1 Parameters

suffix = ""
data_to_read = "./Data/acc_tpm_nCount_mito_no146_15k_cancercells.rds"

2 functions

library(stringi)
source_from_github(repositoy = "DEG_functions",version = "0.2.24")
ℹ SHA-1 hash of file is a183df1c565702ecd8ed338bb2abfb0e13415d8e

3 Data

acc = readRDS(file = data_to_read)
acc_primary = readRDS(file = "./Data/acc_cancer_no146_primaryonly15k_cancercells.rds")

(message("reading '" %>% paste0(data_to_read %>% basename()) %>% paste0("'")))
reading 'acc_tpm_nCount_mito_no146_15k_cancercells.rds'
NULL
pathways_scores = fread(file = "./Data/ACC_CANONICALS_Pathway_Scores_20MT.txt",sep = ",") %>% as.matrix(rownames=1) %>% t() %>%  as.data.frame()
hallmark_scores = fread(file = "./Data/ACC_HALLMARKS_Pathway_Scores_20MT.txt",sep = ",") %>% as.matrix(rownames=1) %>% t() %>%  as.data.frame()
ln_list = c("ACC22.LN.P11", "ACC22.P12.LN","ACC7.P13")
ln_plates = FetchData(object = acc,vars = "orig.ident") %>% mutate(
  tumor_type = if_else(condition = orig.ident %in% ln_list
                       ,true = "LN"
                       ,false = "primary"))

ln_plates["orig.ident"] <-NULL
acc= AddMetaData(object = acc,metadata = ln_plates)
acc <- subset(acc, subset = nFeature_RNA > 2000 & percent.mt < 20)
pathways_scores = cbind(pathways_scores,hallmark_scores)
pathways_scores = pathways_scores[ , colSums(is.na(pathways_scores))==0] #remove cols with NA
pathways_scores = pathways_scores [rownames(pathways_scores) %in% colnames(acc),] #remove cells not in dataset
pathways_scores =  pathways_scores[order(row.names(pathways_scores)),] #order cells like dataset

4 Dim reduction

# run-dim-reduction on genes:
acc <- FindVariableFeatures(acc, selection.method = "vst", nfeatures = 2000)
acc <- ScaleData(acc)
acc <- RunPCA(acc,verbose = F)
ElbowPlot(acc)

pathway_scores_assay <- CreateAssayObject(counts = pathways_scores %>% t()) #create an assay
Warning: Feature names cannot have underscores ('_'), replacing with dashes ('-')
acc[["pathway_scores"]] = pathway_scores_assay
Warning: Keys should be one or more alphanumeric characters followed by an underscore, setting key from pathway_scores_ to pathwayscores_
# run-dim-reduction:
acc <- FindVariableFeatures(acc, selection.method = "vst", nfeatures = 2000,assay = "pathway_scores")
acc <- ScaleData(acc,assay = "pathway_scores",features = rownames(acc[["pathway_scores"]]))
acc <- RunPCA(acc, features = rownames(acc[["pathway_scores"]]),assay = "pathway_scores",reduction.name = "PCA_pathway_scores",verbose = F)
ElbowPlot(acc,reduction =  "PCA_pathway_scores")

acc <- RunUMAP(acc, dims = 1:5,reduction ="PCA_pathway_scores",reduction.name = "pathway_scores_umap",verbose = F)
Warning: Cannot add objects with duplicate keys (offending key: UMAP_), setting key to 'pathway_scores_umap_'

5 acc umaps

print_tab(plt = DimPlot(acc,group.by = "patient.ident"),title = "gene expression")

gene expression

print_tab(plt = DimPlot(acc,reduction = "pathway_scores_umap",group.by = "patient.ident"),title = "pathways scores")

pathways scores

NA

gs=acc@assays$RNA@var.features

myoscore=apply(acc@assays$RNA@scale.data[intersect(c("TP63","TP73","CAV1","CDH3","KRT5","KRT14","ACTA2","TAGLN","MYLK","DKK3"),gs),],2,mean)

lescore=apply(acc@assays$RNA@scale.data[intersect(c("KIT","EHF","ELF5","KRT7","CLDN3","CLDN4","CD24","LGALS3","LCN2","SLPI"),gs),],2,mean)
acc=AddMetaData(acc,lescore-myoscore,"luminal_over_myo")
#set lum_or_myo metadata
luminal_over_myo = FetchData(object = acc,vars = "luminal_over_myo")
luminal_over_myo$lum_or_myo  = case_when(luminal_over_myo$luminal_over_myo >1~"lum",luminal_over_myo$luminal_over_myo <(-1)~"myo",TRUE~"NA")
luminal_over_myo$luminal_over_myo <-NULL
acc=AddMetaData(object = acc,metadata = luminal_over_myo,col.name = "lum_or_myo")
print_tab(plt = FeaturePlot(object = acc,features = "luminal_over_myo",reduction = "pathway_scores_umap"),title = "luminal_over_myo")

luminal_over_myo

print_tab(plt = DimPlot(acc,group.by = "lum_or_myo",cols = c("red","green","grey"),reduction = "pathway_scores_umap"),title = "cell type")

cell type

print_tab(plt = FeaturePlot(object = acc,features = "luminal_over_myo"),title = "luminal_over_myo")

luminal_over_myo

print_tab(plt = DimPlot(acc,group.by = "lum_or_myo",cols = c("red","green","grey")),title = "cell type")

cell type

NA

6 Genes

print_tab(plt = 
            FeaturePlot(object = acc,features = c("FGF1","FGF2","FGF11","FGF12"),reduction = "pathway_scores_umap")
          ,title = "FGF")

FGF

print_tab(plt = 
FeaturePlot(object = acc,features = c("FGF18","FGF20","FGF15","FGF23"),reduction = "pathway_scores_umap")
          ,title = "FGF")

FGF

Warning in FetchData.Seurat(object = object, vars = c(dims, “ident”, features), : The following requested variables were not found: FGF15 Warning in FeaturePlot(object = acc, features = c(“FGF18”, “FGF20”, “FGF15”, : All cells have the same value (0) of FGF20.

print_tab(plt = 
FeaturePlot(object = acc,features = c("EGF"),reduction = "pathway_scores_umap")
          ,title = "EGF")

EGF

print_tab(plt = 
FeaturePlot(object = acc,features = c("NOTCH1","NOTCH2","NOTCH3","NOTCH4"),reduction = "pathway_scores_umap")
          ,title = "NOTCH genes")

NOTCH genes

print_tab(plt = 
FeaturePlot(object = acc,features = c("HES4","HEY1","HEY2","NRARP"),reduction = "pathway_scores_umap")
          ,title = "NOTCH targets")

NOTCH targets

NA

7 All PC’s

for (i in 1:8) {
print_tab(plt = VizDimLoadings(acc, dims = i, reduction = "PCA_pathway_scores"),title = paste("PC", i))
}

PC 1

PC 2

PC 3

PC 4

PC 5

PC 6

PC 7

PC 8

NA

8 cycling cells clustring

hallmark_name = "HALLMARK_G2M_CHECKPOINT"
genesets  =GSEABase::getGmt("./Data/h.all.v7.0.symbols.pluscc.gmt")
var_features=acc@assays$RNA@var.features
geneIds= genesets[[hallmark_name]]@geneIds
score <- apply(acc@assays$RNA@data[intersect(geneIds,var_features),],2,mean)
acc=AddMetaData(acc,score,hallmark_name)

print_tab(plt = FeaturePlot(acc, reduction = "umap",features = "HALLMARK_G2M_CHECKPOINT"),title = "by genes")

by genes

print_tab(plt = FeaturePlot(acc, reduction = "pathway_scores_umap",features = "HALLMARK_G2M_CHECKPOINT"),title = "by genes")

by genes

NA

9 UMAP clusters

DimPlot(acc,reduction = "pathway_scores_umap")

FeaturePlot(object = acc,features = "nFeature_RNA",reduction = "pathway_scores_umap")

VlnPlot(acc, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)

VlnPlot(acc, features = c("luminal_over_myo"))

10 pathways DEG


print_tab(plt = datatable(pathway_markers_deg),title = "all deg")
print_tab(plt = datatable(pathway_markers_deg %>% dplyr::filter(abs(avg_log2FC)>1)),title = "all deg FC>1")

11 genes DEG

rho_genes = c("CDC42",
"RHOQ",
"RHOJ",
"RHOUV",
'RHOU',
"RHOV",
"RAC1",
"RAC2",
"RAC3",
"RHOG",
"RHOBTB1",
'RHOBTB2',
'RHOBTB3',
'RHOH',
'RHOA',
'RHOB',
'RHOC',
'RND1',
'RND2',
'RND3',
'RHOF',
'RHOD',
'RHOF')

notch_genes = c("JAG1","JAG2","NOTCH3","NOTCH2","NOTCH1","DLL1","MYB","HES4","HEY1","HEY2","NRARP")

print_tab(plt = acc_deg %>% datatable(class = 'cell-border stripe') ,title = "all DEG")
print_tab(plt = acc_deg[rownames(acc_deg) %in%  rho_genes,]%>% datatable(class = 'cell-border stripe')   ,title = "Rho genes in DEG")
print_tab(plt = acc_deg[rownames(acc_deg) %in%  notch_genes,] %>% datatable(class = 'cell-border stripe') ,title = "NOTCH genes in DEG")
DefaultAssay(object = acc)<- "pathway_scores"
genes_expression = FetchData(object = acc,vars = c("REACTOME-RHO-GTPASE-CYCLE","WP-HEAD-AND-NECK-SQUAMOUS-CELL-CARCINOMA"))
cor(genes_expression)

top_correlated <- function(dataset, genes, threshold,anti_cor = F) {
  markers_expression = FetchData(object = dataset,vars = genes,slot = "data") #get genes expression
  markers_average = rowMeans(markers_expression) %>% as.data.frame() %>% rename("average" = 1) #average them
  cor_mat = cor(expression %>% t(), markers_average)%>% as.data.frame() #cor with all genes
  cor_mat = cor_mat[complete.cases(cor_mat),,drop=F]  %>% as.data.frame %>%  rename("corr" = 1) #remove rows with NA in at least one col
  if (threshold<1){ #if threshold is based on pearson correlation 
      if(anti_cor == T){top_genes =   cor_mat %>% as.data.frame %>% select(1) %>% dplyr::filter(.< threshold) %>% rownames()}else{
          top_genes =   cor_mat %>% as.data.frame %>% select(1) %>% dplyr::filter(.> threshold) %>% rownames()
      }
  }else{ #if threshold is based on top correlated genes 
      if(anti_cor == T){threshold  = threshold*(-1)}
      top_genes =   cor_mat %>%  top_n(threshold,corr) %>% rownames()
      }
  return(top_genes)
}
expression = GetAssayData(object = acc,assay = "RNA",slot = "data") %>% as.data.frame()

top_correlated(dataset = acc,genes = "RND3",threshold = 20)

#UMAPS

print_tab(plt = 
            FeaturePlot(object = acc,features = "NOTCH2",reduction = "pathway_scores_umap")
 ,title = "NOTCH2 UMAP")

print_tab(plt = 
            FeaturePlot(object = acc,features = "RND3",reduction = "pathway_scores_umap")
 ,title = "RND3 UMAP")

print_tab(plt = 
            FeaturePlot(object = acc,features = "JAG1",reduction = "pathway_scores_umap")
 ,title = "JAG1 UMAP")

print_tab(plt = 
            FeaturePlot(object = acc,features = "JAG2",reduction = "pathway_scores_umap")
 ,title = "JAG2 UMAP")

print_tab(plt = 
            FeaturePlot(object = acc,features = "DLL1",reduction = "pathway_scores_umap")
 ,title = "DLL1 UMAP")

print_tab(plt = 
            FeaturePlot(object = acc,features = "HES4",reduction = "pathway_scores_umap")
 ,title = "HES4 UMAP")

12 HEAD-AND-NECK-SQUAMOUS

FeaturePlot(object = acc,features = "WP-HEAD-AND-NECK-SQUAMOUS-CELL-CARCINOMA",reduction = "pathway_scores_umap")

13 ACC1/2

ACC1_genes = c("MYC", "SOX6", "SOX8", "CTNND2", "NOTCH3","BCL2")
ACC2_genes = c("TP63","COL17A1","PDGFA", "DKK3","EGFR", "AXL","PDGFRA")

gs=acc@assays$RNA@var.features

acc1_score=apply(acc@assays$RNA@data[ACC1_genes,],2,mean)

acc2_score=apply(acc@assays$RNA@data[ACC2_genes,],2,mean)
acc=AddMetaData(acc,acc1_score-acc2_score,"acc1_over_acc2")

FeaturePlot(object = acc,features = "acc1_over_acc2",reduction = "pathway_scores_umap")

14 Pathway DE

acc <- FindNeighbors(acc, dims = 1:10,reduction = "PCA_pathway_scores")
acc <- FindClusters(acc, resolution = 0.5,graph.name = "pathway_scores_snn")
print_tab(plt = DimPlot(acc,reduction = "pathway_scores_umap"),title = "UMAP")
DimPlot(acc,group.by = "lum_or_myo",cols = c("red","green","grey"),reduction = "pathway_scores_umap")
FeaturePlot(object = acc,features = "nFeature_RNA",reduction = "pathway_scores_umap")
acc <- FindNeighbors(acc, dims = 1:10)
acc <- FindClusters(acc, resolution = 0.5)
print_tab(plt = DimPlot(acc),title = "UMAP")
DimPlot(acc,group.by = "lum_or_myo",cols = c("red","green","grey"))
all_markers = FindAllMarkers(object = acc,logfc.threshold = 0,densify = T,assay = "pathway_scores")
deg_markers=all_markers %>% 
  mutate(fdr = p.adjust(p_val,method = "fdr"))%>%  #add fdr 
  dplyr::filter(fdr<0.05) %>%   dplyr::filter(abs(avg_log2FC)>1)
for (i in 0:4) {
print_tab(plt = deg_markers %>% dplyr::filter(cluster == i) %>% datatable(),title = paste("cluster",i))
  }

cluster 0

cluster 1

cluster 2

cluster 3

cluster 4

NA

15 Genes DE

for (i in 0:4) {
print_tab(plt = acc_deg %>% dplyr::filter(cluster == i) %>% datatable(),title = paste("cluster",i))
  }

cluster 0

cluster 1

cluster 2

cluster 3

cluster 4

NA

15.1 Genes in DEG

print_tab(plt = acc_deg %>% dplyr::filter(gene %in% rho_genes),title = "Rho genes",subtitle_num = 3)
print_tab(plt = acc_deg %>% dplyr::filter(gene %in% notch_genes),title = "Notch genes",subtitle_num = 3)
LS0tCnRpdGxlOiAnYHIgcnN0dWRpb2FwaTo6Z2V0U291cmNlRWRpdG9yQ29udGV4dCgpJHBhdGggJT4lIGJhc2VuYW1lKCkgJT4lIGdzdWIocGF0dGVybiA9ICJcXC5SbWQiLHJlcGxhY2VtZW50ID0gIiIpYCcgCmF1dGhvcjogIkF2aXNoYWkgV2l6ZWwiCmRhdGU6ICdgciBTeXMuRGF0ZSgpYCcKb3V0cHV0OiAKICBodG1sX25vdGVib29rOiAKICAgIGNvZGVfZm9sZGluZzogaGlkZQogICAgdG9jOiB5ZXMKICAgIHRvY19jb2xsYXBzZTogeWVzCiAgICB0b2NfZmxvYXQ6IAogICAgICBjb2xsYXBzZWQ6IEZBTFNFCiAgICBudW1iZXJfc2VjdGlvbnM6IHRydWUKLS0tCgojIFBhcmFtZXRlcnMKCmBgYHtyIHdhcm5pbmc9RkFMU0V9CnN1ZmZpeCA9ICIiCmRhdGFfdG9fcmVhZCA9ICIuL0RhdGEvYWNjX3RwbV9uQ291bnRfbWl0b19ubzE0Nl8xNWtfY2FuY2VyY2VsbHMucmRzIgpgYGAKCgojIGZ1bmN0aW9ucwoKYGBge3Igd2FybmluZz1GQUxTRX0KbGlicmFyeShzdHJpbmdpKQpzb3VyY2VfZnJvbV9naXRodWIocmVwb3NpdG95ID0gIkRFR19mdW5jdGlvbnMiLHZlcnNpb24gPSAiMC4yLjI0IikKYGBgCgojIERhdGEKCmBgYHtyfQphY2MgPSByZWFkUkRTKGZpbGUgPSBkYXRhX3RvX3JlYWQpCmFjY19wcmltYXJ5ID0gcmVhZFJEUyhmaWxlID0gIi4vRGF0YS9hY2NfY2FuY2VyX25vMTQ2X3ByaW1hcnlvbmx5MTVrX2NhbmNlcmNlbGxzLnJkcyIpCgoobWVzc2FnZSgicmVhZGluZyAnIiAlPiUgcGFzdGUwKGRhdGFfdG9fcmVhZCAlPiUgYmFzZW5hbWUoKSkgJT4lIHBhc3RlMCgiJyIpKSkKcGF0aHdheXNfc2NvcmVzID0gZnJlYWQoZmlsZSA9ICIuL0RhdGEvQUNDX0NBTk9OSUNBTFNfUGF0aHdheV9TY29yZXNfMjBNVC50eHQiLHNlcCA9ICIsIikgJT4lIGFzLm1hdHJpeChyb3duYW1lcz0xKSAlPiUgdCgpICU+JSAgYXMuZGF0YS5mcmFtZSgpCmhhbGxtYXJrX3Njb3JlcyA9IGZyZWFkKGZpbGUgPSAiLi9EYXRhL0FDQ19IQUxMTUFSS1NfUGF0aHdheV9TY29yZXNfMjBNVC50eHQiLHNlcCA9ICIsIikgJT4lIGFzLm1hdHJpeChyb3duYW1lcz0xKSAlPiUgdCgpICU+JSAgYXMuZGF0YS5mcmFtZSgpCmBgYAoKYGBge3J9CmxuX2xpc3QgPSBjKCJBQ0MyMi5MTi5QMTEiLCAiQUNDMjIuUDEyLkxOIiwiQUNDNy5QMTMiKQpsbl9wbGF0ZXMgPSBGZXRjaERhdGEob2JqZWN0ID0gYWNjLHZhcnMgPSAib3JpZy5pZGVudCIpICU+JSBtdXRhdGUoCiAgdHVtb3JfdHlwZSA9IGlmX2Vsc2UoY29uZGl0aW9uID0gb3JpZy5pZGVudCAlaW4lIGxuX2xpc3QKICAgICAgICAgICAgICAgICAgICAgICAsdHJ1ZSA9ICJMTiIKICAgICAgICAgICAgICAgICAgICAgICAsZmFsc2UgPSAicHJpbWFyeSIpKQoKbG5fcGxhdGVzWyJvcmlnLmlkZW50Il0gPC1OVUxMCmFjYz0gQWRkTWV0YURhdGEob2JqZWN0ID0gYWNjLG1ldGFkYXRhID0gbG5fcGxhdGVzKQpgYGAKCgpgYGB7cn0KYWNjIDwtIHN1YnNldChhY2MsIHN1YnNldCA9IG5GZWF0dXJlX1JOQSA+IDIwMDAgJiBwZXJjZW50Lm10IDwgMjApCmBgYAoKCmBgYHtyfQpwYXRod2F5c19zY29yZXMgPSBjYmluZChwYXRod2F5c19zY29yZXMsaGFsbG1hcmtfc2NvcmVzKQpwYXRod2F5c19zY29yZXMgPSBwYXRod2F5c19zY29yZXNbICwgY29sU3Vtcyhpcy5uYShwYXRod2F5c19zY29yZXMpKT09MF0gI3JlbW92ZSBjb2xzIHdpdGggTkEKcGF0aHdheXNfc2NvcmVzID0gcGF0aHdheXNfc2NvcmVzIFtyb3duYW1lcyhwYXRod2F5c19zY29yZXMpICVpbiUgY29sbmFtZXMoYWNjKSxdICNyZW1vdmUgY2VsbHMgbm90IGluIGRhdGFzZXQKcGF0aHdheXNfc2NvcmVzID0gIHBhdGh3YXlzX3Njb3Jlc1tvcmRlcihyb3cubmFtZXMocGF0aHdheXNfc2NvcmVzKSksXSAjb3JkZXIgY2VsbHMgbGlrZSBkYXRhc2V0CmBgYAoKCiMgRGltIHJlZHVjdGlvbgpgYGB7ciB3YXJuaW5nPUZBTFNFLCByZXN1bHRzPSdoaWRlJyxlY2hvPVRSVUV9CiMgcnVuLWRpbS1yZWR1Y3Rpb24gb24gZ2VuZXM6CmFjYyA8LSBGaW5kVmFyaWFibGVGZWF0dXJlcyhhY2MsIHNlbGVjdGlvbi5tZXRob2QgPSAidnN0IiwgbmZlYXR1cmVzID0gMjAwMCkKYWNjIDwtIFNjYWxlRGF0YShhY2MpCmFjYyA8LSBSdW5QQ0EoYWNjLHZlcmJvc2UgPSBGKQpFbGJvd1Bsb3QoYWNjKQpgYGAKCgpgYGB7ciBpbmNsdWRlPUZBTFNFfQphY2MgPC0gUnVuVU1BUChhY2MsIGRpbXMgPSAxOjUpCmBgYAoKCgpgYGB7cn0KcGF0aHdheV9zY29yZXNfYXNzYXkgPC0gQ3JlYXRlQXNzYXlPYmplY3QoY291bnRzID0gcGF0aHdheXNfc2NvcmVzICU+JSB0KCkpICNjcmVhdGUgYW4gYXNzYXkKYWNjW1sicGF0aHdheV9zY29yZXMiXV0gPSBwYXRod2F5X3Njb3Jlc19hc3NheQpgYGAKCmBgYHtyIHdhcm5pbmc9RkFMU0UsIHJlc3VsdHM9J2hpZGUnLGVjaG89VFJVRX0KIyBydW4tZGltLXJlZHVjdGlvbjoKYWNjIDwtIEZpbmRWYXJpYWJsZUZlYXR1cmVzKGFjYywgc2VsZWN0aW9uLm1ldGhvZCA9ICJ2c3QiLCBuZmVhdHVyZXMgPSAyMDAwLGFzc2F5ID0gInBhdGh3YXlfc2NvcmVzIikKYWNjIDwtIFNjYWxlRGF0YShhY2MsYXNzYXkgPSAicGF0aHdheV9zY29yZXMiLGZlYXR1cmVzID0gcm93bmFtZXMoYWNjW1sicGF0aHdheV9zY29yZXMiXV0pKQphY2MgPC0gUnVuUENBKGFjYywgZmVhdHVyZXMgPSByb3duYW1lcyhhY2NbWyJwYXRod2F5X3Njb3JlcyJdXSksYXNzYXkgPSAicGF0aHdheV9zY29yZXMiLHJlZHVjdGlvbi5uYW1lID0gIlBDQV9wYXRod2F5X3Njb3JlcyIsdmVyYm9zZSA9IEYpCkVsYm93UGxvdChhY2MscmVkdWN0aW9uID0gICJQQ0FfcGF0aHdheV9zY29yZXMiKQpgYGAKCgpgYGB7cn0KYWNjIDwtIFJ1blVNQVAoYWNjLCBkaW1zID0gMTo1LHJlZHVjdGlvbiA9IlBDQV9wYXRod2F5X3Njb3JlcyIscmVkdWN0aW9uLm5hbWUgPSAicGF0aHdheV9zY29yZXNfdW1hcCIsdmVyYm9zZSA9IEYpCmBgYAoKCiMgYWNjIHVtYXBzIHsudGFic2V0fQoKYGBge3IgZWNobz1UUlVFLCByZXN1bHRzPSdhc2lzJ30KcHJpbnRfdGFiKHBsdCA9IERpbVBsb3QoYWNjLGdyb3VwLmJ5ID0gInBhdGllbnQuaWRlbnQiKSx0aXRsZSA9ICJnZW5lIGV4cHJlc3Npb24iKQpwcmludF90YWIocGx0ID0gRGltUGxvdChhY2MscmVkdWN0aW9uID0gInBhdGh3YXlfc2NvcmVzX3VtYXAiLGdyb3VwLmJ5ID0gInBhdGllbnQuaWRlbnQiKSx0aXRsZSA9ICJwYXRod2F5cyBzY29yZXMiKQoKYGBgCmBgYHtyfQpncz1hY2NAYXNzYXlzJFJOQUB2YXIuZmVhdHVyZXMKCm15b3Njb3JlPWFwcGx5KGFjY0Bhc3NheXMkUk5BQHNjYWxlLmRhdGFbaW50ZXJzZWN0KGMoIlRQNjMiLCJUUDczIiwiQ0FWMSIsIkNESDMiLCJLUlQ1IiwiS1JUMTQiLCJBQ1RBMiIsIlRBR0xOIiwiTVlMSyIsIkRLSzMiKSxncyksXSwyLG1lYW4pCgpsZXNjb3JlPWFwcGx5KGFjY0Bhc3NheXMkUk5BQHNjYWxlLmRhdGFbaW50ZXJzZWN0KGMoIktJVCIsIkVIRiIsIkVMRjUiLCJLUlQ3IiwiQ0xETjMiLCJDTERONCIsIkNEMjQiLCJMR0FMUzMiLCJMQ04yIiwiU0xQSSIpLGdzKSxdLDIsbWVhbikKYWNjPUFkZE1ldGFEYXRhKGFjYyxsZXNjb3JlLW15b3Njb3JlLCJsdW1pbmFsX292ZXJfbXlvIikKYGBgCgpgYGB7cn0KI3NldCBsdW1fb3JfbXlvIG1ldGFkYXRhCmx1bWluYWxfb3Zlcl9teW8gPSBGZXRjaERhdGEob2JqZWN0ID0gYWNjLHZhcnMgPSAibHVtaW5hbF9vdmVyX215byIpCmx1bWluYWxfb3Zlcl9teW8kbHVtX29yX215byAgPSBjYXNlX3doZW4obHVtaW5hbF9vdmVyX215byRsdW1pbmFsX292ZXJfbXlvID4xfiJsdW0iLGx1bWluYWxfb3Zlcl9teW8kbHVtaW5hbF9vdmVyX215byA8KC0xKX4ibXlvIixUUlVFfiJOQSIpCmx1bWluYWxfb3Zlcl9teW8kbHVtaW5hbF9vdmVyX215byA8LU5VTEwKYWNjPUFkZE1ldGFEYXRhKG9iamVjdCA9IGFjYyxtZXRhZGF0YSA9IGx1bWluYWxfb3Zlcl9teW8sY29sLm5hbWUgPSAibHVtX29yX215byIpCmBgYAoKYGBge3Igd2FybmluZz1GQUxTRSxyZXN1bHRzPSdhc2lzJ30KcHJpbnRfdGFiKHBsdCA9IEZlYXR1cmVQbG90KG9iamVjdCA9IGFjYyxmZWF0dXJlcyA9ICJsdW1pbmFsX292ZXJfbXlvIixyZWR1Y3Rpb24gPSAicGF0aHdheV9zY29yZXNfdW1hcCIpLHRpdGxlID0gImx1bWluYWxfb3Zlcl9teW8iKQpwcmludF90YWIocGx0ID0gRGltUGxvdChhY2MsZ3JvdXAuYnkgPSAibHVtX29yX215byIsY29scyA9IGMoInJlZCIsImdyZWVuIiwiZ3JleSIpLHJlZHVjdGlvbiA9ICJwYXRod2F5X3Njb3Jlc191bWFwIiksdGl0bGUgPSAiY2VsbCB0eXBlIikKCnByaW50X3RhYihwbHQgPSBGZWF0dXJlUGxvdChvYmplY3QgPSBhY2MsZmVhdHVyZXMgPSAibHVtaW5hbF9vdmVyX215byIpLHRpdGxlID0gImx1bWluYWxfb3Zlcl9teW8iKQpwcmludF90YWIocGx0ID0gRGltUGxvdChhY2MsZ3JvdXAuYnkgPSAibHVtX29yX215byIsY29scyA9IGMoInJlZCIsImdyZWVuIiwiZ3JleSIpKSx0aXRsZSA9ICJjZWxsIHR5cGUiKQpgYGAKIyBHZW5lcyB7LnRhYnNldH0KCmBgYHtyICByZXN1bHRzPSdhc2lzJ30KcHJpbnRfdGFiKHBsdCA9IAogICAgICAgICAgICBGZWF0dXJlUGxvdChvYmplY3QgPSBhY2MsZmVhdHVyZXMgPSBjKCJGR0YxIiwiRkdGMiIsIkZHRjExIiwiRkdGMTIiKSxyZWR1Y3Rpb24gPSAicGF0aHdheV9zY29yZXNfdW1hcCIpCiAgICAgICAgICAsdGl0bGUgPSAiRkdGIikKCnByaW50X3RhYihwbHQgPSAKRmVhdHVyZVBsb3Qob2JqZWN0ID0gYWNjLGZlYXR1cmVzID0gYygiRkdGMTgiLCJGR0YyMCIsIkZHRjE1IiwiRkdGMjMiKSxyZWR1Y3Rpb24gPSAicGF0aHdheV9zY29yZXNfdW1hcCIpCiAgICAgICAgICAsdGl0bGUgPSAiRkdGIikKCnByaW50X3RhYihwbHQgPSAKRmVhdHVyZVBsb3Qob2JqZWN0ID0gYWNjLGZlYXR1cmVzID0gYygiRUdGIikscmVkdWN0aW9uID0gInBhdGh3YXlfc2NvcmVzX3VtYXAiKQogICAgICAgICAgLHRpdGxlID0gIkVHRiIpCgpwcmludF90YWIocGx0ID0gCkZlYXR1cmVQbG90KG9iamVjdCA9IGFjYyxmZWF0dXJlcyA9IGMoIk5PVENIMSIsIk5PVENIMiIsIk5PVENIMyIsIk5PVENINCIpLHJlZHVjdGlvbiA9ICJwYXRod2F5X3Njb3Jlc191bWFwIikKICAgICAgICAgICx0aXRsZSA9ICJOT1RDSCBnZW5lcyIpCgpwcmludF90YWIocGx0ID0gCkZlYXR1cmVQbG90KG9iamVjdCA9IGFjYyxmZWF0dXJlcyA9IGMoIkhFUzQiLCJIRVkxIiwiSEVZMiIsIk5SQVJQIikscmVkdWN0aW9uID0gInBhdGh3YXlfc2NvcmVzX3VtYXAiKQogICAgICAgICAgLHRpdGxlID0gIk5PVENIIHRhcmdldHMiKQoKCmBgYAoKIyBBbGwgUEMncyB7LnRhYnNldH0KCmBgYHtyIGVjaG89VFJVRSwgZmlnLmhlaWdodD04LCBmaWcud2lkdGg9MTQsIHJlc3VsdHM9J2FzaXMnfQpmb3IgKGkgaW4gMTo4KSB7CnByaW50X3RhYihwbHQgPSBWaXpEaW1Mb2FkaW5ncyhhY2MsIGRpbXMgPSBpLCByZWR1Y3Rpb24gPSAiUENBX3BhdGh3YXlfc2NvcmVzIiksdGl0bGUgPSBwYXN0ZSgiUEMiLCBpKSkKfQpgYGAKCgoKIyBjeWNsaW5nIGNlbGxzIGNsdXN0cmluZyB7LnRhYnNldH0KYGBge3Igd2FybmluZz1GQUxTRSxyZXN1bHRzPSdhc2lzJ30KaGFsbG1hcmtfbmFtZSA9ICJIQUxMTUFSS19HMk1fQ0hFQ0tQT0lOVCIKZ2VuZXNldHMgID1HU0VBQmFzZTo6Z2V0R210KCIuL0RhdGEvaC5hbGwudjcuMC5zeW1ib2xzLnBsdXNjYy5nbXQiKQp2YXJfZmVhdHVyZXM9YWNjQGFzc2F5cyRSTkFAdmFyLmZlYXR1cmVzCmdlbmVJZHM9IGdlbmVzZXRzW1toYWxsbWFya19uYW1lXV1AZ2VuZUlkcwpzY29yZSA8LSBhcHBseShhY2NAYXNzYXlzJFJOQUBkYXRhW2ludGVyc2VjdChnZW5lSWRzLHZhcl9mZWF0dXJlcyksXSwyLG1lYW4pCmFjYz1BZGRNZXRhRGF0YShhY2Msc2NvcmUsaGFsbG1hcmtfbmFtZSkKCnByaW50X3RhYihwbHQgPSBGZWF0dXJlUGxvdChhY2MsIHJlZHVjdGlvbiA9ICJ1bWFwIixmZWF0dXJlcyA9ICJIQUxMTUFSS19HMk1fQ0hFQ0tQT0lOVCIpLHRpdGxlID0gImJ5IGdlbmVzIikKcHJpbnRfdGFiKHBsdCA9IEZlYXR1cmVQbG90KGFjYywgcmVkdWN0aW9uID0gInBhdGh3YXlfc2NvcmVzX3VtYXAiLGZlYXR1cmVzID0gIkhBTExNQVJLX0cyTV9DSEVDS1BPSU5UIiksdGl0bGUgPSAiYnkgZ2VuZXMiKQoKYGBgCgojIFVNQVAgY2x1c3RlcnMKYGBge3IgaW5jbHVkZT1GQUxTRX0KYWNjIDwtIEZpbmROZWlnaGJvcnMoYWNjLCBkaW1zID0gMToxMCxyZWR1Y3Rpb24gPSAiUENBX3BhdGh3YXlfc2NvcmVzIikKYWNjIDwtIEZpbmRDbHVzdGVycyhhY2MsIHJlc29sdXRpb24gPSAwLjQsZ3JhcGgubmFtZSA9ICJwYXRod2F5X3Njb3Jlc19zbm4iKQpgYGAKCmBgYHtyfQpEaW1QbG90KGFjYyxyZWR1Y3Rpb24gPSAicGF0aHdheV9zY29yZXNfdW1hcCIpCmBgYAoKYGBge3J9CkZlYXR1cmVQbG90KG9iamVjdCA9IGFjYyxmZWF0dXJlcyA9ICJuRmVhdHVyZV9STkEiLHJlZHVjdGlvbiA9ICJwYXRod2F5X3Njb3Jlc191bWFwIikKVmxuUGxvdChhY2MsIGZlYXR1cmVzID0gYygibkZlYXR1cmVfUk5BIiwgIm5Db3VudF9STkEiLCAicGVyY2VudC5tdCIpLCBuY29sID0gMykKVmxuUGxvdChhY2MsIGZlYXR1cmVzID0gYygibHVtaW5hbF9vdmVyX215byIpKQoKYGBgCgojIHBhdGh3YXlzIERFRyAgey50YWJzZXR9CgpgYGB7ciByZXN1bHRzPSdoaWRlJ30KcGF0aHdheV9tYXJrZXJzID0gRmluZE1hcmtlcnMob2JqZWN0ID0gYWNjLGlkZW50LjEgPSAiMCIsaWRlbnQuMiA9ICIxIixhc3NheSA9ICJwYXRod2F5X3Njb3JlcyIsbWluLmNlbGxzLmZlYXR1cmUgPSAxMCxsb2dmYy50aHJlc2hvbGQgPSAwLGRlbnNpZnkgPSBUKQpwYXRod2F5X21hcmtlcnNfZGVnID0gcGF0aHdheV9tYXJrZXJzICU+JQogIG11dGF0ZShmZHIgPSBwLmFkanVzdChwX3ZhbCxtZXRob2QgPSAiZmRyIikpJT4lICAjYWRkIGZkciAKICBkcGx5cjo6ZmlsdGVyKGZkcjwwLjA1KQoKYGBgCjxkaXYgc3R5bGU9J3dpZHRoOjEzMDBweDttYXJnaW46IDAgYXV0bzsnPgoKYGBge3IgcmVzdWx0cz0nYXNpcyd9CgpwcmludF90YWIocGx0ID0gZGF0YXRhYmxlKHBhdGh3YXlfbWFya2Vyc19kZWcpLHRpdGxlID0gImFsbCBkZWciKQpwcmludF90YWIocGx0ID0gZGF0YXRhYmxlKHBhdGh3YXlfbWFya2Vyc19kZWcgJT4lIGRwbHlyOjpmaWx0ZXIoYWJzKGF2Z19sb2cyRkMpPjEpKSx0aXRsZSA9ICJhbGwgZGVnIEZDPjEiKQoKYGBgCjwvZGl2PgoKCiMgZ2VuZXMgREVHIHsudGFic2V0fQoKCgpgYGB7ciByZXN1bHRzPSdoaWRlJ30KYWNjID0gU2V0SWRlbnQob2JqZWN0ID0gYWNjLHZhbHVlID0gInBhdGh3YXlfc2NvcmVzX3Nubl9yZXMuMC4xIikKZ2VuZXNfbWFya2VycyA9IEZpbmRNYXJrZXJzKG9iamVjdCA9IGFjYyxpZGVudC4xID0gIjAiLGlkZW50LjIgPSAiMSIsYXNzYXkgPSAiUk5BIixtaW4uY2VsbHMuZmVhdHVyZSA9IDEwLGxvZ2ZjLnRocmVzaG9sZCA9IDAsZGVuc2lmeSA9IFQpCmFjY19kZWcgID0gZ2VuZXNfbWFya2VycyAlPiUgbXV0YXRlKGZkciA9IHAuYWRqdXN0KHBfdmFsLG1ldGhvZCA9ICJmZHIiKSklPiUgI2FkZCBmZHIKICAgIGRwbHlyOjpmaWx0ZXIoKGF2Z19sb2cyRkM+MSAmIGZkcjwwLjA1KSB8IChhdmdfbG9nMkZDPCAoLTEpICYgZmRyPDAuMDUpKSAgI2ZpbHRlciBzaWduaWZpY2FudAoKYGBgCgoKCgoKYGBge3IgcmVzdWx0cz0nYXNpcyd9CnJob19nZW5lcyA9IGMoIkNEQzQyIiwKIlJIT1EiLAoiUkhPSiIsCiJSSE9VViIsCidSSE9VJywKIlJIT1YiLAoiUkFDMSIsCiJSQUMyIiwKIlJBQzMiLAoiUkhPRyIsCiJSSE9CVEIxIiwKJ1JIT0JUQjInLAonUkhPQlRCMycsCidSSE9IJywKJ1JIT0EnLAonUkhPQicsCidSSE9DJywKJ1JORDEnLAonUk5EMicsCidSTkQzJywKJ1JIT0YnLAonUkhPRCcsCidSSE9GJykKCm5vdGNoX2dlbmVzID0gYygiSkFHMSIsIkpBRzIiLCJOT1RDSDMiLCJOT1RDSDIiLCJOT1RDSDEiLCJETEwxIiwiTVlCIiwiSEVTNCIsIkhFWTEiLCJIRVkyIiwiTlJBUlAiKQoKcHJpbnRfdGFiKHBsdCA9IGFjY19kZWcgJT4lIGRhdGF0YWJsZShjbGFzcyA9ICdjZWxsLWJvcmRlciBzdHJpcGUnKSAsdGl0bGUgPSAiYWxsIERFRyIpCnByaW50X3RhYihwbHQgPSBhY2NfZGVnW3Jvd25hbWVzKGFjY19kZWcpICVpbiUgIHJob19nZW5lcyxdJT4lIGRhdGF0YWJsZShjbGFzcyA9ICdjZWxsLWJvcmRlciBzdHJpcGUnKSAgICx0aXRsZSA9ICJSaG8gZ2VuZXMgaW4gREVHIikKcHJpbnRfdGFiKHBsdCA9IGFjY19kZWdbcm93bmFtZXMoYWNjX2RlZykgJWluJSAgbm90Y2hfZ2VuZXMsXSAlPiUgZGF0YXRhYmxlKGNsYXNzID0gJ2NlbGwtYm9yZGVyIHN0cmlwZScpICx0aXRsZSA9ICJOT1RDSCBnZW5lcyBpbiBERUciKQoKYGBgCgoKYGBge3J9CkRlZmF1bHRBc3NheShvYmplY3QgPSBhY2MpPC0gInBhdGh3YXlfc2NvcmVzIgpnZW5lc19leHByZXNzaW9uID0gRmV0Y2hEYXRhKG9iamVjdCA9IGFjYyx2YXJzID0gYygiUkVBQ1RPTUUtUkhPLUdUUEFTRS1DWUNMRSIsIldQLUhFQUQtQU5ELU5FQ0stU1FVQU1PVVMtQ0VMTC1DQVJDSU5PTUEiKSkKY29yKGdlbmVzX2V4cHJlc3Npb24pCgp0b3BfY29ycmVsYXRlZCA8LSBmdW5jdGlvbihkYXRhc2V0LCBnZW5lcywgdGhyZXNob2xkLGFudGlfY29yID0gRikgewogIG1hcmtlcnNfZXhwcmVzc2lvbiA9IEZldGNoRGF0YShvYmplY3QgPSBkYXRhc2V0LHZhcnMgPSBnZW5lcyxzbG90ID0gImRhdGEiKSAjZ2V0IGdlbmVzIGV4cHJlc3Npb24KICBtYXJrZXJzX2F2ZXJhZ2UgPSByb3dNZWFucyhtYXJrZXJzX2V4cHJlc3Npb24pICU+JSBhcy5kYXRhLmZyYW1lKCkgJT4lIHJlbmFtZSgiYXZlcmFnZSIgPSAxKSAjYXZlcmFnZSB0aGVtCiAgY29yX21hdCA9IGNvcihleHByZXNzaW9uICU+JSB0KCksIG1hcmtlcnNfYXZlcmFnZSklPiUgYXMuZGF0YS5mcmFtZSgpICNjb3Igd2l0aCBhbGwgZ2VuZXMKICBjb3JfbWF0ID0gY29yX21hdFtjb21wbGV0ZS5jYXNlcyhjb3JfbWF0KSwsZHJvcD1GXSAgJT4lIGFzLmRhdGEuZnJhbWUgJT4lICByZW5hbWUoImNvcnIiID0gMSkgI3JlbW92ZSByb3dzIHdpdGggTkEgaW4gYXQgbGVhc3Qgb25lIGNvbAogIGlmICh0aHJlc2hvbGQ8MSl7ICNpZiB0aHJlc2hvbGQgaXMgYmFzZWQgb24gcGVhcnNvbiBjb3JyZWxhdGlvbiAKICAgICAgaWYoYW50aV9jb3IgPT0gVCl7dG9wX2dlbmVzID0gICBjb3JfbWF0ICU+JSBhcy5kYXRhLmZyYW1lICU+JSBzZWxlY3QoMSkgJT4lIGRwbHlyOjpmaWx0ZXIoLjwgdGhyZXNob2xkKSAlPiUgcm93bmFtZXMoKX1lbHNlewogICAgICAgICAgdG9wX2dlbmVzID0gICBjb3JfbWF0ICU+JSBhcy5kYXRhLmZyYW1lICU+JSBzZWxlY3QoMSkgJT4lIGRwbHlyOjpmaWx0ZXIoLj4gdGhyZXNob2xkKSAlPiUgcm93bmFtZXMoKQogICAgICB9CiAgfWVsc2V7ICNpZiB0aHJlc2hvbGQgaXMgYmFzZWQgb24gdG9wIGNvcnJlbGF0ZWQgZ2VuZXMgCiAgICAgIGlmKGFudGlfY29yID09IFQpe3RocmVzaG9sZCAgPSB0aHJlc2hvbGQqKC0xKX0KICAgICAgdG9wX2dlbmVzID0gICBjb3JfbWF0ICU+JSAgdG9wX24odGhyZXNob2xkLGNvcnIpICU+JSByb3duYW1lcygpCiAgICAgIH0KICByZXR1cm4odG9wX2dlbmVzKQp9CmV4cHJlc3Npb24gPSBHZXRBc3NheURhdGEob2JqZWN0ID0gYWNjLGFzc2F5ID0gIlJOQSIsc2xvdCA9ICJkYXRhIikgJT4lIGFzLmRhdGEuZnJhbWUoKQoKdG9wX2NvcnJlbGF0ZWQoZGF0YXNldCA9IGFjYyxnZW5lcyA9ICJSTkQzIix0aHJlc2hvbGQgPSAyMCkKYGBgCgojVU1BUFMKYGBge3IgcmVzdWx0cz0nYXNpcyd9CnByaW50X3RhYihwbHQgPSAKICAgICAgICAgICAgRmVhdHVyZVBsb3Qob2JqZWN0ID0gYWNjLGZlYXR1cmVzID0gIk5PVENIMiIscmVkdWN0aW9uID0gInBhdGh3YXlfc2NvcmVzX3VtYXAiKQogLHRpdGxlID0gIk5PVENIMiBVTUFQIikKCnByaW50X3RhYihwbHQgPSAKICAgICAgICAgICAgRmVhdHVyZVBsb3Qob2JqZWN0ID0gYWNjLGZlYXR1cmVzID0gIlJORDMiLHJlZHVjdGlvbiA9ICJwYXRod2F5X3Njb3Jlc191bWFwIikKICx0aXRsZSA9ICJSTkQzIFVNQVAiKQoKcHJpbnRfdGFiKHBsdCA9IAogICAgICAgICAgICBGZWF0dXJlUGxvdChvYmplY3QgPSBhY2MsZmVhdHVyZXMgPSAiSkFHMSIscmVkdWN0aW9uID0gInBhdGh3YXlfc2NvcmVzX3VtYXAiKQogLHRpdGxlID0gIkpBRzEgVU1BUCIpCgpwcmludF90YWIocGx0ID0gCiAgICAgICAgICAgIEZlYXR1cmVQbG90KG9iamVjdCA9IGFjYyxmZWF0dXJlcyA9ICJKQUcyIixyZWR1Y3Rpb24gPSAicGF0aHdheV9zY29yZXNfdW1hcCIpCiAsdGl0bGUgPSAiSkFHMiBVTUFQIikKCnByaW50X3RhYihwbHQgPSAKICAgICAgICAgICAgRmVhdHVyZVBsb3Qob2JqZWN0ID0gYWNjLGZlYXR1cmVzID0gIkRMTDEiLHJlZHVjdGlvbiA9ICJwYXRod2F5X3Njb3Jlc191bWFwIikKICx0aXRsZSA9ICJETEwxIFVNQVAiKQoKcHJpbnRfdGFiKHBsdCA9IAogICAgICAgICAgICBGZWF0dXJlUGxvdChvYmplY3QgPSBhY2MsZmVhdHVyZXMgPSAiSEVTNCIscmVkdWN0aW9uID0gInBhdGh3YXlfc2NvcmVzX3VtYXAiKQogLHRpdGxlID0gIkhFUzQgVU1BUCIpCmBgYAoKCiMgSEVBRC1BTkQtTkVDSy1TUVVBTU9VUwpgYGB7ciB3YXJuaW5nPUZBTFNFfQpGZWF0dXJlUGxvdChvYmplY3QgPSBhY2MsZmVhdHVyZXMgPSAiV1AtSEVBRC1BTkQtTkVDSy1TUVVBTU9VUy1DRUxMLUNBUkNJTk9NQSIscmVkdWN0aW9uID0gInBhdGh3YXlfc2NvcmVzX3VtYXAiKQpgYGAKCgoKIyBBQ0MxLzIKYGBge3J9CkFDQzFfZ2VuZXMgPSBjKCJNWUMiLCAiU09YNiIsICJTT1g4IiwgIkNUTk5EMiIsICJOT1RDSDMiLCJCQ0wyIikKQUNDMl9nZW5lcyA9IGMoIlRQNjMiLCJDT0wxN0ExIiwiUERHRkEiLCAiREtLMyIsIkVHRlIiLCAiQVhMIiwiUERHRlJBIikKCmdzPWFjY0Bhc3NheXMkUk5BQHZhci5mZWF0dXJlcwoKYWNjMV9zY29yZT1hcHBseShhY2NAYXNzYXlzJFJOQUBkYXRhW0FDQzFfZ2VuZXMsXSwyLG1lYW4pCgphY2MyX3Njb3JlPWFwcGx5KGFjY0Bhc3NheXMkUk5BQGRhdGFbQUNDMl9nZW5lcyxdLDIsbWVhbikKYWNjPUFkZE1ldGFEYXRhKGFjYyxhY2MxX3Njb3JlLWFjYzJfc2NvcmUsImFjYzFfb3Zlcl9hY2MyIikKCkZlYXR1cmVQbG90KG9iamVjdCA9IGFjYyxmZWF0dXJlcyA9ICJhY2MxX292ZXJfYWNjMiIscmVkdWN0aW9uID0gInBhdGh3YXlfc2NvcmVzX3VtYXAiKQpgYGAKCiMgUGF0aHdheSBERSAgey50YWJzZXR9CgoKCmBgYHtyfQphY2MgPC0gRmluZE5laWdoYm9ycyhhY2MsIGRpbXMgPSAxOjEwLHJlZHVjdGlvbiA9ICJQQ0FfcGF0aHdheV9zY29yZXMiKQphY2MgPC0gRmluZENsdXN0ZXJzKGFjYywgcmVzb2x1dGlvbiA9IDAuNSxncmFwaC5uYW1lID0gInBhdGh3YXlfc2NvcmVzX3NubiIpCmBgYAoKYGBge3IgIHJlc3VsdHM9J2FzaXMnfQpwcmludF90YWIocGx0ID0gRGltUGxvdChhY2MscmVkdWN0aW9uID0gInBhdGh3YXlfc2NvcmVzX3VtYXAiKSx0aXRsZSA9ICJVTUFQIikKRGltUGxvdChhY2MsZ3JvdXAuYnkgPSAibHVtX29yX215byIsY29scyA9IGMoInJlZCIsImdyZWVuIiwiZ3JleSIpLHJlZHVjdGlvbiA9ICJwYXRod2F5X3Njb3Jlc191bWFwIikKRmVhdHVyZVBsb3Qob2JqZWN0ID0gYWNjLGZlYXR1cmVzID0gIm5GZWF0dXJlX1JOQSIscmVkdWN0aW9uID0gInBhdGh3YXlfc2NvcmVzX3VtYXAiKQpgYGAKCgpgYGB7cn0KYWNjIDwtIEZpbmROZWlnaGJvcnMoYWNjLCBkaW1zID0gMToxMCkKYWNjIDwtIEZpbmRDbHVzdGVycyhhY2MsIHJlc29sdXRpb24gPSAwLjUpCmBgYAoKYGBge3IgIHJlc3VsdHM9J2FzaXMnfQpwcmludF90YWIocGx0ID0gRGltUGxvdChhY2MpLHRpdGxlID0gIlVNQVAiKQpEaW1QbG90KGFjYyxncm91cC5ieSA9ICJsdW1fb3JfbXlvIixjb2xzID0gYygicmVkIiwiZ3JlZW4iLCJncmV5IikpCgpgYGAKCgpgYGB7ciByZXN1bHRzPSdoaWRlJ30KYWxsX21hcmtlcnMgPSBGaW5kQWxsTWFya2VycyhvYmplY3QgPSBhY2MsbG9nZmMudGhyZXNob2xkID0gMCxkZW5zaWZ5ID0gVCxhc3NheSA9ICJwYXRod2F5X3Njb3JlcyIpCmRlZ19tYXJrZXJzPWFsbF9tYXJrZXJzICU+JSAKICBtdXRhdGUoZmRyID0gcC5hZGp1c3QocF92YWwsbWV0aG9kID0gImZkciIpKSU+JSAgI2FkZCBmZHIgCiAgZHBseXI6OmZpbHRlcihmZHI8MC4wNSkgJT4lICAgZHBseXI6OmZpbHRlcihhYnMoYXZnX2xvZzJGQyk+MSkKYGBgCgpgYGB7ciAgcmVzdWx0cz0nYXNpcyd9CmZvciAoaSBpbiAwOjQpIHsKcHJpbnRfdGFiKHBsdCA9IGRlZ19tYXJrZXJzICU+JSBkcGx5cjo6ZmlsdGVyKGNsdXN0ZXIgPT0gaSkgJT4lIGRhdGF0YWJsZSgpLHRpdGxlID0gcGFzdGUoImNsdXN0ZXIiLGkpKQogIH0KYGBgCgpgYGB7ciBpbmNsdWRlPUZBTFNFfQphY2MgPSBTZXRJZGVudChvYmplY3QgPSBhY2MsdmFsdWUgPSAicGF0aHdheV9zY29yZXNfc25uX3Jlcy4wLjQiKQpnZW5lc19tYXJrZXJzID0gRmluZEFsbE1hcmtlcnMob2JqZWN0ID0gYWNjLGFzc2F5ID0gIlJOQSIsbWluLmNlbGxzLmZlYXR1cmUgPSAxMCxsb2dmYy50aHJlc2hvbGQgPSAwLGRlbnNpZnkgPSBUKQphY2NfZGVnICA9IGdlbmVzX21hcmtlcnMgJT4lIG11dGF0ZShmZHIgPSBwLmFkanVzdChwX3ZhbCxtZXRob2QgPSAiZmRyIikpJT4lICNhZGQgZmRyCiAgICBkcGx5cjo6ZmlsdGVyKChhYnMoYXZnX2xvZzJGQyk+MSAmIGZkcjwwLjA1KSkgICNmaWx0ZXIgc2lnbmlmaWNhbnQKYGBgCgojIEdlbmVzIERFICB7LnRhYnNldH0KYGBge3IgIHJlc3VsdHM9J2FzaXMnfQpmb3IgKGkgaW4gMDo0KSB7CnByaW50X3RhYihwbHQgPSBhY2NfZGVnICU+JSBkcGx5cjo6ZmlsdGVyKGNsdXN0ZXIgPT0gaSkgJT4lIGRhdGF0YWJsZSgpLHRpdGxlID0gcGFzdGUoImNsdXN0ZXIiLGkpKQogIH0KYGBgCiMgey19CgojIyBHZW5lcyBpbiBERUcgey50YWJzZXR9CmBgYHtyICByZXN1bHRzPSdhc2lzJ30KcHJpbnRfdGFiKHBsdCA9IGFjY19kZWcgJT4lIGRwbHlyOjpmaWx0ZXIoZ2VuZSAlaW4lIHJob19nZW5lcyksdGl0bGUgPSAiUmhvIGdlbmVzIixzdWJ0aXRsZV9udW0gPSAzKQpwcmludF90YWIocGx0ID0gYWNjX2RlZyAlPiUgZHBseXI6OmZpbHRlcihnZW5lICVpbiUgbm90Y2hfZ2VuZXMpLHRpdGxlID0gIk5vdGNoIGdlbmVzIixzdWJ0aXRsZV9udW0gPSAzKQoKCmBgYAoKCgoK