Question One:
G-Power application downloaded.
Question Two:

Question Three:
Using RStudio to run a 2-Way ANOVA test.
Changing Treatment, Block, & Replication to Categorical
Variable Status:
Power_Calculation <- Power_Calculation %>%
mutate(Treatment = as.factor(Treatment),
Replication = as.factor(Rep),
Block = as.factor(Block))
Running 2-Way ANOVA :
To obtain the MSE, a 2-Way ANOVA needs to be ran. The MSE is
calculated using the following equation:
MSE = [SS(Error) / (n-m)]
In this case the MSE would be calculated as follows:
MSE –> [(41.2)/(25 -3)] = 1.87
summary(aov(Y ~ Rep + Block*Treatment, data = Power_Calculation))
Df Sum Sq Mean Sq F value Pr(>F)
Rep 1 1.0 1.04 0.028 0.870
Block 3 34.1 11.37 0.306 0.821
Treatment 2 69.1 34.54 0.928 0.424
Block:Treatment 6 41.2 6.87 0.185 0.975
Residuals 11 409.5 37.22
Significance of Terms:
The terms are not significant due to the p-values of the F
statistics all being greater than 0.05. Another sign that these terms
are insignificant would be that the F-Values are close to 1.
Question Four:
Using G-Power to Compute the Power of the F-Test:

According to G-Power, the power of the F-test is
0.9533144.
Question Five:
Computing the Required Sample Size for 80% Power:

The required sample size to have 80% power would be 16.
Question Six:

When compared to the results I received on RStudio, I
believe any differences present could be attributed to differences in
rounding methods, as the calculations of SPSS seems to be more
concise. I also noticed that the information SPSS is better
labeled, and thus easier to identify and understand.
LS0tCnRpdGxlOiAiUG93ZXIgYW5kIFNhbXBsZSBTaXplIENhbGN1bGF0aW9ucyIKYXV0aG9yOiBKYW52aWVyIFJpY2hhcmRzb24gCkRhdGU6IDIwIE1hcmNoIDIwMjMKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKKipRdWVzdGlvbiBPbmU6KioKCkctUG93ZXIgYXBwbGljYXRpb24gZG93bmxvYWRlZC4KCioqUXVlc3Rpb24gVHdvOioqCgohW10oaW1hZ2VzL1NjcmVlbnNob3QlMjAyMDIzLTAzLTIwJTIwYXQlMjA1LjU3LjM1JTIwUE0ucG5nKQoKKipRdWVzdGlvbiBUaHJlZToqKgoKVXNpbmcgKlJTdHVkaW8qIHRvIHJ1biBhIDItV2F5IEFOT1ZBIHRlc3QuCgpbQ2hhbmdpbmcgVHJlYXRtZW50LCBCbG9jaywgJiBSZXBsaWNhdGlvbiB0byBDYXRlZ29yaWNhbCBWYXJpYWJsZSBTdGF0dXM6XXsudW5kZXJsaW5lfQoKYGBge3J9ClBvd2VyX0NhbGN1bGF0aW9uIDwtIFBvd2VyX0NhbGN1bGF0aW9uICU+JQogIG11dGF0ZShUcmVhdG1lbnQgPSBhcy5mYWN0b3IoVHJlYXRtZW50KSwKICAgICAgICAgUmVwbGljYXRpb24gPSBhcy5mYWN0b3IoUmVwKSwKICAgICAgICAgQmxvY2sgPSBhcy5mYWN0b3IoQmxvY2spKQpgYGAKCltSdW5uaW5nIDItV2F5IEFOT1ZBIDpdey51bmRlcmxpbmV9CgpUbyBvYnRhaW4gdGhlIE1TRSwgYSAyLVdheSBBTk9WQSBuZWVkcyB0byBiZSByYW4uIFRoZSBNU0UgaXMgY2FsY3VsYXRlZCB1c2luZyB0aGUgZm9sbG93aW5nIGVxdWF0aW9uOgoKKk1TRSA9IFtTUyhFcnJvcikgLyAobi1tKV0qCgpJbiB0aGlzIGNhc2UgdGhlIE1TRSB3b3VsZCBiZSBjYWxjdWxhdGVkIGFzIGZvbGxvd3M6CgoqTVNFIC0tXD4gWyg0MS4yKS8oMjUgLTMpXSA9ICoqMS44NyoqKgoKYGBge3J9CnN1bW1hcnkoYW92KFkgfiBSZXAgKyBCbG9jaypUcmVhdG1lbnQsIGRhdGEgPSBQb3dlcl9DYWxjdWxhdGlvbikpCgojIE1TRSA9IFNTKEVycm9yKS8obuKIkm0pOiA0MS4yIC8gKDI1LTMpCiNUaGUgdGVybXMgYXJlIG5vdCBzaWduaWZpY2FudCBkdWUgdG8gdGhlIHAtdmFsdWVzIG9mIHRoZSBGIHN0YXRpc3RpY3MgYmVpbmcgZ3JlYXRlciB0aGFuICAwLjA1LiAKYGBgCgpbU2lnbmlmaWNhbmNlIG9mIFRlcm1zOl17LnVuZGVybGluZX0KClRoZSB0ZXJtcyBhcmUgKm5vdCBzaWduaWZpY2FudCogZHVlIHRvIHRoZSBwLXZhbHVlcyBvZiB0aGUgRiBzdGF0aXN0aWNzIGFsbCBiZWluZyBncmVhdGVyIHRoYW4gMC4wNS4gQW5vdGhlciBzaWduIHRoYXQgdGhlc2UgdGVybXMgYXJlIGluc2lnbmlmaWNhbnQgd291bGQgYmUgdGhhdCB0aGUgRi1WYWx1ZXMgYXJlIGNsb3NlIHRvIDEuCgoqKlF1ZXN0aW9uIEZvdXI6KioKCltVc2luZyBHLVBvd2VyIHRvIENvbXB1dGUgdGhlIFBvd2VyIG9mIHRoZSBGLVRlc3Q6XXsudW5kZXJsaW5lfQoKIVtdKGltYWdlcy9TY3JlZW5zaG90JTIwMjAyMy0wMy0yMCUyMGF0JTIwNi4wNC40NCUyMFBNLnBuZykKCkFjY29yZGluZyB0byBHLVBvd2VyLCB0aGUgcG93ZXIgb2YgdGhlIEYtdGVzdCBpcyAqMC45NTMzMTQ0Ki4KCioqUXVlc3Rpb24gRml2ZToqKgoKW0NvbXB1dGluZyB0aGUgUmVxdWlyZWQgU2FtcGxlIFNpemUgZm9yIDgwJSBQb3dlcjpdey51bmRlcmxpbmV9CgohW10oaW1hZ2VzL1NjcmVlbnNob3QlMjAyMDIzLTAzLTIwJTIwYXQlMjA2LjA3LjI1JTIwUE0ucG5nKQoKVGhlIHJlcXVpcmVkIHNhbXBsZSBzaXplIHRvIGhhdmUgODAlIHBvd2VyIHdvdWxkIGJlICoxNiouCgoqKlF1ZXN0aW9uIFNpeDoqKgoKIVtdKGltYWdlcy9TY3JlZW5zaG90JTIwMjAyMy0wMy0yMCUyMGF0JTIwNi40Ny4xNiUyMFBNLnBuZykKCldoZW4gY29tcGFyZWQgdG8gdGhlIHJlc3VsdHMgSSByZWNlaXZlZCBvbiAqUlN0dWRpbyosIEkgYmVsaWV2ZSBhbnkgZGlmZmVyZW5jZXMgcHJlc2VudCBjb3VsZCBiZSBhdHRyaWJ1dGVkIHRvIGRpZmZlcmVuY2VzIGluIHJvdW5kaW5nIG1ldGhvZHMsIGFzIHRoZSBjYWxjdWxhdGlvbnMgb2YgKlNQU1MqIHNlZW1zIHRvIGJlIG1vcmUgY29uY2lzZS4gSSBhbHNvIG5vdGljZWQgdGhhdCB0aGUgaW5mb3JtYXRpb24gKlNQU1MqIGlzIGJldHRlciBsYWJlbGVkLCBhbmQgdGh1cyBlYXNpZXIgdG8gaWRlbnRpZnkgYW5kIHVuZGVyc3RhbmQuCg==