = "l",col=2,lty=2)

= ## The mathematics behind the MA process
Consider the MA(1): \[ y_t = e_t +
m_1e_{t-1}\]
where \(e\) is a zero mean white
noise process.
Is it covariance stationary?
\[
E[y_t]=E[e_t]+m_1E[e_{t-1}]=0\]
\[ \gamma_h =
E[y_ty_{t-h}]=E[(e_t+m_1e_{t-1})(e_{t-h}+m_1e_{t-h-1})]\]
\[ =
E[e_te_{t-h}+m_1e_{t-1}e_{t-h}+m_1e_te_{t-h-1}+m_1^2e_{t-1}e_{t-h-1}]\]
\[ \gamma_0 = E[e_t^2] +
m_1^2E[e_{t-1}^2]=(1+m_1^2)\sigma_e^2\]
\[\gamma_1 =
m_1E[e_{t-1}^2]=m_1\sigma_e^2\]
\[\gamma_2 =0\]
And \(\gamma_h=0\) for all \(h\geq2\).
What is the autocorrelation functions?
acf(Y1ts,lag.max = 50)

Invertability
Invertability: The MA process is algebraically
equivalent to an converging infinite order AR process (i.e., the AR
parameters converge to 0)
Using Lag Operators
\[ y_t = e_t + m_1
e_{t-1}=(1+m_1L)e_t=m(L)e_t\]
If the MA(p) is invertable, we can write:
\[ m(L)^{-1}y_t = \alpha(L) y_t = y_t
-\sum_{j=1}^\infty \alpha_jy_{t-j} = e_t\]
For the MA(1) process, we need:
\[\frac{1}{1+m_1L} y_t = e_t\]
If \(|m_1|<1\), then we can
write:
\[\frac{1}{1-(-m_1)L} y_t = (1 +
(-m_1)L+(-m_1)^2L^2+ \cdots)y_t =y_t+\sum_{j=1}^\infty
(-m_1)^jy_{t-j}=e_t\]
So we can write \[y_t = -
\sum_{j=1}^\infty (-m_1)^jy_{t-j} + e_t\]
Long story short, \(|m_1|<1\) in
order for the MA process to be invertable and therefore one we can
estimate.
In general, we need \(m(z)\neq 0\)
for \(|z|\leq 1\) (i.e. there are no
roots of the characteristic equation that fall within the unit circle)
for the process to be invertable.
Question: Is the MA(1) process below invertable?
\[ y_t = e_t - 1.2e_{t-1}\]
Estimating an MA process
Unfortunately, the MA process is nonlinear in the parameters (recall,
you can write it as the above infinite order MA model). However, we can
still utilize maximum likelihood estimation.
Watch this video for a brief discussion of maximum likelihood
estimation: https://youtu.be/93fPFOf547Q
Example: True DGP is \(y_t
= e_t + 0.55e_{t-1}\)
Estimates:
arima(Y1ts,order = c(0,0,1), include.mean = F)
Call:
arima(x = Y1ts, order = c(0, 0, 1), include.mean = F)
Coefficients:
ma1
0.6302
s.e. 0.0872
sigma^2 estimated as 98.69: log likelihood = -371.75, aic = 747.49
Example: True DGP is \(y_t
= e_t + 0.55e_{t-1}+0.75e_{t-1}\)
arima(Y2ts,order = c(0,0,2),include.mean = F)
Call:
arima(x = Y2ts, order = c(0, 0, 2), include.mean = F)
Coefficients:
ma1 ma2
0.5244 0.6189
s.e. 0.0796 0.0878
sigma^2 estimated as 105: log likelihood = -375.13, aic = 756.25
The ARIMA model
The ARIMA(p,d,q) model includes \(p\) lags of the variable, differences the
data \(d\) times (e.g., d=2 is a second
difference), and includes \(q\) MA
lags.
Including Seasonality
Suppose we have monthly data. We could anticipate that there are
patterns in the data (higher than average travel in July for example)
and we can anticipate these in the model by including a seasonal
component:
\[y_t = e_t + e_{t-12}\]
Example:
\[ AP_t = \mu + e_t + m_1e_{t-1}+
m_{12}e_{t-12}\]
We could also have seasonality in differencing and AR terms:
\[ (Y_t-Y_{t-1})-Y_{t-12} = \alpha_1
Y_{t-1} + \alpha_{12} Y_{t-12} + e_t +
m_1e_{t-1}+m_{12}e_{t-12}\]
In general, a seasonal arima model is denoted ARIMA(p,d,q)(P,D,Q)[m]
where m is the frequency of the data, P is the number of seasonal
parameters for the AR component (e.g., P=2 when m=12 means we would
include \(Y_{t-12}\) and \(Y_{t-24}\)), D is the number of differences
from the seasonal component (e.g. \(D=1\) would mean that we would take the
difference \(Y_t-Y_{t-12}\)), and Q is
the number of MA seasonal components (e.g., Q=1 means we would include
\(e_{t-12}\)).
Example:
LS0tCnRpdGxlOiAiTW92aW5nIEF2ZXJhZ2UgREdQIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCgojIyBXaGF0IGFyZSBNb3ZpbmcgQXZlcmFnZSBQcm9jZXNzZXM/CgojIyMgT25lLXRpbWUgc2hvY2sKCmBgYHtyfQpUPC1jKDE6MTAwKQplPC1jKHJlcCgwLDQ5KSwxMDAscmVwKDAsNTApKQpZPC0wCmZvciAoaSBpbiAyOmxlbmd0aChUKSl7CiAgWVtpXT1lW2ldKzAuNTUqZVtpLTFdCn0KWXRzPC10cyhZLHN0YXJ0ID0gMSxmcmVxdWVuY3kgPSAxKQpwbG90KFl0cykKWXRzCmBgYAoKIyMjIFNob2NrIGZyb20gbm9ybWFsIGRpc3RyaWJ1dGlvbjoKCmBgYHtyfQpUPC1jKDE6MTAwKQplPC1ybm9ybShsZW5ndGgoVCksbWVhbiA9IDAsc2Q9MTApClkxPC0wClkyPC0wClkyWzJdPC0xMApmb3IgKGkgaW4gMjpsZW5ndGgoVCkpewogIFkxW2ldPWVbaV0rMC41NSplW2ktMV0KfQpmb3IgKGkgaW4gMzpsZW5ndGgoVCkpewogIFkyW2ldPWVbaV0rMC41NSplW2ktMV0gKzAuNzUqZVtpLTJdCn0KClkxdHM8LXRzKFkxLHN0YXJ0ID0gMSxmcmVxdWVuY3kgPSAxKQpZMnRzPC10cyhZMixzdGFydCA9IDEsZnJlcXVlbmN5ID0gMSkKcGxvdChZMXRzKQpwb2ludHMoWTJ0cyx0eXBlID0gImwiLGNvbD0yLGx0eT0yKQpgYGAKCj0KIyMgVGhlIG1hdGhlbWF0aWNzIGJlaGluZCB0aGUgTUEgcHJvY2VzcwoKQ29uc2lkZXIgdGhlIE1BKDEpOiAKJCQgeV90ID0gZV90ICsgbV8xZV97dC0xfSQkCgp3aGVyZSAkZSQgaXMgYSB6ZXJvIG1lYW4gd2hpdGUgbm9pc2UgcHJvY2Vzcy4KCiMjIyBJcyBpdCBjb3ZhcmlhbmNlIHN0YXRpb25hcnk/IAoKJCQgRVt5X3RdPUVbZV90XSttXzFFW2Vfe3QtMX1dPTAkJAoKJCQgXGdhbW1hX2ggPSBFW3lfdHlfe3QtaH1dPUVbKGVfdCttXzFlX3t0LTF9KShlX3t0LWh9K21fMWVfe3QtaC0xfSldJCQKCiQkID0gRVtlX3RlX3t0LWh9K21fMWVfe3QtMX1lX3t0LWh9K21fMWVfdGVfe3QtaC0xfSttXzFeMmVfe3QtMX1lX3t0LWgtMX1dJCQKCiQkIFxnYW1tYV8wID0gRVtlX3ReMl0gKyBtXzFeMkVbZV97dC0xfV4yXT0oMSttXzFeMilcc2lnbWFfZV4yJCQKCiQkXGdhbW1hXzEgPSBtXzFFW2Vfe3QtMX1eMl09bV8xXHNpZ21hX2VeMiQkCgokJFxnYW1tYV8yID0wJCQKCkFuZCAkXGdhbW1hX2g9MCQgZm9yIGFsbCAkaFxnZXEyJC4gCgpXaGF0IGlzIHRoZSBhdXRvY29ycmVsYXRpb24gZnVuY3Rpb25zPyAKCgpgYGB7cn0KYWNmKFkxdHMsbGFnLm1heCA9IDUwKQpgYGAKCgojIyMgSW52ZXJ0YWJpbGl0eQoKKipJbnZlcnRhYmlsaXR5Kio6IFRoZSBNQSBwcm9jZXNzIGlzIGFsZ2VicmFpY2FsbHkgZXF1aXZhbGVudCB0byBhbiAgY29udmVyZ2luZyBpbmZpbml0ZSBvcmRlciBBUiBwcm9jZXNzIChpLmUuLCB0aGUgQVIgcGFyYW1ldGVycyBjb252ZXJnZSB0byAwKQoKVXNpbmcgTGFnIE9wZXJhdG9ycwoKJCQgeV90ID0gZV90ICsgbV8xIGVfe3QtMX09KDErbV8xTCllX3Q9bShMKWVfdCQkIAoKSWYgdGhlIE1BKHApIGlzIGludmVydGFibGUsIHdlIGNhbiB3cml0ZTogCgokJCBtKEwpXnstMX15X3QgPSBcYWxwaGEoTCkgeV90ID0geV90IC1cc3VtX3tqPTF9XlxpbmZ0eSBcYWxwaGFfanlfe3Qtan0gPSBlX3QkJCAKCkZvciB0aGUgTUEoMSkgcHJvY2Vzcywgd2UgbmVlZDogCgokJFxmcmFjezF9ezErbV8xTH0geV90ID0gZV90JCQgCgoKSWYgJHxtXzF8PDEkLCB0aGVuIHdlIGNhbiB3cml0ZTogCgokJFxmcmFjezF9ezEtKC1tXzEpTH0geV90ID0gKDEgKyAoLW1fMSlMKygtbV8xKV4yTF4yKyBcY2RvdHMpeV90ID15X3QrXHN1bV97aj0xfV5caW5mdHkgKC1tXzEpXmp5X3t0LWp9PWVfdCQkCgpTbyB3ZSBjYW4gd3JpdGUgJCR5X3QgPSAtIFxzdW1fe2o9MX1eXGluZnR5ICgtbV8xKV5qeV97dC1qfSArIGVfdCQkCgpMb25nIHN0b3J5IHNob3J0LCAkfG1fMXw8MSQgaW4gb3JkZXIgZm9yIHRoZSBNQSBwcm9jZXNzIHRvIGJlIGludmVydGFibGUgYW5kIHRoZXJlZm9yZSBvbmUgd2UgY2FuIGVzdGltYXRlLiAKCkluIGdlbmVyYWwsIHdlIG5lZWQgJG0oeilcbmVxIDAkIGZvciAkfHp8XGxlcSAxJCAoaS5lLiB0aGVyZSBhcmUgbm8gcm9vdHMgb2YgdGhlIGNoYXJhY3RlcmlzdGljIGVxdWF0aW9uIHRoYXQgZmFsbCB3aXRoaW4gdGhlIHVuaXQgY2lyY2xlKSBmb3IgdGhlIHByb2Nlc3MgdG8gYmUgaW52ZXJ0YWJsZS4gCgoqKlF1ZXN0aW9uOiBJcyB0aGUgTUEoMSkgcHJvY2VzcyBiZWxvdyBpbnZlcnRhYmxlPyoqCiQkIHlfdCA9IGVfdCAtIDEuMmVfe3QtMX0kJAoKCiMjIyBFc3RpbWF0aW5nIGFuIE1BIHByb2Nlc3MgCgpVbmZvcnR1bmF0ZWx5LCB0aGUgTUEgcHJvY2VzcyBpcyBub25saW5lYXIgaW4gdGhlIHBhcmFtZXRlcnMgKHJlY2FsbCwgeW91IGNhbiB3cml0ZSBpdCBhcyB0aGUgYWJvdmUgaW5maW5pdGUgb3JkZXIgTUEgbW9kZWwpLiBIb3dldmVyLCB3ZSBjYW4gc3RpbGwgdXRpbGl6ZSBtYXhpbXVtIGxpa2VsaWhvb2QgZXN0aW1hdGlvbi4KCldhdGNoIHRoaXMgdmlkZW8gZm9yIGEgYnJpZWYgZGlzY3Vzc2lvbiBvZiBtYXhpbXVtIGxpa2VsaWhvb2QgZXN0aW1hdGlvbjogaHR0cHM6Ly95b3V0dS5iZS85M2ZQRk9mNTQ3UQoKKipFeGFtcGxlOioqIFRydWUgREdQIGlzICR5X3QgPSBlX3QgKyAwLjU1ZV97dC0xfSQgCgpFc3RpbWF0ZXM6IApgYGB7cn0KYXJpbWEoWTF0cyxvcmRlciA9IGMoMCwwLDEpLCBpbmNsdWRlLm1lYW4gPSBGKQpgYGAKCioqRXhhbXBsZToqKiAgVHJ1ZSBER1AgaXMgJHlfdCA9IGVfdCArIDAuNTVlX3t0LTF9KzAuNzVlX3t0LTF9JCAKCmBgYHtyfQphcmltYShZMnRzLG9yZGVyID0gYygwLDAsMiksaW5jbHVkZS5tZWFuID0gRikKYGBgCgojIEV4YW1wbGUgb2YgdXNpbmcgTUEgd2l0aCByZWFsIGRhdGEKCmBgYHtyfQpsaWJyYXJ5KGZyZWRyKQpDUEk8LWZyZWRyKHNlcmllc19pZCA9ICJDUElBVUNTTCIpCkNQSTwtdHMoQ1BJJHZhbHVlLHN0YXJ0PWMoMTk0NywxKSxlbmQ9YygyMDIxLDMpLGZyZXF1ZW5jeSA9IDEyKQpJbmZsYXRpb25SYXRlPC0oQ1BJLWxhZyhDUEksaz0tMTIpKS9sYWcoQ1BJLGs9LTEyKQpwbG90KEluZmxhdGlvblJhdGUpCmBgYAoKYGBge3J9CmZvciAoaSBpbiAxOjEwKXsKICByZXN1bHRzPC1hcmltYShJbmZsYXRpb25SYXRlLG9yZGVyID0gYygwLDAsaSksaW5jbHVkZS5tZWFuID0gVCwgbWV0aG9kID0gIk1MIikKICBwcmludCgiTUE6IikKICBwcmludChpKQogIHByaW50KCJBSUM6IikKICBwcmludChyZXN1bHRzJGFpYykKfQpgYGAKCiMgVGhlIEFSSU1BIG1vZGVsIAoKVGhlIEFSSU1BKHAsZCxxKSBtb2RlbCBpbmNsdWRlcyAkcCQgbGFncyBvZiB0aGUgdmFyaWFibGUsIGRpZmZlcmVuY2VzIHRoZSBkYXRhICRkJCB0aW1lcyAoZS5nLiwgZD0yIGlzIGEgc2Vjb25kIGRpZmZlcmVuY2UpLCBhbmQgaW5jbHVkZXMgJHEkIE1BIGxhZ3MuIAoKYGBge3J9CmFyaW1hKGxvZyhBUCksb3JkZXIgPSBjKDEsMSwxKSkKYGBgCgoKIyMgSW5jbHVkaW5nIFNlYXNvbmFsaXR5CgpTdXBwb3NlIHdlIGhhdmUgbW9udGhseSBkYXRhLiBXZSBjb3VsZCBhbnRpY2lwYXRlIHRoYXQgdGhlcmUgYXJlIHBhdHRlcm5zIGluIHRoZSBkYXRhIChoaWdoZXIgdGhhbiBhdmVyYWdlIHRyYXZlbCBpbiBKdWx5IGZvciBleGFtcGxlKSBhbmQgd2UgY2FuIGFudGljaXBhdGUgdGhlc2UgaW4gdGhlIG1vZGVsIGJ5IGluY2x1ZGluZyBhIHNlYXNvbmFsIGNvbXBvbmVudDogCgokJHlfdCA9IGVfdCArIGVfe3QtMTJ9JCQgCgpFeGFtcGxlOiAKCiQkIEFQX3QgPSBcbXUgKyBlX3QgKyBtXzFlX3t0LTF9KyBtX3sxMn1lX3t0LTEyfSQkIAoKV2UgY291bGQgYWxzbyBoYXZlIHNlYXNvbmFsaXR5IGluIGRpZmZlcmVuY2luZyBhbmQgQVIgdGVybXM6CgokJCAoWV90LVlfe3QtMX0pLVlfe3QtMTJ9ID0gXGFscGhhXzEgWV97dC0xfSArIFxhbHBoYV97MTJ9IFlfe3QtMTJ9ICsgZV90ICsgbV8xZV97dC0xfSttX3sxMn1lX3t0LTEyfSQkCgpJbiBnZW5lcmFsLCBhIHNlYXNvbmFsIGFyaW1hIG1vZGVsIGlzIGRlbm90ZWQgQVJJTUEocCxkLHEpKFAsRCxRKVttXSB3aGVyZSBtIGlzIHRoZSBmcmVxdWVuY3kgb2YgdGhlIGRhdGEsIFAgaXMgdGhlIG51bWJlciBvZiBzZWFzb25hbCBwYXJhbWV0ZXJzIGZvciB0aGUgQVIgY29tcG9uZW50IChlLmcuLCBQPTIgd2hlbiBtPTEyIG1lYW5zIHdlIHdvdWxkIGluY2x1ZGUgJFlfe3QtMTJ9JCBhbmQgJFlfe3QtMjR9JCksIEQgaXMgdGhlIG51bWJlciBvZiBkaWZmZXJlbmNlcyBmcm9tIHRoZSBzZWFzb25hbCBjb21wb25lbnQgKGUuZy4gJEQ9MSQgd291bGQgbWVhbiB0aGF0IHdlIHdvdWxkIHRha2UgdGhlIGRpZmZlcmVuY2UgJFlfdC1ZX3t0LTEyfSQpLCBhbmQgUSBpcyB0aGUgbnVtYmVyIG9mIE1BIHNlYXNvbmFsIGNvbXBvbmVudHMgKGUuZy4sIFE9MSBtZWFucyB3ZSB3b3VsZCBpbmNsdWRlICRlX3t0LTEyfSQpLgoKCiMjIyBFeGFtcGxlOiAKCmBgYHtyfQpkYXRhKCJBaXJQYXNzZW5nZXJzIikKQVA8LUFpclBhc3NlbmdlcnMKYGBgCgoKYGBge3J9CnNlYXNvbmFsbW9kZWw8LWFyaW1hKGxvZyhBUCksb3JkZXI9YygwLDEsMSksc2Vhc29uYWw9YygwLDEsMSkpCnJlc2lkdWFscyA8LSByZXNpZHVhbHMoc2Vhc29uYWxtb2RlbCkKQVBmaXR0ZWQgPC0gQVAtcmVzaWR1YWxzCmBgYAoKYGBge3J9CnRzLnBsb3QoQVApCnBvaW50cyhBUGZpdHRlZCx0eXBlID0gImwiLGNvbD0yLGx0eT0yKQpgYGAKCgojIFVzaW5nIGBhdXRvLmFyaW1hKClgCgpgYGB7cn0KI2luc3RhbGwucGFja2FnZXMoImZvcmVjYXN0IikKbGlicmFyeShmb3JlY2FzdCkKYGBgCgpgYGB7cn0KYXV0by5hcmltYShsb2coQVApLGQ9MSkKYGBgCgpgYGB7cn0KYXV0by5hcmltYShZMXRzKQpgYGAKCmBgYHtyfQphcmltYWluZmxhdGlvbjwtYXV0by5hcmltYShJbmZsYXRpb25SYXRlKQphcmltYWluZmxhdGlvbgpgYGAKCmBgYHtyfQppbmZfcmVzaWR1YWxzIDwtIHJlc2lkdWFscyhhcmltYWluZmxhdGlvbikKaW5mZml0dGVkIDwtIEluZmxhdGlvblJhdGUtaW5mX3Jlc2lkdWFscwp0cy5wbG90KEluZmxhdGlvblJhdGUpCnBvaW50cyhpbmZmaXR0ZWQsdHlwZSA9ICJsIixjb2w9MixsdHk9MikKYGBgCgojIyBGb3JlY2FzdGluZyBQcmV2aWV3OgoKYGBge3J9CnBsb3QoZm9yZWNhc3QoYXJpbWFpbmZsYXRpb24pKQpgYGAKCmBgYHtyfQpVUjwtZnJlZHIoc2VyaWVzX2lkID0gIlVOUkFURSIpClVSPC10cyhVUiR2YWx1ZSwgc3RhcnQgPSBjKDE5NDgsMSksZW5kID0gYygyMDIxLDMpLGZyZXF1ZW5jeSA9IDEyKQpgYGAKCmBgYHtyfQpVUmFyaW1hPC1hdXRvLmFyaW1hKFVSKQpmb3JlY2FzdChVUmFyaW1hKQpwbG90KGZvcmVjYXN0KFVSYXJpbWEpKQpgYGAKCmBgYHtyfQpVUl9yZXNpZHVhbHMgPC0gcmVzaWR1YWxzKFVSYXJpbWEpClVSZml0dGVkIDwtIFVSLVVSX3Jlc2lkdWFscwp0cy5wbG90KFVSKQpwb2ludHMoVVJmaXR0ZWQsdHlwZSA9ICJsIixjb2w9MixsdHk9MikKYGBgCgo=