library("MASS")
data("Pima.tr")
library("RColorBrewer")
library(gplots)
Attaching package: 'gplots'
The following object is masked from 'package:stats':
lowess
library("MASS")
data("Pima.tr")
library("RColorBrewer")
library(gplots)
Attaching package: 'gplots'
The following object is masked from 'package:stats':
lowess
Grafico.student <- function(x, y){
print(y)
par(mfrow = c(1,3))
boxplot(x, main = "", ylab = "", xlab = "Grupos experimentales")
vioplot::vioplot(x, main= "Grafico de violin", ylab="", xlab="")
plotmeans(x, ylab= "", xlab = "Grupos experimentales")
}
Grafico.student(Pima.tr$glu~Pima.tr$type, Pima.tr$glu~Pima.tr$type)Pima.tr$glu ~ Pima.tr$type
bartlett.test(Pima.tr$glu~Pima.tr$type)
Bartlett test of homogeneity of variances
data: Pima.tr$glu by Pima.tr$type
Bartlett's K-squared = 1.3638, df = 1, p-value = 0.2429
t.test(Pima.tr$glu~Pima.tr$type, var.equal=T)
Two Sample t-test
data: Pima.tr$glu by Pima.tr$type
t = -7.682, df = 198, p-value = 7.075e-13
alternative hypothesis: true difference in means between group No and group Yes is not equal to 0
95 percent confidence interval:
-40.15520 -23.75033
sample estimates:
mean in group No mean in group Yes
113.1061 145.0588
#Variable bp y type
bartlett.test(Pima.tr$bp~Pima.tr$type) # varianzas son iguales
Bartlett test of homogeneity of variances
data: Pima.tr$bp by Pima.tr$type
Bartlett's K-squared = 0.17341, df = 1, p-value = 0.6771
t.test(Pima.tr$bp~Pima.tr$type, var.equal=T)
Two Sample t-test
data: Pima.tr$bp by Pima.tr$type
t = -3.0015, df = 198, p-value = 0.003032
alternative hypothesis: true difference in means between group No and group Yes is not equal to 0
95 percent confidence interval:
-8.355947 -1.729615
sample estimates:
mean in group No mean in group Yes
69.54545 74.58824
Grafico.student(Pima.tr$bp~Pima.tr$type, Pima.tr$bp~Pima.tr$type)Pima.tr$bp ~ Pima.tr$type
#variables bmi y type
bartlett.test(Pima.tr$bmi~Pima.tr$type) # varianzas son iguales
Bartlett test of homogeneity of variances
data: Pima.tr$bmi by Pima.tr$type
Bartlett's K-squared = 6.5537, df = 1, p-value = 0.01047
t.test(Pima.tr$bmi~Pima.tr$type, var.equal=F)
Welch Two Sample t-test
data: Pima.tr$bmi by Pima.tr$type
t = -4.512, df = 171.46, p-value = 1.188e-05
alternative hypothesis: true difference in means between group No and group Yes is not equal to 0
95 percent confidence interval:
-5.224615 -2.044547
sample estimates:
mean in group No mean in group Yes
31.07424 34.70882
Grafico.student(Pima.tr$bmi~Pima.tr$type, Pima.tr$bmi~Pima.tr$type)Pima.tr$bmi ~ Pima.tr$type
#variables skin y type
bartlett.test(Pima.tr$skin~Pima.tr$type) # varianzas son iguales
Bartlett test of homogeneity of variances
data: Pima.tr$skin by Pima.tr$type
Bartlett's K-squared = 1.2628, df = 1, p-value = 0.2611
t.test(Pima.tr$skin~Pima.tr$type, var.equal=T)
Two Sample t-test
data: Pima.tr$skin by Pima.tr$type
t = -3.4712, df = 198, p-value = 0.0006361
alternative hypothesis: true difference in means between group No and group Yes is not equal to 0
95 percent confidence interval:
-9.272397 -2.553806
sample estimates:
mean in group No mean in group Yes
27.20455 33.11765
Grafico.student(Pima.tr$skin~Pima.tr$type, Pima.tr$skin~Pima.tr$type)Pima.tr$skin ~ Pima.tr$type
#variables ped y type
bartlett.test(Pima.tr$ped~Pima.tr$type) # varianzas son iguales
Bartlett test of homogeneity of variances
data: Pima.tr$ped by Pima.tr$type
Bartlett's K-squared = 8.0901, df = 1, p-value = 0.004451
t.test(Pima.tr$ped~Pima.tr$type, var.equal=T)
Two Sample t-test
data: Pima.tr$ped by Pima.tr$type
t = -2.9601, df = 198, p-value = 0.003451
alternative hypothesis: true difference in means between group No and group Yes is not equal to 0
95 percent confidence interval:
-0.22189897 -0.04445487
sample estimates:
mean in group No mean in group Yes
0.4154848 0.5486618
Grafico.student(Pima.tr$ped~Pima.tr$type, Pima.tr$ped~Pima.tr$type)Pima.tr$ped ~ Pima.tr$type
#variables age y type
bartlett.test(Pima.tr$age~Pima.tr$type) # varianzas son iguales
Bartlett test of homogeneity of variances
data: Pima.tr$age by Pima.tr$type
Bartlett's K-squared = 3.1155, df = 1, p-value = 0.07755
t.test(Pima.tr$age~Pima.tr$type, var.equal=F)
Welch Two Sample t-test
data: Pima.tr$age by Pima.tr$type
t = -5.2162, df = 115.7, p-value = 8.106e-07
alternative hypothesis: true difference in means between group No and group Yes is not equal to 0
95 percent confidence interval:
-11.667372 -5.245284
sample estimates:
mean in group No mean in group Yes
29.23485 37.69118
Grafico.student(Pima.tr$age~Pima.tr$type, Pima.tr$age~Pima.tr$type)Pima.tr$age ~ Pima.tr$type
#Conclusiones: En la comparación entre la condicion experimental y los niveles de glucosa se encontraron diferencias estadisticamente significativas, se observó que los niveles de glucosa son más altos en el grupo que presenta diabetes. Se encontró el mismo efecto en la comparación entre la condición experimetal y la presión arterial, donde se encontró una relación en la presión arterial y la diabetes. Efectos similares se encontraron entre el pedigree y la diabetes.Pima.tr$edad1.1 <- cut(Pima.tr$age,
breaks = c(0, 40, 90),
labels = c("0-40", "40-90"),
right = F, na.rm= TRUE)
Pima.tr$edad1.1 <- factor(Pima.tr$edad1.1)
#Niveles de glucosa y relación con edad (menor a 40 y mayor a 40)
bartlett.test(Pima.tr$glu~Pima.tr$edad1.1) # varianzas son iguales
Bartlett test of homogeneity of variances
data: Pima.tr$glu by Pima.tr$edad1.1
Bartlett's K-squared = 2.8805, df = 1, p-value = 0.08966
t.test(Pima.tr$glu~Pima.tr$edad1.1, var.equal=F)
Welch Two Sample t-test
data: Pima.tr$glu by Pima.tr$edad1.1
t = -3.1504, df = 72.526, p-value = 0.00237
alternative hypothesis: true difference in means between group 0-40 and group 40-90 is not equal to 0
95 percent confidence interval:
-28.495972 -6.410695
sample estimates:
mean in group 0-40 mean in group 40-90
119.6067 137.0600
Grafico.student(Pima.tr$glu~Pima.tr$edad1.1, Pima.tr$glu~Pima.tr$edad1.1)Pima.tr$glu ~ Pima.tr$edad1.1
#compración presion arterial y rango de edad
Pima.tr$edad1.1 <- cut(Pima.tr$age,
breaks = c(0, 40, 90),
labels = c("0-40", "40-90"),
right = F, na.rm= TRUE)
Pima.tr$edad1.1 <- factor(Pima.tr$edad1.1)
#Niveles de presion arterial y relación con edad (menor a 40 y mayor a 40)
bartlett.test(Pima.tr$bmi~Pima.tr$edad1.1) # varianzas son iguales
Bartlett test of homogeneity of variances
data: Pima.tr$bmi by Pima.tr$edad1.1
Bartlett's K-squared = 8.1341, df = 1, p-value = 0.004344
t.test(Pima.tr$bmi~Pima.tr$edad1.1, var.equal=F)
Welch Two Sample t-test
data: Pima.tr$bmi by Pima.tr$edad1.1
t = -1.7278, df = 119.93, p-value = 0.0866
alternative hypothesis: true difference in means between group 0-40 and group 40-90 is not equal to 0
95 percent confidence interval:
-3.1130555 0.2117222
sample estimates:
mean in group 0-40 mean in group 40-90
31.94733 33.39800
Grafico.student(Pima.tr$bmi~Pima.tr$edad1.1, Pima.tr$bmi~Pima.tr$edad1.1)Pima.tr$bmi ~ Pima.tr$edad1.1
library(readxl)
SLE_dataset1 <- read_excel("C:/Users/David/Downloads/SLE dataset1.xlsx")
View(SLE_dataset1)SLE_dataset1$Groups_NLSLEvsSLE<-factor(SLE_dataset1$Groups_NLSLEvsSLE)
SLE_dataset1$Gender<-factor(SLE_dataset1$Gender)
SLE_dataset1$Alcohol_abuse<-factor(SLE_dataset1$Alcohol_abuse)
SLE_dataset1$Smoking<-factor(SLE_dataset1$Smoking)
SLE_dataset1$Corticosteroids_users<-factor(SLE_dataset1$Corticosteroids_users)
SLE_dataset1$Azathioprine_users<-factor(SLE_dataset1$Azathioprine_users)
SLE_dataset1$Cyclophosphamide_users<-factor(SLE_dataset1$Cyclophosphamide_users)
SLE_dataset1$Mycophenolate_Mofetil_user<-factor(SLE_dataset1$Mycophenolate_Mofetil_user)
SLE_dataset1$Act_SLEDAI<-factor(SLE_dataset1$Act_SLEDAI)
SLE_dataset1$SNP_A<-factor(SLE_dataset1$SNP_A)
SLE_dataset1$ALLELE_1<-factor(SLE_dataset1$ALLELE_1)
SLE_dataset1$ALLELE_2<-factor(SLE_dataset1$ALLELE_2)#edad y grupo
bartlett.test(SLE_dataset1$Age~SLE_dataset1$Groups_NLSLEvsSLE)
Bartlett test of homogeneity of variances
data: SLE_dataset1$Age by SLE_dataset1$Groups_NLSLEvsSLE
Bartlett's K-squared = 0.09995, df = 1, p-value = 0.7519
t.test(SLE_dataset1$Age~SLE_dataset1$Groups_NLSLEvsSLE, var.equal=T)
Two Sample t-test
data: SLE_dataset1$Age by SLE_dataset1$Groups_NLSLEvsSLE
t = -2.0686, df = 101, p-value = 0.04114
alternative hypothesis: true difference in means between group LN and group Non-LN is not equal to 0
95 percent confidence interval:
-9.7448587 -0.2039998
sample estimates:
mean in group LN mean in group Non-LN
39.06667 44.04110
bartlett.test(SLE_dataset1$Leptin~SLE_dataset1$Groups_NLSLEvsSLE)
Bartlett test of homogeneity of variances
data: SLE_dataset1$Leptin by SLE_dataset1$Groups_NLSLEvsSLE
Bartlett's K-squared = 1.8646, df = 1, p-value = 0.1721
t.test(SLE_dataset1$Leptin~SLE_dataset1$Groups_NLSLEvsSLE, var.equal=T)
Two Sample t-test
data: SLE_dataset1$Leptin by SLE_dataset1$Groups_NLSLEvsSLE
t = 1.8135, df = 101, p-value = 0.07273
alternative hypothesis: true difference in means between group LN and group Non-LN is not equal to 0
95 percent confidence interval:
-1.00849 22.49153
sample estimates:
mean in group LN mean in group Non-LN
33.28518 22.54365
bartlett.test(SLE_dataset1$Leptin_BMI~SLE_dataset1$Groups_NLSLEvsSLE)
Bartlett test of homogeneity of variances
data: SLE_dataset1$Leptin_BMI by SLE_dataset1$Groups_NLSLEvsSLE
Bartlett's K-squared = 0.24117, df = 1, p-value = 0.6234
t.test(SLE_dataset1$Leptin_BMI ~SLE_dataset1$Groups_NLSLEvsSLE, var.equal=T)
Two Sample t-test
data: SLE_dataset1$Leptin_BMI by SLE_dataset1$Groups_NLSLEvsSLE
t = 1.8684, df = 101, p-value = 0.0646
alternative hypothesis: true difference in means between group LN and group Non-LN is not equal to 0
95 percent confidence interval:
-0.0234272 0.7825830
sample estimates:
mean in group LN mean in group Non-LN
1.1753673 0.7957895
bartlett.test(SLE_dataset1$Adiponectin~SLE_dataset1$Groups_NLSLEvsSLE)
Bartlett test of homogeneity of variances
data: SLE_dataset1$Adiponectin by SLE_dataset1$Groups_NLSLEvsSLE
Bartlett's K-squared = 3.2306, df = 1, p-value = 0.07228
t.test(SLE_dataset1$Adiponectin ~SLE_dataset1$Groups_NLSLEvsSLE, var.equal=T)
Two Sample t-test
data: SLE_dataset1$Adiponectin by SLE_dataset1$Groups_NLSLEvsSLE
t = 2.6096, df = 101, p-value = 0.01044
alternative hypothesis: true difference in means between group LN and group Non-LN is not equal to 0
95 percent confidence interval:
1.169488 8.582551
sample estimates:
mean in group LN mean in group Non-LN
20.44003 15.56401
bartlett.test(SLE_dataset1$Adiponectin_BMI~SLE_dataset1$Groups_NLSLEvsSLE)
Bartlett test of homogeneity of variances
data: SLE_dataset1$Adiponectin_BMI by SLE_dataset1$Groups_NLSLEvsSLE
Bartlett's K-squared = 2.4829, df = 1, p-value = 0.1151
t.test(SLE_dataset1$Adiponectin_BMI ~SLE_dataset1$Groups_NLSLEvsSLE, var.equal=T)
Two Sample t-test
data: SLE_dataset1$Adiponectin_BMI by SLE_dataset1$Groups_NLSLEvsSLE
t = 2.3709, df = 101, p-value = 0.01964
alternative hypothesis: true difference in means between group LN and group Non-LN is not equal to 0
95 percent confidence interval:
0.03280225 0.36891067
sample estimates:
mean in group LN mean in group Non-LN
0.7989785 0.5981220
#Tabla de contingencia de variables a evaluar
tabx20 <- table(SLE_dataset1$Groups_NLSLEvsSLE, SLE_dataset1$Gender)
#Grafico con proporciones
barplot(prop.table(tabx20,2),
legend= rownames(tabx20),
beside= T,
ylab = "Proporción",
names= c("Hombre","Mujer"),
col=brewer.pal(n = 3, name = "Accent"))#Test de chisquare
chisq.test(tabx20)
Chi-squared test for given probabilities
data: tabx20
X-squared = 17.951, df = 1, p-value = 2.266e-05
tabx20.1 <-chisq.test(tabx20)
tabx20.1$observed[1] 30 73
tabx20.1$expected[1] 51.5 51.5
#Grupo y smoking
tabx21 <- table(SLE_dataset1$Groups_NLSLEvsSLE, SLE_dataset1$Smoking)
#Test de chisquare
chisq.test(tabx21)Warning in chisq.test(tabx21): Chi-squared approximation may be incorrect
Pearson's Chi-squared test with Yates' continuity correction
data: tabx21
X-squared = 1.1092, df = 1, p-value = 0.2923
tabx21.1 <-chisq.test(tabx21)Warning in chisq.test(tabx21): Chi-squared approximation may be incorrect
tabx21.1$observed
No Yes
LN 27 3
Non-LN 71 2
tabx21.1$expected
No Yes
LN 28.54369 1.456311
Non-LN 69.45631 3.543689
#Grupo y abuso de alcohol
tabx22 <- table(SLE_dataset1$Groups_NLSLEvsSLE, SLE_dataset1$Alcohol_abuse)
#Test de chisquare
chisq.test(tabx22)Warning in chisq.test(tabx22): Chi-squared approximation may be incorrect
Pearson's Chi-squared test with Yates' continuity correction
data: tabx22
X-squared = 0.21558, df = 1, p-value = 0.6424
tabx22.1 <-chisq.test(tabx21)Warning in chisq.test(tabx21): Chi-squared approximation may be incorrect
tabx22.1$observed
No Yes
LN 27 3
Non-LN 71 2
tabx22.1$expected
No Yes
LN 28.54369 1.456311
Non-LN 69.45631 3.543689
#Grupo y corticoesteroides
tabx23 <- table(SLE_dataset1$Groups_NLSLEvsSLE, SLE_dataset1$Corticosteroids_users)
#Test de chisquare
chisq.test(tabx23)
Chi-squared test for given probabilities
data: tabx23
X-squared = 17.951, df = 1, p-value = 2.266e-05
tabx23.1 <-chisq.test(tabx21)Warning in chisq.test(tabx21): Chi-squared approximation may be incorrect
tabx23.1$observed
No Yes
LN 27 3
Non-LN 71 2
tabx23.1$expected
No Yes
LN 28.54369 1.456311
Non-LN 69.45631 3.543689
tabx24 <- table(SLE_dataset1$Groups_NLSLEvsSLE, SLE_dataset1$SNP_A)
#Test de chisquare
chisq.test(tabx24)
Pearson's Chi-squared test with Yates' continuity correction
data: tabx24
X-squared = 0.12459, df = 1, p-value = 0.7241
tabx24.1 <-chisq.test(tabx24)
tabx24.1$observed
GC GG
LN 15 15
Non-LN 41 32
tabx24.1$expected
GC GG
LN 16.31068 13.68932
Non-LN 39.68932 33.31068
library(readxl)
Base_Prueba_t_pareada_2 <- read_excel("C:/Users/David/Downloads/Base_Prueba_t_pareada 2.xlsx")
#comparacion entee niveles de leptina
antes1 <- (Base_Prueba_t_pareada_2$Leptin)
antes2 <- (Base_Prueba_t_pareada_2$Leptin6M)
despues1 <- (Base_Prueba_t_pareada_2$Leptin12M)
boxplot(antes1, antes2, horizontal = FALSE,
lwd = 2, col=brewer.pal(n = 3, name = "Accent"),
xlab = "Grupos", # X-axis label
ylab = "Niveles de leptina", # Y-axis label
main = "Comparación de niveles de leptina inicio y leptina 6 meses", # Title
border = "black", # Boxplot border color
outpch = 25, # Outliers symbol
whisklty = 2, # Whisker line type
names=c("leptina antes", "leptina despues"))#prueba de hipotesis
t.test(x=antes1, y=antes2, alternative = "two.sided",
paired = T, var.equal = T)
Paired t-test
data: antes1 and antes2
t = 11.746, df = 164, p-value < 2.2e-16
alternative hypothesis: true mean difference is not equal to 0
95 percent confidence interval:
3.447977 4.841477
sample estimates:
mean difference
4.144727
#12 meses posterior
boxplot(antes1, despues1, horizontal = FALSE,
lwd = 2, col=brewer.pal(n = 3, name = "Accent"),
xlab = "Grupos", # X-axis label
ylab = "Niveles de biomarcador", # Y-axis label
main = "Comparación de niveles de leptina inicio y leptina 6 meses despues", # Title
border = "black", # Boxplot border color
outpch = 25, # Outliers symbol
whisklty = 2, # Whisker line type
names=c("leptina antes", "leptina despues"))#prueba de hipotesis
t.test(x=antes1, y=despues1, alternative = "two.sided",
paired = T, var.equal = T)
Paired t-test
data: antes1 and despues1
t = 11.744, df = 164, p-value < 2.2e-16
alternative hypothesis: true mean difference is not equal to 0
95 percent confidence interval:
7.044784 9.892549
sample estimates:
mean difference
8.468667
antes1.1 <- (Base_Prueba_t_pareada_2$Biomarcador)
antes2.1 <- (Base_Prueba_t_pareada_2$Biomarcador6M)
despues3.1 <- (Base_Prueba_t_pareada_2$Biomarcador12M)
boxplot(antes1.1, antes2.1, horizontal = FALSE,
lwd = 2, col=brewer.pal(n = 3, name = "Accent"),
xlab = "Grupos", # X-axis label
ylab = "Niveles de biomarcador", # Y-axis label
main = "Comparación de niveles de biomarcador inicio y biomarcador 6 meses despues", # Title
border = "black", # Boxplot border color
outpch = 25, # Outliers symbol
whisklty = 2, # Whisker line type
names=c("biomarcador antes", "biomarcador despues"))#prueba de hipotesis
t.test(x=antes1.1, y=antes2.1, alternative = "two.sided",
paired = T, var.equal = T)
Paired t-test
data: antes1.1 and antes2.1
t = -10.147, df = 164, p-value < 2.2e-16
alternative hypothesis: true mean difference is not equal to 0
95 percent confidence interval:
-4.254057 -2.868125
sample estimates:
mean difference
-3.561091
#biomarcador antes y despues 12 meses
boxplot(antes1.1, despues3.1, horizontal = FALSE,
lwd = 2, col=brewer.pal(n = 3, name = "Accent"),
xlab = "Grupos", # X-axis label
ylab = "Niveles de biomarcador", # Y-axis label
main = "Comparación de niveles de biomarcador inicio y biomarcador 12 meses despues", # Title
border = "black", # Boxplot border color
outpch = 25, # Outliers symbol
whisklty = 2, # Whisker line type
names=c("biomarcador antes", "biomarcador despues"))#prueba de hipotesis
t.test(x=antes1.1, y=despues3.1, alternative = "two.sided",
paired = T, var.equal = T)
Paired t-test
data: antes1.1 and despues3.1
t = -10.152, df = 164, p-value < 2.2e-16
alternative hypothesis: true mean difference is not equal to 0
95 percent confidence interval:
-9.291692 -6.265884
sample estimates:
mean difference
-7.778788