library(lme4)
## 载入需要的程辑包:Matrix
data=read.csv("R_ASI遗传力.csv",header = T)
head(data)
## Line Loc ASI
## 1 1 ZZ 2
## 2 2 ZZ 4
## 3 3 ZZ 4
## 4 4 ZZ 3
## 5 5 ZZ 0
## 6 6 ZZ 5
data$lines=factor(data$Line)
data$env=factor(data$Loc)
data$y=as.numeric(data$ASI)
blp=lmer(y~(1|env)+(1|lines),data=data)
summary(blp)
## Linear mixed model fit by REML ['lmerMod']
## Formula: y ~ (1 | env) + (1 | lines)
## Data: data
##
## REML criterion at convergence: 2903.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.5108 -0.6603 -0.0469 -0.0081 6.2275
##
## Random effects:
## Groups Name Variance Std.Dev.
## lines (Intercept) 0.03013 0.1736
## env (Intercept) 0.31821 0.5641
## Residual 2.48336 1.5759
## Number of obs: 769, groups: lines, 203; env, 4
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 1.877 0.288 6.517
blups= ranef(blp)
names(blups)
## [1] "lines" "env"
lines=blups$lines+blp@beta
res=data.frame(id=rownames(lines),blup=lines)
write.table(res,file="data_blup_result.txt",row.names = F,quote = F,sep="\t")
hist(lines[,1],col="#0AB3CA",border="white",xlab="BLUP of ASI",main="")
