Question One:

G-Power application downloaded.

Question Two:

Question Three:

Using RStudio to run a 2-Way ANOVA test.

Changing Treatment, Block, & Replication to Categorical Variable Status:

Power_Calculation <- Power_Calculation %>%
  mutate(Treatment = as.factor(Treatment),
         Replication = as.factor(Rep),
         Block = as.factor(Block))

Running 2-Way ANOVA :

To obtain the MSE, a 2-Way ANOVA needs to be ran. The MSE is calculated using the following equation:

MSE = [SS(Error) / (n-m)]

In this case the MSE would be calculated as follows:

MSE –> [(41.2)/(25 -3)] = 1.87

summary(aov(Y ~ Rep + Block*Treatment, data = Power_Calculation))
                Df Sum Sq Mean Sq F value Pr(>F)
Rep              1    1.0    1.04   0.028  0.870
Block            3   34.1   11.37   0.306  0.821
Treatment        2   69.1   34.54   0.928  0.424
Block:Treatment  6   41.2    6.87   0.185  0.975
Residuals       11  409.5   37.22               

Significance of Terms:

The terms are not significant due to the p-values of the F statistics all being greater than 0.05. Another sign that these terms are insignificant would be that the F-Values are close to 1.

Question Four:

Using G-Power to Compute the Power of the F-Test:

According to G-Power, the power of the F-test is 0.9533144.

Question Five:

Computing the Required Sample Size for 80% Power:

The required sample size to have 80% power would be 16.

Question Six:

When compared to the results I received on RStudio, I believe any differences present could be attributed to differences in rounding methods, as the calculations of SPSS seems to be more concise. I also noticed that the information SPSS is better labeled, and thus easier to identify and understand.

LS0tCnRpdGxlOiAiUG93ZXIgYW5kIFNhbXBsZSBTaXplIENhbGN1bGF0aW9ucyIKYXV0aG9yOiBKYW52aWVyIFJpY2hhcmRzb24gCkRhdGU6IDIwIE1hcmNoIDIwMjMKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKKipRdWVzdGlvbiBPbmU6KioKCkctUG93ZXIgYXBwbGljYXRpb24gZG93bmxvYWRlZC4KCioqUXVlc3Rpb24gVHdvOioqCgohW10oaW1hZ2VzL1NjcmVlbnNob3QlMjAyMDIzLTAzLTIwJTIwYXQlMjA1LjU3LjM1JTIwUE0ucG5nKQoKKipRdWVzdGlvbiBUaHJlZToqKgoKVXNpbmcgKlJTdHVkaW8qIHRvIHJ1biBhIDItV2F5IEFOT1ZBIHRlc3QuCgpbQ2hhbmdpbmcgVHJlYXRtZW50LCBCbG9jaywgJiBSZXBsaWNhdGlvbiB0byBDYXRlZ29yaWNhbCBWYXJpYWJsZSBTdGF0dXM6XXsudW5kZXJsaW5lfQoKYGBge3J9ClBvd2VyX0NhbGN1bGF0aW9uIDwtIFBvd2VyX0NhbGN1bGF0aW9uICU+JQogIG11dGF0ZShUcmVhdG1lbnQgPSBhcy5mYWN0b3IoVHJlYXRtZW50KSwKICAgICAgICAgUmVwbGljYXRpb24gPSBhcy5mYWN0b3IoUmVwKSwKICAgICAgICAgQmxvY2sgPSBhcy5mYWN0b3IoQmxvY2spKQpgYGAKCltSdW5uaW5nIDItV2F5IEFOT1ZBIDpdey51bmRlcmxpbmV9CgpUbyBvYnRhaW4gdGhlIE1TRSwgYSAyLVdheSBBTk9WQSBuZWVkcyB0byBiZSByYW4uIFRoZSBNU0UgaXMgY2FsY3VsYXRlZCB1c2luZyB0aGUgZm9sbG93aW5nIGVxdWF0aW9uOgoKKk1TRSA9IFtTUyhFcnJvcikgLyAobi1tKV0qCgpJbiB0aGlzIGNhc2UgdGhlIE1TRSB3b3VsZCBiZSBjYWxjdWxhdGVkIGFzIGZvbGxvd3M6CgoqTVNFIC0tXD4gWyg0MS4yKS8oMjUgLTMpXSA9ICoqMS44NyoqKgoKYGBge3J9CnN1bW1hcnkoYW92KFkgfiBSZXAgKyBCbG9jaypUcmVhdG1lbnQsIGRhdGEgPSBQb3dlcl9DYWxjdWxhdGlvbikpCgojIE1TRSA9IFNTKEVycm9yKS8obuKIkm0pOiA0MS4yIC8gKDI1LTMpCiNUaGUgdGVybXMgYXJlIG5vdCBzaWduaWZpY2FudCBkdWUgdG8gdGhlIHAtdmFsdWVzIG9mIHRoZSBGIHN0YXRpc3RpY3MgYmVpbmcgZ3JlYXRlciB0aGFuICAwLjA1LiAKYGBgCgpbU2lnbmlmaWNhbmNlIG9mIFRlcm1zOl17LnVuZGVybGluZX0KClRoZSB0ZXJtcyBhcmUgKm5vdCBzaWduaWZpY2FudCogZHVlIHRvIHRoZSBwLXZhbHVlcyBvZiB0aGUgRiBzdGF0aXN0aWNzIGFsbCBiZWluZyBncmVhdGVyIHRoYW4gMC4wNS4gQW5vdGhlciBzaWduIHRoYXQgdGhlc2UgdGVybXMgYXJlIGluc2lnbmlmaWNhbnQgd291bGQgYmUgdGhhdCB0aGUgRi1WYWx1ZXMgYXJlIGNsb3NlIHRvIDEuCgoqKlF1ZXN0aW9uIEZvdXI6KioKCltVc2luZyBHLVBvd2VyIHRvIENvbXB1dGUgdGhlIFBvd2VyIG9mIHRoZSBGLVRlc3Q6XXsudW5kZXJsaW5lfQoKIVtdKGltYWdlcy9TY3JlZW5zaG90JTIwMjAyMy0wMy0yMCUyMGF0JTIwNi4wNC40NCUyMFBNLnBuZykKCkFjY29yZGluZyB0byBHLVBvd2VyLCB0aGUgcG93ZXIgb2YgdGhlIEYtdGVzdCBpcyAqMC45NTMzMTQ0Ki4KCioqUXVlc3Rpb24gRml2ZToqKgoKW0NvbXB1dGluZyB0aGUgUmVxdWlyZWQgU2FtcGxlIFNpemUgZm9yIDgwJSBQb3dlcjpdey51bmRlcmxpbmV9CgohW10oaW1hZ2VzL1NjcmVlbnNob3QlMjAyMDIzLTAzLTIwJTIwYXQlMjA2LjA3LjI1JTIwUE0ucG5nKQoKVGhlIHJlcXVpcmVkIHNhbXBsZSBzaXplIHRvIGhhdmUgODAlIHBvd2VyIHdvdWxkIGJlICoxNiouCgoqKlF1ZXN0aW9uIFNpeDoqKgoKIVtdKGltYWdlcy9TY3JlZW5zaG90JTIwMjAyMy0wMy0yMCUyMGF0JTIwNi40Ny4xNiUyMFBNLnBuZykKCldoZW4gY29tcGFyZWQgdG8gdGhlIHJlc3VsdHMgSSByZWNlaXZlZCBvbiAqUlN0dWRpbyosIEkgYmVsaWV2ZSBhbnkgZGlmZmVyZW5jZXMgcHJlc2VudCBjb3VsZCBiZSBhdHRyaWJ1dGVkIHRvIGRpZmZlcmVuY2VzIGluIHJvdW5kaW5nIG1ldGhvZHMsIGFzIHRoZSBjYWxjdWxhdGlvbnMgb2YgKlNQU1MqIHNlZW1zIHRvIGJlIG1vcmUgY29uY2lzZS4gSSBhbHNvIG5vdGljZWQgdGhhdCB0aGUgaW5mb3JtYXRpb24gKlNQU1MqIGlzIGJldHRlciBsYWJlbGVkLCBhbmQgdGh1cyBlYXNpZXIgdG8gaWRlbnRpZnkgYW5kIHVuZGVyc3RhbmQuCg==