Asignación de variables e impresión

x <- 3
y <- 2
x
## [1] 3
y
## [1] 2

Operaciones aritméticas

#suma
suma <- x+y
suma
## [1] 5
#resta
resta <- x-y
resta
## [1] 1
#multiplicación
multiplicación <- x*y
multiplicación
## [1] 6
#división
Division <- x/y
Division
## [1] 1.5
#division entera
Division_entera <- x%/%y
Division_entera
## [1] 1
#Potencia
Potencia <- x^y
Potencia
## [1] 9

Funciones matemáticas

#Raiz cuadrada
raiz_cuadrada <- sqrt(x)
raiz_cuadrada
## [1] 1.732051
#Raiz cúbica
raiz_cubica <- x ^(1/3)
raiz_cubica
## [1] 1.44225
#Exponencial
Exponencial <- exp(1)
Exponencial
## [1] 2.718282
z <- -4
z
## [1] -4
#Absoluto
absoluto <- abs(z)
absoluto
## [1] 4
#Signo
signo <- sign(z)
signo
## [1] -1
signo2 <- sign(x)
signo2
## [1] 1
#Redondeo arriba
redondeo_arriba <- ceiling (x/y)
redondeo_arriba
## [1] 2
#Redondeo abajo
redondeo_abajo <- floor (x/y)
redondeo_abajo
## [1] 1
#Truncar
truncar <- trunc(Division)
truncar
## [1] 1

Constantes

#constantes
pi
## [1] 3.141593
radio<-5
area_circulo <- pi*radio^2
area_circulo
## [1] 78.53982

Vectores

#Vector
a<- c(1,2,3,4,5)
a
## [1] 1 2 3 4 5
longitud <- length(a)
longitud
## [1] 5
promedio <- mean(a)
promedio
## [1] 3
resumen <- summary(a)
resumen
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       1       2       3       3       4       5
orden_ascendente <- sort(a)
orden_ascendente
## [1] 1 2 3 4 5
orden_descendente <- sort(a,decreasing=TRUE)
orden_descendente
## [1] 5 4 3 2 1
b<- c(1,2,3,4,5)
b
## [1] 1 2 3 4 5
suma_vectores <- a+b
suma_vectores
## [1]  2  4  6  8 10
plot(a,b, type="b", main="Ventas totales por semana", xlab="Semana", ylab="MXN")

LS0tCnRpdGxlOiAiQ29tYW5kb3MgYsOhc2ljb3MiCmF1dGhvcjogIkJydW5vIETDrWF6IEZsb3JlcyBBMDA4MjQ1NTQiCmRhdGU6ICIyMDIzLTAzLTE3IgpvdXRwdXQ6CiAgaHRtbF9kb2N1bWVudDoKICAgIHRvYzogVFJVRQogICAgdG9jX2Zsb2F0OiBUUlVFCiAgICBjb2RlX2Rvd25sb2FkOiBUUlVFCi0tLQoKIyMgQXNpZ25hY2nDs24gZGUgdmFyaWFibGVzIGUgaW1wcmVzacOzbgoKYGBge3J9CnggPC0gMwp5IDwtIDIKeAp5CmBgYAoKIyMgT3BlcmFjaW9uZXMgYXJpdG3DqXRpY2FzCgpgYGB7cn0KI3N1bWEKc3VtYSA8LSB4K3kKc3VtYQoKI3Jlc3RhCnJlc3RhIDwtIHgteQpyZXN0YQoKI211bHRpcGxpY2FjacOzbgptdWx0aXBsaWNhY2nDs24gPC0geCp5Cm11bHRpcGxpY2FjacOzbgoKI2RpdmlzacOzbgpEaXZpc2lvbiA8LSB4L3kKRGl2aXNpb24KCiNkaXZpc2lvbiBlbnRlcmEKRGl2aXNpb25fZW50ZXJhIDwtIHglLyV5CkRpdmlzaW9uX2VudGVyYQoKI1BvdGVuY2lhClBvdGVuY2lhIDwtIHheeQpQb3RlbmNpYQpgYGAKCiMjIEZ1bmNpb25lcyBtYXRlbcOhdGljYXMKCmBgYHtyfQojUmFpeiBjdWFkcmFkYQpyYWl6X2N1YWRyYWRhIDwtIHNxcnQoeCkKcmFpel9jdWFkcmFkYQoKI1JhaXogY8O6YmljYQpyYWl6X2N1YmljYSA8LSB4IF4oMS8zKQpyYWl6X2N1YmljYQoKI0V4cG9uZW5jaWFsCkV4cG9uZW5jaWFsIDwtIGV4cCgxKQpFeHBvbmVuY2lhbAoKeiA8LSAtNAp6CgojQWJzb2x1dG8KYWJzb2x1dG8gPC0gYWJzKHopCmFic29sdXRvCgojU2lnbm8Kc2lnbm8gPC0gc2lnbih6KQpzaWdubwoKc2lnbm8yIDwtIHNpZ24oeCkKc2lnbm8yCgojUmVkb25kZW8gYXJyaWJhCnJlZG9uZGVvX2FycmliYSA8LSBjZWlsaW5nICh4L3kpCnJlZG9uZGVvX2FycmliYQoKI1JlZG9uZGVvIGFiYWpvCnJlZG9uZGVvX2FiYWpvIDwtIGZsb29yICh4L3kpCnJlZG9uZGVvX2FiYWpvCgojVHJ1bmNhcgp0cnVuY2FyIDwtIHRydW5jKERpdmlzaW9uKQp0cnVuY2FyCmBgYAoKIyMgQ29uc3RhbnRlcwoKYGBge3J9CiNjb25zdGFudGVzCnBpCnJhZGlvPC01CmFyZWFfY2lyY3VsbyA8LSBwaSpyYWRpb14yCmFyZWFfY2lyY3VsbwpgYGAKCiMjIFZlY3RvcmVzCgpgYGB7cn0KI1ZlY3RvcgphPC0gYygxLDIsMyw0LDUpCmEKCmxvbmdpdHVkIDwtIGxlbmd0aChhKQpsb25naXR1ZAoKcHJvbWVkaW8gPC0gbWVhbihhKQpwcm9tZWRpbwoKcmVzdW1lbiA8LSBzdW1tYXJ5KGEpCnJlc3VtZW4KCm9yZGVuX2FzY2VuZGVudGUgPC0gc29ydChhKQpvcmRlbl9hc2NlbmRlbnRlCgpvcmRlbl9kZXNjZW5kZW50ZSA8LSBzb3J0KGEsZGVjcmVhc2luZz1UUlVFKQpvcmRlbl9kZXNjZW5kZW50ZQoKYjwtIGMoMSwyLDMsNCw1KQpiCgpzdW1hX3ZlY3RvcmVzIDwtIGErYgpzdW1hX3ZlY3RvcmVzCgpwbG90KGEsYiwgdHlwZT0iYiIsIG1haW49IlZlbnRhcyB0b3RhbGVzIHBvciBzZW1hbmEiLCB4bGFiPSJTZW1hbmEiLCB5bGFiPSJNWE4iKQpgYGAKCg==