options(repos = list(CRAN="http://cran.rstudio.com/"))
install.packages("dplyr")
## 
## The downloaded binary packages are in
##  /var/folders/0w/zhr00cs94db7pjb4_zldn_zw0000gn/T//Rtmp9YUzo3/downloaded_packages
install.packages('riem')
## 
## The downloaded binary packages are in
##  /var/folders/0w/zhr00cs94db7pjb4_zldn_zw0000gn/T//Rtmp9YUzo3/downloaded_packages
library(riem)
install.packages('tidyverse')
## 
## The downloaded binary packages are in
##  /var/folders/0w/zhr00cs94db7pjb4_zldn_zw0000gn/T//Rtmp9YUzo3/downloaded_packages
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.0     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.1     ✔ tibble    3.1.8
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.1     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the ]8;;http://conflicted.r-lib.org/conflicted package]8;; to force all conflicts to become errors
install.packages('lubridate')
## 
## The downloaded binary packages are in
##  /var/folders/0w/zhr00cs94db7pjb4_zldn_zw0000gn/T//Rtmp9YUzo3/downloaded_packages
library(lubridate)
install.packages('ggplot2')
## 
## The downloaded binary packages are in
##  /var/folders/0w/zhr00cs94db7pjb4_zldn_zw0000gn/T//Rtmp9YUzo3/downloaded_packages
library(ggplot2)
install.packages('plotly')
## 
## The downloaded binary packages are in
##  /var/folders/0w/zhr00cs94db7pjb4_zldn_zw0000gn/T//Rtmp9YUzo3/downloaded_packages
library(plotly)
## 
## Attaching package: 'plotly'
## 
## The following object is masked from 'package:ggplot2':
## 
##     last_plot
## 
## The following object is masked from 'package:stats':
## 
##     filter
## 
## The following object is masked from 'package:graphics':
## 
##     layout
# Paso 2 Buscar la red (país).
view(riem_networks())

# Paso 3 Buscar la estación (ciudad) y copiar ID
view(riem_stations('MX__ASOS'))

#Paso 4 Obtener informacion
monterrey<- riem_measures("MMMY")

# Paso 5 Agregar Temperatura en grados centigrados
monterrey$tmpc<- (monterrey$tmpf -32)/1.8

# Paso 6 Filtrar informacion - Ejemplo Enero a Marzo 2023
este_año <- subset(monterrey, valid >= as.POSIXct('2023-01-01 00:00') & valid <= as.POSIXct('2023-03-10 07:00'))

# Paso 7 Graficar temperatura en 2023
plot(este_año$valid,este_año$tmpc)

# Paso 8 Promediar información por día
este_año <- este_año %>%
  mutate(date=ymd_hms(valid), date = as.Date(date)) %>%
  group_by(date) %>%
  summarize_if(is.numeric, ~mean(.,na.rm = TRUE))

# Paso 9 Graficar la temperatura en 2023
plot(este_año$date,este_año$tmpc, type="l", main="Temperatura promedio en monterrey", xlab="Fecha", ylab="´Centigrados")