library(tidyverse)
library(openintro)
library(ISLR)
library(ISLR2)
library(boot)
library(knitr)
set.seed(4143)

Question 3

We now review k-fold cross validation.

3(a)

Explain how k-fold cross-validation is implemented.

k-fold cross-validation (CV) divides the data set into k groups of observations, then performs leave-one-out cross-validation according to groups, rather than individual observations. This means that one kth of the data set is reserved to be used as the validation set, while a model is trained on the remaining k - 1 groups. Then, the mean squared error is computed on the validation set. This process is repeated iteratively until each group has been reserved and used as a validation set and a corresponding MSE computed. Then, the average of the k MSEs is computed to arrive at the cross-validation estimate.

3(b)

What are the advantages and disadvantages of k-fold cross-validation relative to:

i.

The validation set approach?

The validation set approach is simple to execute, but has high MSE variability, so it is an unstable method of validation. k-fold CV is much more stable because the model is able to train on the entire data set, reducing the bias of the model.

ii.

LOOCV?

Leave-One-Out Cross-Validation (LOOCV) is the maximum- k example of k-fold CV. As such, it has minimal bias as each iteration trains on n-1 observations, or approximately the entire data set. However, the k-fold CV test error estimate actually has lower variance than the LOOCV test error estimate, due to resulting from the mean of less-overlapping (less-correlated) models.

Problem 5

In Chapter 4, we used logistic regression to predict the probability of default using income and balance on the Default data set. We will now estimate the test error of this logistic regression model using the validation set approach. Do not forget to set a random seed before beginning your analysis.

5(a)

Fit a logistic regression model that uses income and balance to predict default.

GLM.default <- glm(default ~ income + balance, data = Default, family = binomial)

summary(GLM.default)
## 
## Call:
## glm(formula = default ~ income + balance, family = binomial, 
##     data = Default)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4725  -0.1444  -0.0574  -0.0211   3.7245  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -1.154e+01  4.348e-01 -26.545  < 2e-16 ***
## income       2.081e-05  4.985e-06   4.174 2.99e-05 ***
## balance      5.647e-03  2.274e-04  24.836  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 2920.6  on 9999  degrees of freedom
## Residual deviance: 1579.0  on 9997  degrees of freedom
## AIC: 1585
## 
## Number of Fisher Scoring iterations: 8

5(b)

Using the validation set approach, estimate the test error of this model. In order to do this, you must perform the following steps:

i.

Split the sample set into a training set and a validation set.

train <- sample(10000, 5000)

ii.

Fit a multiple logistic regression model using only the training observations.

GLM.def.train <- glm(default ~ income + balance,
                     data = Default, family = binomial, subset = train)
summary(GLM.def.train)
## 
## Call:
## glm(formula = default ~ income + balance, family = binomial, 
##     data = Default, subset = train)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.5058  -0.1426  -0.0581  -0.0201   3.7308  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -1.172e+01  6.156e-01 -19.036  < 2e-16 ***
## income       2.536e-05  7.137e-06   3.553 0.000381 ***
## balance      5.662e-03  3.153e-04  17.961  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1510.51  on 4999  degrees of freedom
## Residual deviance:  796.78  on 4997  degrees of freedom
## AIC: 802.78
## 
## Number of Fisher Scoring iterations: 8

iii.

Obtain a prediction of default status for each individual in the validation set by computing the posterior probability of default for that individual, and classifying the individual to the default category if the posterior probability is greater than 0.5.

predi <- predict(GLM.def.train, Default, type = "response")[-train]

predictions <- ifelse(predi < 0.5, "No", "Yes")

iv.

Compute the validation set error, which is the fraction of the observations in the validation set that are misclassified.

table(predictions, Default$default[-train])
##            
## predictions   No  Yes
##         No  4824  115
##         Yes   17   44
mean(predictions != Default$default[-train])
## [1] 0.0264

Validation set error, 50% train and 50% test: 2.64%

5(c)

Repeat the process in (b) three times, using three different splits of the observations into a training set and a validation set. Comment on the results obtained.

# Train on 70% of data
train1 <- sample(10000, 7000)

GLM.def.train1 <- glm(default ~ income + balance,
                      data = Default, family = "binomial", subset = train1)
summary(GLM.def.train1)
## 
## Call:
## glm(formula = default ~ income + balance, family = "binomial", 
##     data = Default, subset = train1)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.2059  -0.1465  -0.0585  -0.0213   3.7259  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -1.159e+01  5.215e-01  -22.23  < 2e-16 ***
## income       2.225e-05  5.982e-06    3.72 0.000199 ***
## balance      5.651e-03  2.708e-04   20.86  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 2057.2  on 6999  degrees of freedom
## Residual deviance: 1110.1  on 6997  degrees of freedom
## AIC: 1116.1
## 
## Number of Fisher Scoring iterations: 8
pred1 <- predict(GLM.def.train1, Default, type = "response")[-train1]
result1 <- ifelse(pred1 < 0.5, "No", "Yes")

table(result1, Default$default[-train1])
##        
## result1   No  Yes
##     No  2891   66
##     Yes   11   32
mean(result1 != Default$default[-train1])
## [1] 0.02566667

Validation set error, 70% train and 30% test: 2.566667%

# Train on 80% of data
train2 <- sample(10000, 8000)

GLM.def.train2 <- glm(default ~ income + balance,
                      data = Default, family = "binomial", subset = train2)
summary(GLM.def.train2)
## 
## Call:
## glm(formula = default ~ income + balance, family = "binomial", 
##     data = Default, subset = train2)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4199  -0.1506  -0.0613  -0.0234   3.6809  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -1.124e+01  4.716e-01 -23.838  < 2e-16 ***
## income       2.016e-05  5.511e-06   3.658 0.000254 ***
## balance      5.479e-03  2.452e-04  22.340  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 2354.0  on 7999  degrees of freedom
## Residual deviance: 1304.6  on 7997  degrees of freedom
## AIC: 1310.6
## 
## Number of Fisher Scoring iterations: 8
pred2 <- predict(GLM.def.train2, Default, type = "response")[-train2]
result2 <- ifelse(pred2 < 0.5, "No", "Yes")

table(result2, Default$default[-train2])
##        
## result2   No  Yes
##     No  1932   41
##     Yes    4   23
mean(result2 != Default$default[-train2])
## [1] 0.0225

Validation set error, 80% train and 20% test: 2.25%

# Train on 90% of data
train3 <- sample(10000, 9000)

GLM.def.train3 <- glm(default ~ income + balance,
                      data = Default, family = "binomial", subset = train3)
summary(GLM.def.train3)
## 
## Call:
## glm(formula = default ~ income + balance, family = "binomial", 
##     data = Default, subset = train3)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4638  -0.1470  -0.0588  -0.0217   3.7091  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -1.143e+01  4.512e-01 -25.339  < 2e-16 ***
## income       2.013e-05  5.253e-06   3.833 0.000127 ***
## balance      5.607e-03  2.359e-04  23.770  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 2657.5  on 8999  degrees of freedom
## Residual deviance: 1435.5  on 8997  degrees of freedom
## AIC: 1441.5
## 
## Number of Fisher Scoring iterations: 8
pred3 <- predict(GLM.def.train3, Default, type = "response")[-train3]
result3 <- ifelse(pred3 < 0.5, "No", "Yes")

table(result3, Default$default[-train3])
##        
## result3  No Yes
##     No  968  23
##     Yes   3   6
mean(result3 != Default$default[-train3])
## [1] 0.026

Validation set error, 90% train and 10% test: 2.6%

5(d)

Now consider a logistic regression model that predicts the probability of default using income, balance, and a dummy variable for student. Estimate the test error for this model using the validation set approach. Comment on whether or not including a dummy variable for student leads to a reduction in the test error rate.

#New logistic regression model with `student`
GLM.def.student <- glm(default ~ income + balance + as.numeric(student),
                       data = Default, family = "binomial")
summary(GLM.def.student)
## 
## Call:
## glm(formula = default ~ income + balance + as.numeric(student), 
##     family = "binomial", data = Default)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4691  -0.1418  -0.0557  -0.0203   3.7383  
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)         -1.022e+01  6.360e-01 -16.072  < 2e-16 ***
## income               3.033e-06  8.203e-06   0.370  0.71152    
## balance              5.737e-03  2.319e-04  24.738  < 2e-16 ***
## as.numeric(student) -6.468e-01  2.363e-01  -2.738  0.00619 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 2920.6  on 9999  degrees of freedom
## Residual deviance: 1571.5  on 9996  degrees of freedom
## AIC: 1579.5
## 
## Number of Fisher Scoring iterations: 8
GLM.def.Strain <- glm(default ~ income + balance + as.numeric(student),
                      data = Default, family = "binomial", subset = train1)
summary(GLM.def.Strain)
## 
## Call:
## glm(formula = default ~ income + balance + as.numeric(student), 
##     family = "binomial", data = Default, subset = train1)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.1427  -0.1451  -0.0572  -0.0209   3.6895  
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)         -1.052e+01  7.570e-01 -13.896   <2e-16 ***
## income               7.618e-06  9.762e-06   0.780    0.435    
## balance              5.733e-03  2.768e-04  20.715   <2e-16 ***
## as.numeric(student) -5.334e-01  2.802e-01  -1.903    0.057 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 2057.2  on 6999  degrees of freedom
## Residual deviance: 1106.5  on 6996  degrees of freedom
## AIC: 1114.5
## 
## Number of Fisher Scoring iterations: 8
pred1 <- predict(GLM.def.Strain, Default, type = "response")[-train1]
result1 <- ifelse(pred1 < 0.5, "No", "Yes")

table(result1, Default$default[-train1])
##        
## result1   No  Yes
##     No  2887   67
##     Yes   15   31
mean(result1 != Default$default[-train1])
## [1] 0.02733333

Validation set error, 70% train and 30% test: 2.733333%. The model including a dummy variable for student does not show a reduction in test error compared to previous models that did not include this variable.

Problem 6

We continue to consider the use of a logistic regression model to predict the probability of default using income and balance on the Default data set. In particular, we will now compute estimates for the standard errors of the income and balance logistic regression coefficients in two different ways: (1) using the bootstrap, and (2) using the standard formula for computing the standard errors in the glm() function. Do not forget to set a random seed before beginning your analysis.

6(a)

Using the summary() and glm() functions, determine the estimated standard errors for the coefficients associated with income and balance in a multiple logistic regression model that uses both predictors.

GLM.default <- glm(default ~ income + balance,
                   data = Default, family = "binomial")

summary(GLM.default)$coef
##                  Estimate   Std. Error    z value      Pr(>|z|)
## (Intercept) -1.154047e+01 4.347564e-01 -26.544680 2.958355e-155
## income       2.080898e-05 4.985167e-06   4.174178  2.990638e-05
## balance      5.647103e-03 2.273731e-04  24.836280 3.638120e-136

Standard error for income coefficient: 4.985e-06

Standard error for balance coefficient: 2.274e-04

6(b)

Write a function, boot.fn(), that takes as input the Default data set as well as an index of the observations, and that outputs the coefficient estimates for income and balance in the multiple logistic regression model.

boot.fn <- function(data, index){
  return(coef(glm(default ~ income + balance, data = Default, family = "binomial", subset = index)))
}

6(c)

Use the boot() function together with your boot.fn() function to estimate the standard errors of the logistic regression coefficients for income and balance.

boot.fn(Default, sample(10000, 10000, replace = TRUE))
##   (Intercept)        income       balance 
## -1.121457e+01  2.351554e-05  5.422823e-03
boot(Default, boot.fn, 1000)
## 
## ORDINARY NONPARAMETRIC BOOTSTRAP
## 
## 
## Call:
## boot(data = Default, statistic = boot.fn, R = 1000)
## 
## 
## Bootstrap Statistics :
##          original        bias     std. error
## t1* -1.154047e+01 -2.518061e-02 4.263577e-01
## t2*  2.080898e-05  7.748263e-08 4.683468e-06
## t3*  5.647103e-03  1.195997e-05 2.289205e-04

6(d)

Comment on the estimated standard errors obtained using the glm() function and using your bootstrap function.

Standard error for income glm() coefficient: 4.985e-06

Standard error for income boot() coefficient: 4.877957e-06

Standard error for balance glm() coefficient: 2.274e-04

Standard error for balance boot() coefficient: 2.282513e-04

The corresponding values appear very close.

Problem 9

We will now consider the Boston housing data set, from the ISLR2 library.

set.seed(4341)

9(a)

Based on this data set, provide an estimate for the population mean of medv. Call this estimate ˆμ.

mu.hat <- mean(Boston$medv)

ˆμ = 22.533

9(b)

Provide an estimate of the standard error of ˆμ. Interpret this result.

Hint: We can compute the standard error of the sample mean by dividing the sample standard deviation by the square root of the number of observations.

stdE <- function(data, index){
  X <- data$medv[index]
  return((sd(X))/sqrt(506))
}
stdE(Boston, 1:506)
## [1] 0.4088611

The estimated standard error of ˆμ is 0.4088611, which means that the average median value of owner-occupied homes in this data set is $22,532.81 plus-or-minus $408.86.

9(c)

Now estimate the standard error of ˆμ using the bootstrap. How does this compare to your answer from (b)?

set.seed(4341)
stdE(Boston, sample(506, 506, replace = TRUE))
## [1] 0.3802379
SE <- boot(Boston, stdE, R=1000)
SE
## 
## ORDINARY NONPARAMETRIC BOOTSTRAP
## 
## 
## Call:
## boot(data = Boston, statistic = stdE, R = 1000)
## 
## 
## Bootstrap Statistics :
##      original       bias    std. error
## t1* 0.4088611 -0.001462205  0.01649827

The estimated standard error of ˆμ using bootstrap is exactly the same as the standard error given by the formula standard deviation/√(n), which is 0.4088611.

9(d)

Based on your bootstrap estimate from (c), provide a 95% confidence interval for the mean of medv. Compare it to the results obtained using t.test(Boston$medv).

Hint: You can approximate a 95% confidence interval using the formula [ˆμ − 2SE(ˆμ), ˆμ + 2SE(ˆμ)].

CI.boot.low <- mu.hat - 2*SE$t0
CI.boot.high <- mu.hat + 2*SE$t0

ttest <- t.test(Boston$medv)

The 95% confidence interval for the mean of medv based on bootstrapping is [21.72, 23.35]. The confidence interval obtained from the t-test is [21.73, 23.34], which is 0.01 units narrower on each side than the bootstrap confidence interval.

9(e)

Based on this data set, provide an estimate, ˆμmed, for the median value of medv in the population.

mu.hat.med <- median(Boston$medv)
mu.hat.med
## [1] 21.2

The estimated population median of medv using bootstrapping is 21.2 (or $21,200).

9(f)

We now would like to estimate the standard error of ˆμmed. Unfortunately, there is no simple formula for computing the standard error of the median. Instead, estimate the standard error of the median using the bootstrap. Comment on your findings.

med <- function(data, index){
  X <- data$medv[index]
  return(median(X))
}
med(Boston, 1:506)
## [1] 21.2
set.seed(4341)
med(Boston, sample(506, 506, replace = TRUE))
## [1] 21.4
boot(Boston, med, R=1000)
## 
## ORDINARY NONPARAMETRIC BOOTSTRAP
## 
## 
## Call:
## boot(data = Boston, statistic = med, R = 1000)
## 
## 
## Bootstrap Statistics :
##     original   bias    std. error
## t1*     21.2 -0.01495   0.3740841

The standard error of ˆμmed (mu.hat.med) is 0.3740841.

9(g)

Based on this data set, provide an estimate for the tenth percentile of medv in Boston census tracts. Call this quantity ˆμ0.1. (You can use the quantile() function.)

mu.hat.01 <- quantile(Boston$medv, probs = 0.1)
mu.hat.01
##   10% 
## 12.75

ˆμ0.1 = 12.8

9(h)

Use the bootstrap to estimate the standard error of ˆμ0.1. Comment on your findings.

#bootstrapped
quantile.boot <- function(data, index){
  X <- data$medv[index]
  return(quantile(X, probs = 0.1))
}
set.seed(4143)
quantile.boot(Boston, sample(506, 506, replace = TRUE))
##  10% 
## 12.6
boot(Boston, quantile.boot, R=1000)
## 
## ORDINARY NONPARAMETRIC BOOTSTRAP
## 
## 
## Call:
## boot(data = Boston, statistic = quantile.boot, R = 1000)
## 
## 
## Bootstrap Statistics :
##     original  bias    std. error
## t1*    12.75 -0.0118   0.4993948

The standard error of ˆμ0.1 is 0.4993948.