##

Asignación de variables

x <- 2
y <- 3

Impresión de resultados

x
## [1] 2
y
## [1] 3

Operaciones aritméticas

suma <- x+y
suma
## [1] 5
division <- x/y
division
## [1] 0.6666667

Funciones matemáticas

xraiz_cuadrada <- sqrt(x)
xraiz_cuadrada
## [1] 1.414214
z <- -3

absoluto <- abs(z)
absoluto
## [1] 3
signo <- sign(z)
signo
## [1] -1
signo2 <- sign(x)
signo2
## [1] 1
roundup <- ceiling (division)
roundup
## [1] 1
rounddown <- floor (division)
rounddown
## [1] 0

Vectores

a <- c(1,2,3,4,5)

longitud <- length(a)
longitud
## [1] 5
promedio<-mean(a)
promedio
## [1] 3
resumen<-summary(a)
resumen
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       1       2       3       3       4       5
orden_ascendente <- sort(a, decreasing = FALSE)
orden_ascendente
## [1] 1 2 3 4 5
orden_desc <- sort(a, decreasing = TRUE)
orden_desc
## [1] 5 4 3 2 1
#sort

b<- c(6,7,8,9,10)

suma_vector <- a+b
suma_vector
## [1]  7  9 11 13 15

Gráficas

plot(a,b, type="l", main= "Vector B por vector A", xlab= "Vector A", ylab= "Vector B")

plot
## function (x, y, ...) 
## UseMethod("plot")
## <bytecode: 0x7fb763ec9a10>
## <environment: namespace:base>

Conclusion

En este trabajo se pueden visualizar los cambios básicos de R para asignar variables, imprimir resultados, realizar operaciones aritméticas y funcionces matemáticas, operar vectores y generar gráficas.

LS0tCnRpdGxlOiAiQ29tYW5kb3MgQmFzaWNvcyIKYXV0aG9yOiAiSm9zdWUgQW5kb25pZV9BMDE3MjE1MjMiCmRhdGU6ICIyMS8zLzIwMjMiCm91dHB1dDogCiAgaHRtbF9kb2N1bWVudDoKICAgIHRvYzogdHJ1ZQogICAgdG9jX2Zsb2F0OiB0cnVlCiAgICBjb2RlX2Rvd25sb2FkOiB0cnVlCi0tLQohW10oL1VzZXJzL2pvc3VlYW5kb25pZS9Eb3dubG9hZHMvZG93bmxvYWQgY29waWEucG5nKQojIyAKCiMjIyBBc2lnbmFjacOzbiBkZSB2YXJpYWJsZXMKYGBge3J9CnggPC0gMgp5IDwtIDMKYGBgCgojIyMgSW1wcmVzacOzbiBkZSByZXN1bHRhZG9zCmBgYHtyfQp4CnkKYGBgCgojIyMgT3BlcmFjaW9uZXMgYXJpdG3DqXRpY2FzCmBgYHtyfQpzdW1hIDwtIHgreQpzdW1hCgpkaXZpc2lvbiA8LSB4L3kKZGl2aXNpb24KYGBgCgojIyMgRnVuY2lvbmVzIG1hdGVtw6F0aWNhcwpgYGB7cn0KeHJhaXpfY3VhZHJhZGEgPC0gc3FydCh4KQp4cmFpel9jdWFkcmFkYQoKeiA8LSAtMwoKYWJzb2x1dG8gPC0gYWJzKHopCmFic29sdXRvCgpzaWdubyA8LSBzaWduKHopCnNpZ25vCgpzaWdubzIgPC0gc2lnbih4KQpzaWdubzIKCnJvdW5kdXAgPC0gY2VpbGluZyAoZGl2aXNpb24pCnJvdW5kdXAKCnJvdW5kZG93biA8LSBmbG9vciAoZGl2aXNpb24pCnJvdW5kZG93bgpgYGAKCiMjIyBWZWN0b3JlcwpgYGB7cn0KYSA8LSBjKDEsMiwzLDQsNSkKCmxvbmdpdHVkIDwtIGxlbmd0aChhKQpsb25naXR1ZAoKcHJvbWVkaW88LW1lYW4oYSkKcHJvbWVkaW8KCnJlc3VtZW48LXN1bW1hcnkoYSkKcmVzdW1lbgoKb3JkZW5fYXNjZW5kZW50ZSA8LSBzb3J0KGEsIGRlY3JlYXNpbmcgPSBGQUxTRSkKb3JkZW5fYXNjZW5kZW50ZQoKb3JkZW5fZGVzYyA8LSBzb3J0KGEsIGRlY3JlYXNpbmcgPSBUUlVFKQpvcmRlbl9kZXNjCgojc29ydAoKYjwtIGMoNiw3LDgsOSwxMCkKCnN1bWFfdmVjdG9yIDwtIGErYgpzdW1hX3ZlY3RvcgpgYGAKCiMjIyBHcsOhZmljYXMKYGBge3J9CnBsb3QoYSxiLCB0eXBlPSJsIiwgbWFpbj0gIlZlY3RvciBCIHBvciB2ZWN0b3IgQSIsIHhsYWI9ICJWZWN0b3IgQSIsIHlsYWI9ICJWZWN0b3IgQiIpCnBsb3QKYGBgCgojIyMgQ29uY2x1c2lvbgpFbiBlc3RlIHRyYWJham8gc2UgcHVlZGVuIHZpc3VhbGl6YXIgbG9zIGNhbWJpb3MgYsOhc2ljb3MgZGUgUiBwYXJhIGFzaWduYXIgdmFyaWFibGVzLCBpbXByaW1pciByZXN1bHRhZG9zLCByZWFsaXphciBvcGVyYWNpb25lcyBhcml0bcOpdGljYXMgeSBmdW5jaW9uY2VzIG1hdGVtw6F0aWNhcywgb3BlcmFyIHZlY3RvcmVzIHkgZ2VuZXJhciBncsOhZmljYXMuCg==