Classification Trees: Alternative Solution to Classification Methods of Linear Discriminant Analysis

Prana Ugiana Gio
Elly Rosmaini Siregar
Faigiziduhu Bu’ulolo

Department of Mathematics
University of Sumatera Utara

3rd, International Seminar on Operational Research
Medan, August 21-23, 2015

Classification Methods of Linear Discriminant Analysis & Classification Trees

Several Application of LDA and Classification Trees

LDA and classification trees can be used to predict a person:

Linear Classification Based on LDA

The use of LDA will generate a discriminant function, which is a linear function. This function can be used to classify an object enter into one of group of dependent variable. Consider the following data.

#Read or open data "plot interior.csv" 
data=read.csv("plot interior.csv")
 #Show the data
data
##    Y  X1  X2
## 1  A 1.0 0.5
## 2  A 1.2 0.6
## 3  A 1.4 0.5
## 4  B 1.5 0.6
## 5  A 2.0 0.6
## 6  A 2.5 0.9
## 7  A 2.3 1.1
## 8  A 2.4 1.1
## 9  A 2.1 0.6
## 10 A 1.9 0.8
## 11 B 1.0 0.8
## 12 B 1.2 1.0
## 13 B 1.4 1.2
## 14 B 1.5 1.0
## 15 B 2.0 1.7
## 16 A 2.5 2.2
## 17 B 2.3 2.0
## 18 B 2.4 2.1
## 19 B 2.1 1.9
## 20 B 1.9 1.5
#Plot Data
library(ggplot2)
ggplot(data, aes(X1, X2)) + geom_point(aes(color = Y,
shape = Y)) + geom_text(data = NULL, x = 1.6, y = 2, label = "In general, green point (tree angle) is positioned above,", colour="blue") + geom_text(data = NULL, x = 1.5, y = 1.9, label = "whereas red point (circle) is positioned below", colour="blue")

Linear Classification Based on LDA

#Perform LDA
library(MASS) #Load package 'MASS'
## Warning: package 'MASS' was built under R version 3.2.2
fit.LDA = lda( Y ~ X1 + X2, data)
fit.LDA
## Call:
## lda(Y ~ X1 + X2, data = data)
## 
## Prior probabilities of groups:
##   A   B 
## 0.5 0.5 
## 
## Group means:
##     X1   X2
## A 1.93 0.89
## B 1.73 1.38
## 
## Coefficients of linear discriminants:
##          LD1
## X1 -2.683033
## X2  2.937740

#Perform classification
class.LDA.C = predict(fit.LDA, data[,c(2,3)])$class
class.LDA.C
##  [1] B B A A A A A A A A B B B B B B B B B B
## Levels: A B
table(data[,1],class.LDA.C)
##    class.LDA.C
##     A B
##   A 7 3
##   B 1 9

Classification Based on Classification Trees

#Perform classification trees
library(rpart)
tree <- rpart(Y ~ X1 + X2, data)

library(rpart.plot)
prp(tree, faclen = 0, cex = 0.8, extra = 1)

#Prediction
treePrediction <- predict(tree, data, type = "class")
treePrediction
##  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 
##  A  A  A  A  A  A  A  A  A  A  A  A  B  A  B  B  B  B  B  B 
## Levels: A B
#load package caret
library(caret)
## Loading required package: lattice
## Warning: package 'lattice' was built under R version 3.2.2
confusionMatrix(treePrediction, data$Y)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction A B
##          A 9 4
##          B 1 6
##                                          
##                Accuracy : 0.75           
##                  95% CI : (0.509, 0.9134)
##     No Information Rate : 0.5            
##     P-Value [Acc > NIR] : 0.02069        
##                                          
##                   Kappa : 0.5            
##  Mcnemar's Test P-Value : 0.37109        
##                                          
##             Sensitivity : 0.9000         
##             Specificity : 0.6000         
##          Pos Pred Value : 0.6923         
##          Neg Pred Value : 0.8571         
##              Prevalence : 0.5000         
##          Detection Rate : 0.4500         
##    Detection Prevalence : 0.6500         
##       Balanced Accuracy : 0.7500         
##                                          
##        'Positive' Class : A              
## 

Perform LDA with Second Data

## Warning: package 'class' was built under R version 3.2.2
##     Y   X1   X2
## 1   A 0.10 2.10
## 2   A 0.20 2.20
## 3   A 0.30 2.30
## 4   A 0.40 2.40
## 5   A 0.50 2.50
## 6   A 0.60 2.60
## 7   A 0.70 2.70
## 8   A 0.80 2.80
## 9   A 0.90 2.90
## 10  A 0.10 3.00
## 11  A 0.20 3.10
## 12  A 0.30 3.20
## 13  A 0.40 3.30
## 14  A 0.50 3.40
## 15  A 0.60 3.50
## 16  A 0.70 3.60
## 17  A 0.80 3.70
## 18  A 0.90 3.80
## 19  A 0.21 3.90
## 20  A 0.15 3.71
## 21  A 0.65 2.14
## 22  A 0.12 2.17
## 23  A 0.11 2.53
## 24  A 0.12 2.42
## 25  A 0.74 2.49
## 26  A 0.43 3.21
## 27  A 0.23 3.94
## 28  A 0.17 2.67
## 29  A 0.58 3.72
## 30  A 0.95 2.19
## 31  A 0.76 2.53
## 32  A 0.45 2.21
## 33  A 0.76 3.64
## 34  A 0.23 3.32
## 35  A 0.77 3.16
## 36  A 0.87 3.19
## 37  A 0.73 2.89
## 38  A 0.21 2.24
## 39  A 0.04 3.51
## 40  A 0.16 2.13
## 41  A 1.10 0.10
## 42  A 1.20 0.20
## 43  A 1.30 0.30
## 44  A 1.40 0.40
## 45  A 1.50 0.50
## 46  A 1.60 0.60
## 47  A 1.70 0.70
## 48  A 1.80 0.80
## 49  A 1.90 0.90
## 50  A 1.10 0.12
## 51  A 1.20 0.27
## 52  A 1.30 0.36
## 53  A 1.40 0.48
## 54  A 1.50 0.79
## 55  A 1.60 0.15
## 56  A 1.70 1.27
## 57  A 1.80 1.93
## 58  A 1.90 0.30
## 59  A 1.21 1.54
## 60  A 1.15 1.71
## 61  A 1.65 1.14
## 62  A 1.12 1.17
## 63  A 1.11 1.53
## 64  A 1.12 1.42
## 65  A 1.74 1.49
## 66  A 1.43 1.21
## 67  A 1.23 1.94
## 68  A 1.17 1.67
## 69  A 1.58 1.72
## 70  A 1.95 1.19
## 71  A 1.76 1.53
## 72  A 1.45 1.21
## 73  A 1.76 1.64
## 74  A 1.23 1.32
## 75  A 1.77 1.16
## 76  A 1.87 1.19
## 77  A 1.73 1.89
## 78  A 1.21 1.24
## 79  A 1.04 1.51
## 80  A 1.16 1.13
## 81  A 2.10 2.10
## 82  A 2.20 2.20
## 83  A 2.30 2.30
## 84  A 2.40 2.40
## 85  A 2.50 2.50
## 86  A 2.60 2.60
## 87  A 2.70 2.70
## 88  A 2.80 2.80
## 89  A 2.90 2.90
## 90  A 2.10 3.00
## 91  A 2.20 3.10
## 92  A 2.30 3.20
## 93  A 2.40 3.30
## 94  A 2.50 3.40
## 95  A 2.60 3.50
## 96  A 2.70 3.60
## 97  A 2.80 3.70
## 98  A 2.90 3.80
## 99  A 2.21 3.90
## 100 A 2.15 3.71
## 101 A 2.65 2.14
## 102 A 2.12 2.17
## 103 A 2.11 2.53
## 104 A 2.12 2.42
## 105 A 2.74 2.49
## 106 A 2.43 3.21
## 107 A 2.23 3.94
## 108 A 2.17 2.67
## 109 A 2.58 3.72
## 110 A 2.95 2.19
## 111 A 2.76 2.53
## 112 A 2.45 2.21
## 113 A 2.76 3.64
## 114 A 2.23 3.32
## 115 A 2.77 3.16
## 116 A 2.87 3.19
## 117 A 2.73 2.89
## 118 A 2.21 2.24
## 119 A 2.04 3.51
## 120 A 2.16 2.13
## 121 B 0.10 0.10
## 122 B 0.20 0.20
## 123 B 0.30 0.30
## 124 B 0.40 0.40
## 125 B 0.50 0.50
## 126 B 0.60 0.60
## 127 B 0.70 0.70
## 128 B 0.80 0.80
## 129 B 0.90 0.90
## 130 B 0.10 0.12
## 131 B 0.20 0.27
## 132 B 0.30 0.36
## 133 B 0.40 0.48
## 134 B 0.50 0.79
## 135 B 0.60 0.15
## 136 B 0.70 1.27
## 137 B 0.80 1.93
## 138 B 0.90 0.30
## 139 B 0.21 1.54
## 140 B 0.15 1.71
## 141 B 0.65 1.14
## 142 B 0.12 1.17
## 143 B 0.11 1.53
## 144 B 0.12 1.42
## 145 B 0.74 1.49
## 146 B 0.43 1.21
## 147 B 0.23 1.94
## 148 B 0.17 1.67
## 149 B 0.58 1.72
## 150 B 0.95 1.19
## 151 B 0.76 1.53
## 152 B 0.45 1.21
## 153 B 0.76 1.64
## 154 B 0.23 1.32
## 155 B 0.77 1.16
## 156 B 0.87 1.19
## 157 B 0.73 1.89
## 158 B 0.21 1.24
## 159 B 0.04 1.51
## 160 B 0.16 1.13
## 161 B 1.10 2.10
## 162 B 1.20 2.20
## 163 B 1.30 2.30
## 164 B 1.40 2.40
## 165 B 1.50 2.50
## 166 B 1.60 2.60
## 167 B 1.70 2.70
## 168 B 1.80 2.80
## 169 B 1.90 2.90
## 170 B 1.10 3.00
## 171 B 1.20 3.10
## 172 B 1.30 3.20
## 173 B 1.40 3.30
## 174 B 1.50 3.40
## 175 B 1.60 3.50
## 176 B 1.70 3.60
## 177 B 1.80 3.70
## 178 B 1.90 3.80
## 179 B 1.21 3.90
## 180 B 1.15 3.71
## 181 B 1.65 2.14
## 182 B 1.12 2.17
## 183 B 1.11 2.53
## 184 B 1.12 2.42
## 185 B 1.74 2.49
## 186 B 1.43 3.21
## 187 B 1.23 3.94
## 188 B 1.17 2.67
## 189 B 1.58 3.72
## 190 B 1.95 2.19
## 191 B 1.76 2.53
## 192 B 1.45 2.21
## 193 B 1.76 3.64
## 194 B 1.23 3.32
## 195 B 1.77 3.16
## 196 B 1.87 3.19
## 197 B 1.73 2.89
## 198 B 1.21 2.24
## 199 B 1.04 3.51
## 200 B 1.16 2.13
## 201 B 2.10 0.10
## 202 B 2.20 0.20
## 203 B 2.30 0.30
## 204 B 2.40 0.40
## 205 B 2.50 0.50
## 206 B 2.60 0.60
## 207 B 2.70 0.70
## 208 B 2.80 0.80
## 209 B 2.90 0.90
## 210 B 2.10 0.12
## 211 B 2.20 0.27
## 212 B 2.30 0.36
## 213 B 2.40 0.48
## 214 B 2.50 0.79
## 215 B 2.60 0.15
## 216 B 2.70 1.27
## 217 B 2.80 1.93
## 218 B 2.90 0.30
## 219 B 2.21 1.54
## 220 B 2.15 1.71
## 221 B 2.65 1.14
## 222 B 2.12 1.17
## 223 B 2.11 1.53
## 224 B 2.12 1.42
## 225 B 2.74 1.49
## 226 B 2.43 1.21
## 227 B 2.23 1.94
## 228 B 2.17 1.67
## 229 B 2.58 1.72
## 230 B 2.95 1.19
## 231 B 2.76 1.53
## 232 B 2.45 1.21
## 233 B 2.76 1.64
## 234 B 2.23 1.32
## 235 B 2.77 1.16
## 236 B 2.87 1.19
## 237 B 2.73 1.89
## 238 B 2.21 1.24
## 239 B 2.04 1.51
## 240 B 2.16 1.13

## Call:
## lda(Y ~ X1 + X2, data = data1)
## 
## Prior probabilities of groups:
##   A   B 
## 0.5 0.5 
## 
## Group means:
##      X1       X2
## A 1.461 2.297833
## B 1.461 1.670417
## 
## Coefficients of linear discriminants:
##            LD1
## X1  0.02315805
## X2 -0.94483701

##   [1] A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A
##  [36] A A A A A B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B
##  [71] B B B B B B B B B B A A A A A A A A A A A A A A A A A A A A A A A A A
## [106] A A A A A A A A A A A A A A A B B B B B B B B B B B B B B B B B B B B
## [141] B B B B B B B B B B B B B B B B B B B B A A A A A A A A A A A A A A A
## [176] A A A A A A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B
## [211] B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B
## Levels: A B
##    class.LDA.C
##      A  B
##   A 80 40
##   B 40 80

Perform Classification Trees with Second Data

#Perform classification trees
library(rpart)
tree <- rpart(Y ~ X1 + X2, data1)

library(rpart.plot)
prp(tree, faclen = 0, cex = 0.8, extra = 1)

#Prediction
treePrediction <- predict(tree, data1, type = "class")
treePrediction
##   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18 
##   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A 
##  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36 
##   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A 
##  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54 
##   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A 
##  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72 
##   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A 
##  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90 
##   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A 
##  91  92  93  94  95  96  97  98  99 100 101 102 103 104 105 106 107 108 
##   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   A 
## 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 
##   A   A   A   A   A   A   A   A   A   A   A   A   B   B   B   B   B   B 
## 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 
##   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B 
## 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 
##   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B 
## 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 
##   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B 
## 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 
##   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B 
## 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 
##   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B 
## 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 
##   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B   B 
## 235 236 237 238 239 240 
##   B   B   B   B   B   B 
## Levels: A B
#load package caret
library(caret)
confusionMatrix(treePrediction, data1$Y)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   A   B
##          A 120   0
##          B   0 120
##                                      
##                Accuracy : 1          
##                  95% CI : (0.9847, 1)
##     No Information Rate : 0.5        
##     P-Value [Acc > NIR] : < 2.2e-16  
##                                      
##                   Kappa : 1          
##  Mcnemar's Test P-Value : NA         
##                                      
##             Sensitivity : 1.0        
##             Specificity : 1.0        
##          Pos Pred Value : 1.0        
##          Neg Pred Value : 1.0        
##              Prevalence : 0.5        
##          Detection Rate : 0.5        
##    Detection Prevalence : 0.5        
##       Balanced Accuracy : 1.0        
##                                      
##        'Positive' Class : A          
## 

Conclusion

One of factor that affect the accuracy of classification prediction is the spread of data.

THANK YOU