Problem 1

x <- c(-0.98, 1, 2.02, 3.03, 4.00)
y <- c(2.44, -1.51, -0.47, 2.54, 7.52)

df <- data.frame(x,y)

lm <- lm(y ~ x, data = df)

summary(lm)
## 
## Call:
## lm(formula = y ~ x, data = df)
## 
## Residuals:
##       1       2       3       4       5 
##  2.9547 -2.8511 -2.7671 -0.7037  3.3671 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)
## (Intercept)   0.4038     2.2634   0.178    0.870
## x             0.9373     0.9058   1.035    0.377
## 
## Residual standard error: 3.481 on 3 degrees of freedom
## Multiple R-squared:  0.263,  Adjusted R-squared:  0.01739 
## F-statistic: 1.071 on 1 and 3 DF,  p-value: 0.3769

Problem 2

x <- c(0.1, 0.5, 1, 1.5, 2, 2.5)
y<- c(0.1, 0.28, 0.4, 0.4, 0.37, 0.32)

model <- nls(y ~ (x)/(a+b*x^2), start = list(a=1, b=1))

summary(model)
## 
## Formula: y ~ (x)/(a + b * x^2)
## 
## Parameters:
##   Estimate Std. Error t value Pr(>|t|)    
## a  1.48544    0.08777   16.92 7.15e-05 ***
## b  1.00212    0.05019   19.96 3.71e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.01739 on 4 degrees of freedom
## 
## Number of iterations to convergence: 5 
## Achieved convergence tolerance: 3.899e-07

Problem 3

logistic_func <- function(x, a, b) {
  plogis(1/(1 + exp(a + b*x)))
}

x <- c(0.1, 0.5, 1, 1.5, 2.0, 2.5)
y <- c(0, 0, 1, 1, 1, 0)

df <- data.frame(x =x , y = y)

df$fitted <- logistic_func(df$x, a = 1, b = 1)

model <- glm(y ~ fitted, df, family = binomial(link = "logit"))

summary(model)
## 
## Call:
## glm(formula = y ~ fitted, family = binomial(link = "logit"), 
##     data = df)
## 
## Deviance Residuals: 
##       1        2        3        4        5        6  
## -0.5171  -0.7961   1.2122   0.9579   0.8086  -1.7156  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)    30.43      28.84   1.055    0.291
## fitted        -57.60      54.72  -1.053    0.292
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 8.3178  on 5  degrees of freedom
## Residual deviance: 6.8852  on 4  degrees of freedom
## AIC: 10.885
## 
## Number of Fisher Scoring iterations: 4