to plot:

thoughts…

  1. plot correlations (see corr plot script)
  2. plot between/within associations - separate for ABCD and LTS
  3. plot sig MR associations - if a significant IVW, plot other methods AND related traits
  4. however we finalize the co-twin and MR plot together
results<- fread("/Users/claire/Desktop/dissertation/cotwin_mendelian/ctc_results.csv", header=T, data.table=F)
MR_out<- fread("/Users/claire/Desktop/dissertation/cotwin_mendelian/sleepMR/sleep_exposure_MR.csv", header=T, data.table=F)


results$OR<- exp(results$beta)
results$OR_lo<- NA
results$OR_hi<- NA


head(MR_out)
##   id.exposure id.outcome                          outcome
## 1      lVP89E  ieu-b-102 Major depression || id:ieu-b-102
## 2      lVP89E  ieu-b-102 Major depression || id:ieu-b-102
## 3      lVP89E  ieu-b-102 Major depression || id:ieu-b-102
## 4      lVP89E  ieu-b-102 Major depression || id:ieu-b-102
## 5      lVP89E  ieu-b-102 Major depression || id:ieu-b-102
## 6      lVP89E   ieu-b-42     schizophrenia || id:ieu-b-42
##                         exposure                    method nsnp            b
## 1 Sleep duration (unit increase)        Maximum likelihood   44 -0.003790686
## 2 Sleep duration (unit increase)                  MR Egger   44 -0.003997578
## 3 Sleep duration (unit increase)             Weighted mode   44 -0.002878508
## 4 Sleep duration (unit increase)           Weighted median   44 -0.003027430
## 5 Sleep duration (unit increase) Inverse variance weighted   44 -0.003700711
## 6 Sleep duration (unit increase)        Maximum likelihood   44  0.006757675
##             se         pval        lo_ci         up_ci        or  or_lci95
## 1 0.0008569348 9.709624e-06 -0.005470278 -0.0021110938 0.9962165 0.9945447
## 2 0.0043827653 3.669151e-01 -0.012587798  0.0045926424 0.9960104 0.9874911
## 3 0.0020044580 1.582228e-01 -0.006807246  0.0010502292 0.9971256 0.9932159
## 4 0.0013214918 2.196815e-02 -0.005617554 -0.0004373057 0.9969771 0.9943982
## 5 0.0013220044 5.121062e-03 -0.006291840 -0.0011095826 0.9963061 0.9937279
## 6 0.0021850579 1.983609e-03  0.002474961  0.0110403886 1.0067806 1.0024780
##    or_uci95
## 1 0.9978911
## 2 1.0046032
## 3 1.0010508
## 4 0.9995628
## 5 0.9988910
## 6 1.0111016
table(MR_out$outcome)
## 
##            ADHD || id:ieu-a-1183             Anti Social Behavior 
##                               55                               50 
##                          Anxiety                 Bipolar Disorder 
##                               55                               55 
##               Cigarettes per Day                  Drinks per Week 
##                               55                               55 
## Major depression || id:ieu-b-102     schizophrenia || id:ieu-b-42 
##                               55                               55
table(MR_out$exposure)
## 
##        Accelerometer sleep duration                    Alertness Factor 
##                                  40                                  40 
##                          Chronotype         Circadian Preference Factor 
##                                  40                                  40 
## Daytime alertness (sleepiness GWAS)                          Efficiency 
##                                  40                                  35 
##                   Efficiency Factor           No napping (napping GWAS) 
##                                  40                                  40 
##                        Non-Insomnia      Sleep duration (unit increase) 
##                                  40                                  40 
##                      Sleep Episodes 
##                                  40
table(MR_out$method)
## 
## Inverse variance weighted        Maximum likelihood                  MR Egger 
##                        87                        87                        87 
##           Weighted median             Weighted mode 
##                        87                        87
MR_out<- MR_out %>% filter(!method=="Outlier-corrected")

MR_out$exposure[MR_out$exposure=="Insomnia symptoms (never/rarely vs. sometimes/usually)"] <- "Insomnia"
MR_out$exposure[MR_out$exposure=="Daytime nap || id:ebi-a-GCST011494"] <- "Napping"
MR_out$exposure[MR_out$exposure=="Sleep duration (unit increase)"] <- "Self-reported sleep duration"
MR_out$outcome[MR_out$outcome=="Efficiency"] <- "Accelerometer Efficiency"


MR_out$outcome[MR_out$outcome=="ADHD || id:ieu-a-1183"] <- "ADHD"
MR_out$outcome[MR_out$outcome=="schizophrenia || id:ieu-b-42"] <- "Schizophrenia"
MR_out$outcome[MR_out$outcome=="bipolar disorder"] <- "Bipolar Disorder"
MR_out$outcome[MR_out$outcome=="cigarettes per day"] <- "Cigarettes per Day"
MR_out$outcome[MR_out$outcome=="Major depression || id:ieu-b-102"] <- "Depression"

MR_out$id.exposure<- NULL
MR_out$id.outcome<- NULL
MR_out$lo_ci<- NULL
MR_out$up_ci<- NULL

colnames(MR_out)[1:10]<- c("psychiatric_trait_specific", "sleep_trait_specific", "model", "n_SNPs", "beta", "beta_se", "beta_p", "OR", "OR_lo", "OR_hi")


MR_out$sample<- "MR"

MR_out$sleep[MR_out$sleep_trait_specific=="Accelerometer sleep duration" | MR_out$sleep_trait_specific=="Self-reported sleep duration"] <- "Duration"

MR_out$sleep[MR_out$sleep_trait_specific=="No napping (napping GWAS)" | MR_out$sleep_trait_specific=="Alertness Factor" | MR_out$sleep_trait_specific=="Daytime alertness (sleepiness GWAS)"] <- "Alertness"

MR_out$sleep[MR_out$sleep_trait_specific=="Chronotype"| MR_out$sleep_trait_specific=="Circadian Preference Factor"] <- "Chronotype"

MR_out$sleep[MR_out$sleep_trait_specific=="Efficiency" | MR_out$sleep_trait_specific=="Efficiency Factor" | MR_out$sleep_trait_specific=="Sleep Episodes"] <- "Efficiency"

MR_out$psychiatric[MR_out$psychiatric_trait_specific=="Depression" | MR_out$psychiatric_trait_specific=="Anxiety"] <- "Internalizing"

MR_out$psychiatric[MR_out$psychiatric_trait_specific=="Schizophrenia" | MR_out$psychiatric_trait_specific=="Bipolar Disorder"] <- "Psychosis"

MR_out$psychiatric[MR_out$psychiatric_trait_specific=="ADHD"] <- "Attention Problems"

MR_out$psychiatric[MR_out$psychiatric_trait_specific=="Anti Social Behavior" | MR_out$psychiatric_trait_specific=="Cigarettes per Day" | MR_out$psychiatric_trait_specific=="Drinks per Week"] <- "Externalizing"

MR_out<- MR_out %>% select(colnames(results))

results<- rbind(results, MR_out)

results$sample_psych<- ifelse(is.na(results$psychiatric_trait_specific), paste(results$sample, results$psychiatric, sep="_"), paste(results$sleep_trait_specific, results$psychiatric_trait_specific, sep="_"))

co twin within results

within<- results[grep("Within", results$model),]

ctc_p<- .05/4

# chrono
within %>% select(sleep, sleep_trait_specific,psychiatric, beta, beta_p, model, sample) %>%
  filter(sleep=="Chronotype") %>% 
  filter(beta_p<ctc_p )
##        sleep sleep_trait_specific   psychiatric     beta  beta_p      model
## 1 Chronotype           Chronotype Externalizing -0.16354 0.00751     Within
## 2 Chronotype           Chronotype Externalizing -0.42456 0.01120 Within sib
## 3 Chronotype        Social Jetlag Externalizing  0.17500 0.00704     Within
## 4 Chronotype        Social Jetlag Externalizing  0.47200 0.00560 Within sib
##   sample
## 1   ABCD
## 2   ABCD
## 3   ABCD
## 4   ABCD
# alertness

within %>% select(sleep, psychiatric, beta, beta_p, model, sample) %>%
  filter(sleep=="Alertness") %>% 
  filter(beta_p<ctc_p )
## [1] sleep       psychiatric beta        beta_p      model       sample     
## <0 rows> (or 0-length row.names)
# effic

within %>% select(sleep, sleep_trait_specific,psychiatric, beta, beta_p, model, sample) %>%
  filter(sleep=="Efficiency") %>% 
  filter(beta_p<ctc_p )
##        sleep             sleep_trait_specific        psychiatric  beta   beta_p
## 1 Efficiency Accelerometer Weekday Efficiency Attention Problems -0.24 0.002000
## 2 Efficiency Accelerometer Weekday Efficiency      Externalizing -0.24 0.000279
##       model sample
## 1 Within DZ   ABCD
## 2 Within DZ   ABCD
# duration
within %>% select(sleep, sleep_trait_specific,psychiatric, beta, beta_p, model, sample) %>%
  filter(sleep=="Duration") %>% 
  filter(beta_p<ctc_p )
##      sleep           sleep_trait_specific        psychiatric      beta
## 1 Duration               Weekday Duration          Psychosis -0.158859
## 2 Duration Accelerometer Weekday Duration Attention Problems -0.251620
## 3 Duration               Weekday Duration          Psychosis -0.282930
## 4 Duration               Weekday Duration          Psychosis -0.277147
##      beta_p     model sample
## 1 1.100e-02 Within MZ   ABCD
## 2 5.247e-03 Within DZ   ABCD
## 3 2.090e-05    Within   ABCD
## 4 1.030e-07 Within DZ   ABCD
# satisfaction
within %>% select(sleep, psychiatric, beta, beta_p, model, sample) %>%
  filter(sleep=="Satisfaction") %>% 
  filter(beta_p<ctc_p )
## [1] sleep       psychiatric beta        beta_p      model       sample     
## <0 rows> (or 0-length row.names)
# insom
within %>% select(sleep, psychiatric, beta, beta_p, model, sample) %>%
  filter(sleep=="Insomnia") %>% 
  filter(beta_p<ctc_p )
##      sleep   psychiatric beta beta_p  model   sample
## 1 Insomnia Internalizing 0.12  0.012 Within Colorado
# var
within %>% select(sleep, psychiatric, beta, beta_p, model, sample) %>%
  filter(sleep=="Variability") %>% 
  filter(beta_p<ctc_p )
## [1] sleep       psychiatric beta        beta_p      model       sample     
## <0 rows> (or 0-length row.names)

MR IVW results

ivw<- results[grep("Inverse variance weighted", results$model),]


ivw_p<- .05/8

# chrono
ivw %>% select(sleep, sleep_trait_specific, psychiatric_trait_specific, OR, beta_p) %>%
  filter(sleep=="Chronotype") %>% 
  filter(beta_p<ivw_p )
##        sleep        sleep_trait_specific psychiatric_trait_specific       OR
## 1 Chronotype Circadian Preference Factor            Drinks per Week 1.121713
##         beta_p
## 1 0.0001020805
results %>% select(sleep_trait_specific, psychiatric_trait_specific, model, OR, beta_p) %>%
  filter(sleep_trait_specific=="Circadian Preference Factor") %>% 
  filter(psychiatric_trait_specific=="Drinks per Week")%>% 
  filter(beta_p<ivw_p )
##          sleep_trait_specific psychiatric_trait_specific
## 1 Circadian Preference Factor            Drinks per Week
## 2 Circadian Preference Factor            Drinks per Week
## 3 Circadian Preference Factor            Drinks per Week
##                       model       OR       beta_p
## 1        Maximum likelihood 1.123158 2.818292e-08
## 2           Weighted median 1.103489 2.394274e-03
## 3 Inverse variance weighted 1.121713 1.020805e-04
# alertness

ivw %>% select(sleep, sleep_trait_specific, psychiatric_trait_specific, OR, beta_p) %>%
  filter(sleep=="Alertness") %>% 
  filter(beta_p<ivw_p)
##       sleep      sleep_trait_specific psychiatric_trait_specific        OR
## 1 Alertness No napping (napping GWAS)                 Depression 0.6815710
## 2 Alertness No napping (napping GWAS)              Schizophrenia 0.4540639
## 3 Alertness No napping (napping GWAS)           Bipolar Disorder 0.5329535
##         beta_p
## 1 5.280796e-07
## 2 3.198915e-04
## 3 1.511661e-03
results %>% select(sleep_trait_specific, psychiatric_trait_specific, model, OR, beta_p) %>%
  filter(sleep_trait_specific=="No napping (napping GWAS)") %>% 
  filter(psychiatric_trait_specific=="Depression")
##        sleep_trait_specific psychiatric_trait_specific
## 1 No napping (napping GWAS)                 Depression
## 2 No napping (napping GWAS)                 Depression
## 3 No napping (napping GWAS)                 Depression
## 4 No napping (napping GWAS)                 Depression
## 5 No napping (napping GWAS)                 Depression
##                       model        OR       beta_p
## 1        Maximum likelihood 0.6738814 3.595328e-12
## 2                  MR Egger 1.1054844 6.999369e-01
## 3             Weighted mode 1.0076273 9.617286e-01
## 4           Weighted median 0.8096428 1.965047e-02
## 5 Inverse variance weighted 0.6815710 5.280796e-07
results %>% select(sleep_trait_specific, psychiatric_trait_specific, model, OR, beta_p) %>%
  filter(sleep_trait_specific=="No napping (napping GWAS)") %>% 
  filter(psychiatric_trait_specific=="Schizophrenia") %>% 
  filter(beta_p<ivw_p )
##        sleep_trait_specific psychiatric_trait_specific
## 1 No napping (napping GWAS)              Schizophrenia
## 2 No napping (napping GWAS)              Schizophrenia
## 3 No napping (napping GWAS)              Schizophrenia
## 4 No napping (napping GWAS)              Schizophrenia
##                       model        OR       beta_p
## 1        Maximum likelihood 0.4536748 3.025806e-08
## 2             Weighted mode 0.2003513 4.482934e-03
## 3           Weighted median 0.4285470 3.347649e-04
## 4 Inverse variance weighted 0.4540639 3.198915e-04
results %>% select(sleep_trait_specific, psychiatric_trait_specific, model, OR, beta_p) %>%
  filter(sleep_trait_specific=="No napping (napping GWAS)") %>% 
  filter(psychiatric_trait_specific=="Bipolar Disorder") %>% 
  filter(beta_p<ivw_p )
##        sleep_trait_specific psychiatric_trait_specific
## 1 No napping (napping GWAS)           Bipolar Disorder
## 2 No napping (napping GWAS)           Bipolar Disorder
##                       model        OR       beta_p
## 1        Maximum likelihood 0.5282921 3.288510e-06
## 2 Inverse variance weighted 0.5329535 1.511661e-03
# effic

ivw %>% select(sleep, sleep_trait_specific, psychiatric_trait_specific, OR, beta_p) %>%
  filter(sleep=="Efficiency") %>% 
  filter(beta_p<ivw_p ) ### remove ASB --- unrealistic
##        sleep sleep_trait_specific psychiatric_trait_specific        OR
## 1 Efficiency    Efficiency Factor                 Depression 0.5779504
##         beta_p
## 1 0.0002680735
results %>% select(sleep_trait_specific, psychiatric_trait_specific, model, OR, beta_p) %>%
  filter(sleep_trait_specific=="Efficiency Factor") %>% 
  filter(psychiatric_trait_specific=="Depression")%>% 
  filter(beta_p<ivw_p )
##   sleep_trait_specific psychiatric_trait_specific                     model
## 1    Efficiency Factor                 Depression        Maximum likelihood
## 2    Efficiency Factor                 Depression           Weighted median
## 3    Efficiency Factor                 Depression Inverse variance weighted
##          OR       beta_p
## 1 0.5674757 5.514911e-06
## 2 0.6115202 4.701350e-03
## 3 0.5779504 2.680735e-04
# dur

ivw %>% select(sleep, sleep_trait_specific, psychiatric_trait_specific, OR,beta, beta_p) %>%
  filter(sleep=="Duration") %>% 
  filter(beta_p<ivw_p ) ### remove ASB
##      sleep         sleep_trait_specific psychiatric_trait_specific           OR
## 1 Duration Self-reported sleep duration                 Depression    0.9963061
## 2 Duration Accelerometer sleep duration              Schizophrenia    1.6416609
## 3 Duration Accelerometer sleep duration       Anti Social Behavior 1006.7755661
##           beta       beta_p
## 1 -0.003700711 5.121062e-03
## 2  0.495708484 8.110242e-05
## 3  6.914507994 5.208813e-03
results %>% select(sleep_trait_specific, psychiatric_trait_specific, model, OR, beta_p) %>%
  filter(sleep_trait_specific=="Self-reported sleep duration") %>% 
  filter(psychiatric_trait_specific=="Depression")%>% 
  filter(beta_p<ivw_p )
##           sleep_trait_specific psychiatric_trait_specific
## 1 Self-reported sleep duration                 Depression
## 2 Self-reported sleep duration                 Depression
##                       model        OR       beta_p
## 1        Maximum likelihood 0.9962165 9.709624e-06
## 2 Inverse variance weighted 0.9963061 5.121062e-03
results %>% select(sleep_trait_specific, psychiatric_trait_specific, model, OR, beta_p) %>%
  filter(sleep_trait_specific=="Accelerometer sleep duration") %>% 
  filter(psychiatric_trait_specific=="Schizophrenia")%>% 
  filter(beta_p<ivw_p )
##           sleep_trait_specific psychiatric_trait_specific
## 1 Accelerometer sleep duration              Schizophrenia
## 2 Accelerometer sleep duration              Schizophrenia
## 3 Accelerometer sleep duration              Schizophrenia
##                       model       OR       beta_p
## 1        Maximum likelihood 1.646551 1.093846e-04
## 2           Weighted median 1.550797 5.303916e-03
## 3 Inverse variance weighted 1.641661 8.110242e-05
# insom
ivw %>% select(sleep, sleep_trait_specific, psychiatric_trait_specific, OR, beta_p) %>%
  filter(sleep=="Non-Insomnia") %>% 
  filter(beta_p<ivw_p )
##          sleep sleep_trait_specific psychiatric_trait_specific        OR
## 1 Non-Insomnia         Non-Insomnia                 Depression 0.3850484
## 2 Non-Insomnia         Non-Insomnia                    Anxiety 5.6429822
## 3 Non-Insomnia         Non-Insomnia                       ADHD 0.3167471
## 4 Non-Insomnia         Non-Insomnia            Drinks per Week 1.1283073
##         beta_p
## 1 5.366771e-17
## 2 1.964025e-04
## 3 6.654396e-05
## 4 9.708955e-04
results %>% select(sleep_trait_specific, psychiatric_trait_specific, model, OR, beta_p) %>%
  filter(sleep_trait_specific=="Non-Insomnia") %>% 
  filter(psychiatric_trait_specific=="Depression")%>% 
  filter(beta_p<ivw_p )
##   sleep_trait_specific psychiatric_trait_specific                     model
## 1         Non-Insomnia                 Depression        Maximum likelihood
## 2         Non-Insomnia                 Depression             Weighted mode
## 3         Non-Insomnia                 Depression           Weighted median
## 4         Non-Insomnia                 Depression Inverse variance weighted
##          OR       beta_p
## 1 0.3763089 2.571577e-26
## 2 0.3274129 5.073069e-03
## 3 0.4205445 1.163517e-09
## 4 0.3850484 5.366771e-17
results %>% select(sleep_trait_specific, psychiatric_trait_specific, model, OR, beta_p) %>%
  filter(sleep_trait_specific=="Non-Insomnia") %>% 
  filter(psychiatric_trait_specific=="Anxiety")%>% 
  filter(beta_p<ivw_p )
##   sleep_trait_specific psychiatric_trait_specific                     model
## 1         Non-Insomnia                    Anxiety        Maximum likelihood
## 2         Non-Insomnia                    Anxiety Inverse variance weighted
##         OR       beta_p
## 1 6.204112 1.546891e-06
## 2 5.642982 1.964025e-04
results %>% select(sleep_trait_specific, psychiatric_trait_specific, model, OR, beta_p) %>%
  filter(sleep_trait_specific=="Non-Insomnia") %>% 
  filter(psychiatric_trait_specific=="ADHD")%>% 
  filter(beta_p<ivw_p )
##   sleep_trait_specific psychiatric_trait_specific                     model
## 1         Non-Insomnia                       ADHD        Maximum likelihood
## 2         Non-Insomnia                       ADHD Inverse variance weighted
##          OR       beta_p
## 1 0.3328918 2.312973e-05
## 2 0.3167471 6.654396e-05
results %>% select(sleep_trait_specific, psychiatric_trait_specific, model, OR, beta_p) %>%
  filter(sleep_trait_specific=="Non-Insomnia") %>% 
  filter(psychiatric_trait_specific=="Drinks per Week")%>% 
  filter(beta_p<ivw_p )
##   sleep_trait_specific psychiatric_trait_specific                     model
## 1         Non-Insomnia            Drinks per Week        Maximum likelihood
## 2         Non-Insomnia            Drinks per Week Inverse variance weighted
##         OR       beta_p
## 1 1.130406 0.0009705446
## 2 1.128307 0.0009708955

full across methods results

converging across: - chrono & ext - effic & ext - dur & ext - dur & psych - insom & int - insom & ext

both<- results %>% filter(model=="Inverse variance weighted" | model=="Within" | model=="Within MZ" | model=="Within DZ") 

# chrono
both %>% select(sleep, psychiatric, sample,model, beta, beta_p) %>%
  filter(sleep=="Chronotype") %>% 
  filter(beta_p<ctc_p ) %>%
  arrange(psychiatric) ### both, but chrono factor
##        sleep   psychiatric sample                     model       beta
## 1 Chronotype Externalizing   ABCD                    Within -0.1635400
## 2 Chronotype Externalizing   ABCD                    Within  0.1750000
## 3 Chronotype Externalizing     MR Inverse variance weighted  0.1148572
##         beta_p
## 1 0.0075100000
## 2 0.0070400000
## 3 0.0001020805
# alertness

both %>% select(sleep, psychiatric, sample, beta, beta_p) %>%
  filter(sleep=="Alertness") %>% 
  filter(beta_p<ctc_p )%>%
  arrange(psychiatric) ### only MR
##       sleep   psychiatric sample       beta       beta_p
## 1 Alertness Internalizing     MR -0.3833548 5.280796e-07
## 2 Alertness Internalizing     MR -0.6832640 1.236765e-02
## 3 Alertness     Psychosis     MR -0.7895173 3.198915e-04
## 4 Alertness     Psychosis     MR -0.6293212 1.511661e-03
# effic

both %>% select(sleep, sleep_trait_specific, psychiatric, psychiatric_trait_specific, model, sample, beta, beta_p) %>%
  filter(sleep=="Efficiency") %>% 
  filter(beta_p<ctc_p )%>%
  arrange(psychiatric) ## only co twin
##        sleep             sleep_trait_specific        psychiatric
## 1 Efficiency Accelerometer Weekday Efficiency Attention Problems
## 2 Efficiency Accelerometer Weekday Efficiency      Externalizing
## 3 Efficiency                Efficiency Factor      Internalizing
##   psychiatric_trait_specific                     model sample       beta
## 1                       <NA>                 Within DZ   ABCD -0.2400000
## 2                       <NA>                 Within DZ   ABCD -0.2400000
## 3                 Depression Inverse variance weighted     MR -0.5482673
##         beta_p
## 1 0.0020000000
## 2 0.0002790000
## 3 0.0002680735
# dur

both %>% select(sleep, sleep_trait_specific, psychiatric, psychiatric_trait_specific, model, sample, beta, beta_p) %>%
  filter(sleep=="Duration") %>% 
  filter(beta_p<ctc_p )%>%
  arrange(psychiatric) ### all three samples
##      sleep           sleep_trait_specific        psychiatric
## 1 Duration Accelerometer Weekday Duration Attention Problems
## 2 Duration   Accelerometer sleep duration      Externalizing
## 3 Duration   Self-reported sleep duration      Internalizing
## 4 Duration               Weekday Duration          Psychosis
## 5 Duration               Weekday Duration          Psychosis
## 6 Duration               Weekday Duration          Psychosis
## 7 Duration   Accelerometer sleep duration          Psychosis
##   psychiatric_trait_specific                     model sample         beta
## 1                       <NA>                 Within DZ   ABCD -0.251620000
## 2       Anti Social Behavior Inverse variance weighted     MR  6.914507994
## 3                 Depression Inverse variance weighted     MR -0.003700711
## 4                       <NA>                 Within MZ   ABCD -0.158859000
## 5                       <NA>                    Within   ABCD -0.282930000
## 6                       <NA>                 Within DZ   ABCD -0.277147000
## 7              Schizophrenia Inverse variance weighted     MR  0.495708484
##         beta_p
## 1 5.247000e-03
## 2 5.208813e-03
## 3 5.121062e-03
## 4 1.100000e-02
## 5 2.090000e-05
## 6 1.030000e-07
## 7 8.110242e-05
# insom
both %>% select(sleep, sleep_trait_specific, psychiatric, psychiatric_trait_specific, model, sample, beta, beta_p) %>%
  filter(sleep=="Insomnia") %>% 
  filter(beta_p<ctc_p ) ### MR and co twin colorado
##      sleep sleep_trait_specific   psychiatric psychiatric_trait_specific  model
## 1 Insomnia             Insomnia Internalizing                       <NA> Within
##     sample beta beta_p
## 1 Colorado 0.12  0.012

across measurement types

pheno<- results %>% filter(model=="Phenotypic")

# effic

pheno %>% select(sleep, sleep_trait_specific, psychiatric, sample, beta, beta_p) %>%
  filter(sleep=="Efficiency") %>% 
  filter(beta_p<ctc_p )%>%
  arrange(psychiatric)
##        sleep             sleep_trait_specific   psychiatric sample beta beta_p
## 1 Efficiency Accelerometer Weekday Efficiency Externalizing   ABCD -0.1  0.005
# dur

pheno %>% select(sleep, sleep_trait_specific, psychiatric, sample, beta, beta_p) %>%
  filter(sleep=="Duration") %>% 
  filter(beta_p<ctc_p )%>%
  arrange(psychiatric)
##      sleep           sleep_trait_specific        psychiatric sample     beta
## 1 Duration               Weekday Duration Attention Problems   ABCD -0.08558
## 2 Duration               Weekday Duration      Externalizing   ABCD -0.08000
## 3 Duration Accelerometer Weekend Duration          Psychosis   ABCD -0.09000
## 4 Duration Accelerometer Weekday Duration          Psychosis   ABCD -0.10000
## 5 Duration               Weekend Duration          Psychosis   ABCD -0.08090
## 6 Duration               Weekday Duration          Psychosis   ABCD -0.22699
##     beta_p
## 1 3.58e-03
## 2 3.00e-03
## 3 8.00e-03
## 4 3.00e-03
## 5 3.92e-03
## 6 2.00e-16
# effic

within %>% select(sleep, sleep_trait_specific, psychiatric, sample, beta, beta_p) %>%
  filter(sleep=="Efficiency") %>% 
  filter(beta_p<ctc_p )%>%
  arrange(psychiatric)
##        sleep             sleep_trait_specific        psychiatric sample  beta
## 1 Efficiency Accelerometer Weekday Efficiency Attention Problems   ABCD -0.24
## 2 Efficiency Accelerometer Weekday Efficiency      Externalizing   ABCD -0.24
##     beta_p
## 1 0.002000
## 2 0.000279
# dur

within %>% select(sleep, sleep_trait_specific, psychiatric, sample, beta, beta_p) %>%
  filter(sleep=="Duration") %>% 
  filter(beta_p<ctc_p )%>%
  arrange(psychiatric)
##      sleep           sleep_trait_specific        psychiatric sample      beta
## 1 Duration Accelerometer Weekday Duration Attention Problems   ABCD -0.251620
## 2 Duration               Weekday Duration          Psychosis   ABCD -0.158859
## 3 Duration               Weekday Duration          Psychosis   ABCD -0.282930
## 4 Duration               Weekday Duration          Psychosis   ABCD -0.277147
##      beta_p
## 1 5.247e-03
## 2 1.100e-02
## 3 2.090e-05
## 4 1.030e-07
# accel 
accel<- both[grep("Accelerometer", both$sleep_trait_specific),]


accel %>% select(sleep, sleep_trait_specific, psychiatric, sample, beta, beta_p) %>%
  filter(beta_p<ctc_p )%>%
  arrange(psychiatric)
##        sleep             sleep_trait_specific        psychiatric sample
## 1   Duration   Accelerometer Weekday Duration Attention Problems   ABCD
## 2 Efficiency Accelerometer Weekday Efficiency Attention Problems   ABCD
## 3 Efficiency Accelerometer Weekday Efficiency      Externalizing   ABCD
## 4   Duration     Accelerometer sleep duration      Externalizing     MR
## 5   Duration     Accelerometer sleep duration          Psychosis     MR
##         beta       beta_p
## 1 -0.2516200 5.247000e-03
## 2 -0.2400000 2.000000e-03
## 3 -0.2400000 2.790000e-04
## 4  6.9145080 5.208813e-03
## 5  0.4957085 8.110242e-05

plots

set up model colors and order

table(results$sleep) ### need to combine as insomnia... remember MR is non insomnia, CTC is insomnia!
## 
##    Alertness   Chronotype     Duration   Efficiency     Insomnia Non-Insomnia 
##          130          138          196          163           10           40 
## Satisfaction  Variability 
##           10           24
table(results$psychiatric)
## 
## Attention Problems      Externalizing      Internalizing          Psychosis 
##                109                244                194                164
results$sleep[results$sleep=="Non-Insomnia"] <- "Insomnia"


phenotypic_col<- "burlywood"
between_col<- "peachpuff"
within_col<- "dodgerblue"
within_MZ_col<- "steelblue2"
within_DZ_col<- "deepskyblue"
within_sib_col<- "skyblue"
IVW_col<- "tan3"
ML_col<- "darkorange"
wmode_col<- "darkgoldenrod2"
wmed_col<- "goldenrod1"
mregger_col<- "gold1"

  
model_colors<- c("Phenotypic"=phenotypic_col, "Between"=between_col, "Within"=within_col, "Within MZ"=within_MZ_col, "Within DZ"=within_DZ_col, "Within sib"=within_sib_col, "Maximum likelihood"=ML_col, "Inverse variance weighted"=IVW_col, "Weighted mode"= wmode_col, "Weighted median"=wmed_col, "MR Egger" = mregger_col)


results<- results %>%
  mutate(model=fct_relevel(model,"Within sib", "Within DZ", "Within MZ", "Within", "Between", "Phenotypic", "Inverse variance weighted", "Maximum likelihood", "Weighted mode", "Weighted median"),
        psychiatric= fct_relevel(psychiatric, "Internalizing", "Externalizing", "Attention Problems", "Psychosis"))

co twin plots

## ABCD


abcd<- results %>% filter(sample=="ABCD")
abcd_sleep<- unique(abcd$sleep)


abcd_plt<- list()
for (s in abcd_sleep) {
  dat<- results %>% filter(sample=="ABCD" & sleep==s) %>%
    mutate(CI=1.96*beta_se)
  plt<- ggplot(dat, aes(colour=model, shape=sleep_trait_specific,x=beta, y=model, xmin = beta-CI, xmax = beta+CI)) +
  geom_point(aes(colour=model), size=7, position=position_dodge(width=0.9)) + 
   geom_errorbarh(aes(x = CI), height=1, position=position_dodge(width=0.7))+
  facet_wrap(~psychiatric) +
  xlab("Beta") +
  ylab("Coefficient")+
  geom_vline(xintercept = 0, linetype="dashed")+
  ggtitle(paste0(s, " in ABCD"))+
  scale_color_manual(values = model_colors)+
    theme(legend.title = element_blank(),
          #legend.text=element_text(size=10), couldnt fit all the duration legend items with a bigger text
          legend.position="bottom",
        panel.border = element_blank(),
      panel.grid.major = element_blank(),
      panel.grid.minor = element_blank(),
    axis.text = element_text(size = 17),
    plot.title = element_text(size=17))
  plt<- plt+guides(colour = "none")
  abcd_plt[[s]]<- plt
}
## Warning in geom_errorbarh(aes(x = CI), height = 1, position = position_dodge(width = 0.7)): Ignoring unknown aesthetics: x
## Ignoring unknown aesthetics: x
## Ignoring unknown aesthetics: x
## Ignoring unknown aesthetics: x
## LTS

lts<- results %>% filter(sample=="Colorado")
lts_sleep<- unique(lts$sleep)
  
  
lts_plt<- list()
for (s in lts_sleep) {
  dat<- results %>% filter(sample=="Colorado" & sleep==s)%>%
    mutate(CI=1.96*beta_se)
  plt<- ggplot(dat, aes(colour=model, shape=sleep_trait_specific,x=beta, y=model, xmin = beta-CI, xmax = beta+CI)) +
   geom_point(size=7,position=position_dodge(width=0.7)) + 
   geom_errorbarh(aes(x = CI), height=1, position=position_dodge(width=0.7))+
  facet_wrap(~psychiatric) +
      geom_vline(xintercept = 0, linetype="dashed")+
  xlab("Beta") +
  ylab("Coefficient")+
  ggtitle(paste0(s, " in Colorado Sample"))+
  scale_color_manual(values = model_colors)+
    theme(legend.title = element_blank(),
          legend.position="bottom",
        legend.text=element_text(size=15),
        panel.border = element_blank(),
      panel.grid.major = element_blank(),
      panel.grid.minor = element_blank(),
    axis.text = element_text(size = 17),
    plot.title = element_text(size=17))
  plt<- plt+guides(colour = "none")
  lts_plt[[s]]<- plt
}
## Warning in geom_errorbarh(aes(x = CI), height = 1, position = position_dodge(width = 0.7)): Ignoring unknown aesthetics: x
## Ignoring unknown aesthetics: x
## Ignoring unknown aesthetics: x
## Ignoring unknown aesthetics: x
## Ignoring unknown aesthetics: x
lts<- ggarrange(lts_plt[[3]], lts_plt[[4]], lts_plt[[2]], 
                lts_plt[[5]], lts_plt[[1]], nrow=3, ncol=2, common.legend = F)

ggsave(plot = lts,filename = "/Users/claire/Desktop/dissertation//figs/LTS_CTC.PNG", width = 15, height = 14, units = "in")


abcd<- ggarrange(abcd_plt[[3]], abcd_plt[[4]], abcd_plt[[2]], 
                abcd_plt[[1]], nrow=2, ncol=2, common.legend = F)

ggsave(plot = abcd,filename = "/Users/claire/Desktop/dissertation//figs/ABCD_CTC.PNG", width = 18, height = 18, units = "in")

MR plots

MR<- results %>% filter(sample=="MR") %>%
  mutate(model=fct_relevel(model, "Inverse variance weighted", "Maximum likelihood", "Weighted mode", "Weighted median", "MR Egger"))

MR<- MR %>% filter(OR<10) %>%
  filter(psychiatric_trait_specific!="Anti Social Behavior")

head(MR)
##           sleep_trait_specific    sleep   psychiatric
## 1 Self-reported sleep duration Duration Internalizing
## 2 Self-reported sleep duration Duration Internalizing
## 3 Self-reported sleep duration Duration Internalizing
## 4 Self-reported sleep duration Duration Internalizing
## 5 Self-reported sleep duration Duration Internalizing
## 6 Self-reported sleep duration Duration     Psychosis
##   psychiatric_trait_specific         beta      beta_se       beta_p
## 1                 Depression -0.003790686 0.0008569348 9.709624e-06
## 2                 Depression -0.003997578 0.0043827653 3.669151e-01
## 3                 Depression -0.002878508 0.0020044580 1.582228e-01
## 4                 Depression -0.003027430 0.0013214918 2.196815e-02
## 5                 Depression -0.003700711 0.0013220044 5.121062e-03
## 6              Schizophrenia  0.006757675 0.0021850579 1.983609e-03
##                       model sample n_SNPs        OR     OR_lo     OR_hi
## 1        Maximum likelihood     MR     44 0.9962165 0.9945447 0.9978911
## 2                  MR Egger     MR     44 0.9960104 0.9874911 1.0046032
## 3             Weighted mode     MR     44 0.9971256 0.9932159 1.0010508
## 4           Weighted median     MR     44 0.9969771 0.9943982 0.9995628
## 5 Inverse variance weighted     MR     44 0.9963061 0.9937279 0.9988910
## 6        Maximum likelihood     MR     44 1.0067806 1.0024780 1.0111016
##                                 sample_psych
## 1    Self-reported sleep duration_Depression
## 2    Self-reported sleep duration_Depression
## 3    Self-reported sleep duration_Depression
## 4    Self-reported sleep duration_Depression
## 5    Self-reported sleep duration_Depression
## 6 Self-reported sleep duration_Schizophrenia
dat<- list()
MR_plt<- list()
plt<- list()
for (s in unique(MR$sleep)) {
  dat[[s]]<- MR %>% filter(sleep==s)%>%
    mutate(CI=1.96*beta_se)
  for (p in unique(MR$psychiatric)) {
    dat[[paste0(s,p)]]<- dat[[s]] %>% filter(psychiatric==p)
    plt[[p]]<- ggplot(dat[[paste0(s,p)]], aes(shape=sleep_trait_specific, colour=model, x=OR, y=model, xmin = OR, xmax=OR)) + 
   geom_point(size=8,position=position_dodge(width=0.5)) + 
   geom_errorbarh(aes(xmin = OR_lo, xmax = OR_hi), height=1.2, position=position_dodge(width=0.5))+
  facet_wrap(~psychiatric_trait_specific,scales = "free_x") +
      geom_vline(xintercept = 1, linetype="dashed")+
  xlab("Coefficient") +
  ylab("Beta")+
  ggtitle(paste(s, "Predicting", p, "MR", sep=" "))+
  scale_color_manual(values = model_colors)+
    theme(legend.title = element_blank(),
          legend.position="bottom",
        panel.border = element_blank(),
      panel.grid.major = element_blank(),
      panel.grid.minor = element_blank(),
    axis.text = element_text(size = 10),
    plot.title = element_text(size=17))
  plt[[p]]<- plt[[p]]+guides(colour = "none")
   MR_plt[[paste0(s,p)]]<- plt[[p]]
  }
}

### dur
dur<- ggarrange(MR_plt[[1]], MR_plt[[4]], MR_plt[[3]], MR_plt[[2]], nrow=2, ncol=2, common.legend = F)
## Warning: `position_dodge()` requires non-overlapping x intervals
## `position_dodge()` requires non-overlapping x intervals
## `position_dodge()` requires non-overlapping x intervals
## `position_dodge()` requires non-overlapping x intervals
## `position_dodge()` requires non-overlapping x intervals
## `position_dodge()` requires non-overlapping x intervals
## `position_dodge()` requires non-overlapping x intervals
ggsave(plot = dur,filename = "/Users/claire/Desktop/dissertation/figs/Duration_MR.png", width = 20, height = 12, units = "in")

### alert
alert<- ggarrange(MR_plt[[5]], MR_plt[[8]], MR_plt[[7]], MR_plt[[6]], nrow=2, ncol=2, common.legend = F)
## Warning: `position_dodge()` requires non-overlapping x intervals
## `position_dodge()` requires non-overlapping x intervals
## `position_dodge()` requires non-overlapping x intervals
## `position_dodge()` requires non-overlapping x intervals
## `position_dodge()` requires non-overlapping x intervals
## `position_dodge()` requires non-overlapping x intervals
## `position_dodge()` requires non-overlapping x intervals
ggsave(plot = alert,filename = "/Users/claire/Desktop/dissertation/figs/Alertness_MR.png", width = 20, height = 12, units = "in")

### chrono
chrono<- ggarrange(MR_plt[[9]], MR_plt[[12]], MR_plt[[11]], MR_plt[[10]], nrow=2, ncol=2, common.legend = F)
## Warning: `position_dodge()` requires non-overlapping x intervals
## `position_dodge()` requires non-overlapping x intervals
## `position_dodge()` requires non-overlapping x intervals
## `position_dodge()` requires non-overlapping x intervals
## `position_dodge()` requires non-overlapping x intervals
## `position_dodge()` requires non-overlapping x intervals
## `position_dodge()` requires non-overlapping x intervals
ggsave(plot = chrono,filename = "/Users/claire/Desktop/dissertation/figs/Chronotype_MR.png", width = 20, height = 12, units = "in")

### insom
insom<- ggarrange(MR_plt[[13]], MR_plt[[16]], MR_plt[[15]], MR_plt[[14]], nrow=2, ncol=2, common.legend = F)
## Warning: `position_dodge()` requires non-overlapping x intervals
## `position_dodge()` requires non-overlapping x intervals
## `position_dodge()` requires non-overlapping x intervals
## `position_dodge()` requires non-overlapping x intervals
## `position_dodge()` requires non-overlapping x intervals
## `position_dodge()` requires non-overlapping x intervals
## `position_dodge()` requires non-overlapping x intervals
ggsave(plot = insom,filename = "/Users/claire/Desktop/dissertation/figs/Insomnia_MR.png", width = 20, height = 12, units = "in")

### effic
effic<- ggarrange(MR_plt[[17]], MR_plt[[20]], MR_plt[[19]], MR_plt[[18]], nrow=2, ncol=2, common.legend = F)
## Warning: `position_dodge()` requires non-overlapping x intervals
## `position_dodge()` requires non-overlapping x intervals
## `position_dodge()` requires non-overlapping x intervals
## `position_dodge()` requires non-overlapping x intervals
## `position_dodge()` requires non-overlapping x intervals
## `position_dodge()` requires non-overlapping x intervals
## `position_dodge()` requires non-overlapping x intervals
ggsave(plot = effic,filename = "/Users/claire/Desktop/dissertation/figs/Efficiency_MR.png", width = 20, height = 12, units = "in")

co twin and MR combined plot

issues with this are the categories aren’t super neat.

technically the MR for satisfaction is napping, and sleep duration is average habitual sleep duration for MR

had to add specific “sample_psych” on X axis because otherwise it was pooling results if more than one significant finding in the same sleep-psych domain

### only sig

MR$beta_sig<- ifelse(MR$beta_p<0.05, MR$beta, NA)

### had already gotten rid of those with huge ORs above ^^


within$beta_sig<- ifelse(within$beta_p<0.05, within$beta, NA)

results_sig<- rbind(MR, within)

table(results_sig$sleep)
## 
##    Alertness   Chronotype     Duration   Efficiency     Insomnia Satisfaction 
##          111          108          146          136           41            6 
##  Variability 
##           16
unique(results_sig$sleep)
## [1] "Duration"     "Alertness"    "Chronotype"   "Insomnia"     "Efficiency"  
## [6] "Satisfaction" "Variability"
combo_plt<- list()
for (s in unique(results_sig$sleep)) {
  dat<- results_sig %>% filter(sleep==s) %>%
    filter(model!="Phenotypic") %>%
    filter(model!="Between") 
  plt<- ggplot(dat, aes(fill=model, y=beta_sig, x=sample_psych)) + 
    geom_bar(position="dodge", stat="identity")+
    facet_wrap(~psychiatric, ncol = 4, scales = "free")+
        scale_x_discrete(labels = function(x) str_wrap(x, width = 5))+
    xlab(" ") +
    ylab("Beta")+
   # geom_errorbarh(aes(x = CI), height=.4)+
    ggtitle(paste0(s))+
    geom_hline(yintercept = 0, linetype="dashed", linewidth=1)+
    scale_fill_manual(values = model_colors)+
    theme(legend.title = element_blank(),
      panel.border = element_blank(),
      panel.grid.major = element_blank(),
      panel.grid.minor = element_blank(),
 #     axis.text.x = element_text(size=10, angle = 90, vjust = 0.5, hjust=1),
       axis.text.x = element_blank(),
         plot.title = element_text(size=20))
  combo_plt[[s]]<- plt
  }


combo<- ggarrange(combo_plt[[3]], combo_plt[[2]],
                  combo_plt[[5]],  combo_plt[[1]], combo_plt[[4]],
               combo_plt[[6]], combo_plt[[7]], nrow=7, ncol=1, common.legend = T)
## Warning: Removed 88 rows containing missing values (`geom_bar()`).
## Removed 88 rows containing missing values (`geom_bar()`).
## Warning: Removed 87 rows containing missing values (`geom_bar()`).
## Warning: Removed 119 rows containing missing values (`geom_bar()`).
## Warning: Removed 128 rows containing missing values (`geom_bar()`).
## Warning: Removed 21 rows containing missing values (`geom_bar()`).
## Warning: Removed 6 rows containing missing values (`geom_bar()`).
## Warning: Removed 16 rows containing missing values (`geom_bar()`).
ggsave(plot = combo,filename = "/Users/claire/Desktop/dissertation/figs/MR_CTC.PNG", width = 11, height = 20, units = "in")

plotting specific findings for defense

### combo only sig
### only sig

MR$beta_sig<- ifelse(MR$beta_p<ivw_p, MR$beta, NA)

### had already gotten rid of those with huge ORs above ^^


within$beta_sig<- ifelse(within$beta_p<ctc_p, within$beta, NA)

results_sig<- rbind(MR, within)


dat<- results_sig %>% filter(model!="Phenotypic") %>%
    filter(model!="Between") %>%
    filter(!is.na(beta_sig)) %>%
  filter(OR<10)


chrono<- dat %>% filter(sleep=="Chronotype")
  
c<- ggplot(chrono, aes(fill=model, y=beta_sig, x=sample_psych)) + 
    geom_bar(position="dodge", stat="identity", width=.5)+
    facet_wrap(~psychiatric, ncol = 4, scales = "free")+
    xlab(" ") +
    ylab("Beta")+
    ggtitle("Chronotype")+
    geom_hline(yintercept = 0, linetype="dashed", linewidth=1)+
    scale_x_discrete(labels = function(x) str_wrap(x, width = 5))+
    scale_fill_manual(values = model_colors)+
    theme(legend.title = element_blank(),
      panel.border = element_blank(),
      panel.grid.major = element_blank(),
      panel.grid.minor = element_blank(),
      axis.text.x = element_text(size=10, angle = 90, vjust = 0.5, hjust=1),
          plot.title = element_text(size=20))

alert<- dat %>% filter(sleep=="Alertness")
  
a<- ggplot(alert, aes(fill=model, y=beta_sig, x=sample_psych)) + 
    geom_bar(position="dodge", stat="identity", width=.5)+
    facet_wrap(~psychiatric, ncol = 4, scales = "free")+
      scale_x_discrete(labels = function(x) str_wrap(x, width = 2))+
    xlab(" ") +
    ylab("Beta")+
    ggtitle("Alertness")+
    geom_hline(yintercept = 0, linetype="dashed", linewidth=1)+
    scale_fill_manual(values = model_colors)+
    theme(legend.title = element_blank(),
      panel.border = element_blank(),
      panel.grid.major = element_blank(),
      panel.grid.minor = element_blank(),
      axis.text.x = element_text(size=10, angle = 90, vjust = 0.5, hjust=1),
          plot.title = element_text(size=20))


dur<- dat %>% filter(sleep=="Duration")
  
d<- ggplot(dur, aes(fill=model, y=beta_sig, x=sample_psych)) + 
    geom_bar(position="dodge", stat="identity", width=.5)+
    facet_wrap(~psychiatric, ncol = 4, scales = "free")+
      scale_x_discrete(labels = function(x) str_wrap(x, width = 5))+
    xlab(" ") +
    ylab("Beta")+
    ggtitle("Sleep Duration")+
    geom_hline(yintercept = 0, linetype="dashed", linewidth=1)+
    scale_fill_manual(values = model_colors)+
    theme(legend.title = element_blank(),
      panel.border = element_blank(),
      panel.grid.major = element_blank(),
      panel.grid.minor = element_blank(),
      axis.text.x = element_text(size=10, angle = 90, vjust = 0.5, hjust=1),
          plot.title = element_text(size=20))



effic<- dat %>% filter(sleep=="Efficiency")
  
e<- ggplot(effic, aes(fill=model, y=beta_sig, x=sample_psych)) + 
    geom_bar(position="dodge", stat="identity")+
    facet_wrap(~psychiatric, ncol = 4, scales = "free")+
      scale_x_discrete(labels = function(x) str_wrap(x, width = 5))+
    xlab(" ") +
    ylab("Beta")+
    ggtitle("Efficiency")+
    geom_hline(yintercept = 0, linetype="dashed", linewidth=1)+
    scale_fill_manual(values = model_colors)+
    theme(legend.title = element_blank(),
      panel.border = element_blank(),
      panel.grid.major = element_blank(),
      panel.grid.minor = element_blank(),
      axis.text.x = element_text(size=10, angle = 90, vjust = 0.5, hjust=1),
          plot.title = element_text(size=20))



insom<- dat %>% filter(sleep=="Insomnia")

i<- ggplot(insom, aes(fill=model, y=beta_sig, x=sample_psych)) + 
    geom_bar(position="dodge", stat="identity")+
    facet_wrap(~psychiatric, ncol = 4, scales = "free")+
      scale_x_discrete(labels = function(x) str_wrap(x, width = 5))+
    xlab(" ") +
    ylab("Beta")+
    ggtitle("Insomnia")+
    geom_hline(yintercept = 0, linetype="dashed", linewidth=1)+
    scale_fill_manual(values = model_colors)+
    theme(legend.title = element_blank(),
      panel.border = element_blank(),
      panel.grid.major = element_blank(),
      panel.grid.minor = element_blank(),
      axis.text.x = element_text(size=10, angle = 90, vjust = 0.5, hjust=1),
          plot.title = element_text(size=20))




combo<- ggarrange(c, a, e, d, i, nrow = 5, common.legend = T)

ggsave(plot = combo,filename = "/Users/claire/Desktop/dissertation/figs/defense_sig_CTC_MR.PNG", width = 10, height = 17, units = "in")



### specific assoc.


effic<- effic %>% filter(psychiatric=="Externalizing")

ggplot(effic, aes(fill=model, y=beta_sig, x=sample_psych)) + 
    geom_bar(position="dodge", stat="identity")+
    xlab(" ") +
    ylab("Beta")+
    ggtitle("Efficiency")+
    geom_hline(yintercept = 0, linetype="dashed", linewidth=1)+
    scale_fill_manual(values = model_colors)+
        scale_x_discrete(labels = function(x) str_wrap(x, width = 5))+
    theme(legend.title = element_blank(),
      panel.border = element_blank(),
      panel.grid.major = element_blank(),
      panel.grid.minor = element_blank(),
      axis.text.x = element_text(size=10, angle = 90, vjust = 0.5, hjust=1),
          plot.title = element_text(size=20))

dur<- dur %>% filter(psychiatric=="Psychosis")

ggplot(dur, aes(fill=model, y=beta_sig, x=sample_psych)) + 
    geom_bar(position="dodge", stat="identity")+
    xlab(" ") +
    ylab("Beta")+
    ggtitle("Duration predicting psychosis")+
    geom_hline(yintercept = 0, linetype="dashed", linewidth=1)+
        scale_x_discrete(labels = function(x) str_wrap(x, width = 5))+
    scale_fill_manual(values = model_colors)+
    theme(legend.title = element_blank(),
      panel.border = element_blank(),
      panel.grid.major = element_blank(),
      panel.grid.minor = element_blank(),
      axis.text.x = element_text(size=10, angle = 90, vjust = 0.5, hjust=1),
          plot.title = element_text(size=20))

insom<- insom %>% filter(psychiatric=="Internalizing")

ggplot(insom, aes(fill=model, y=beta_sig, x=sample_psych)) + 
    geom_bar(position="dodge", stat="identity")+
    xlab(" ") +
    ylab("Beta")+
    ggtitle("Insomnia predicting Internalizing")+
    geom_hline(yintercept = 0, linetype="dashed", linewidth=1)+
        scale_x_discrete(labels = function(x) str_wrap(x, width = 5))+
    scale_fill_manual(values = model_colors)+
    theme(legend.title = element_blank(),
      panel.border = element_blank(),
      panel.grid.major = element_blank(),
      panel.grid.minor = element_blank(),
      axis.text.x = element_text(size=10, angle = 90, vjust = 0.5, hjust=1),
          plot.title = element_text(size=20))