set.seed (34)
rto= rnorm(48, 3, 0.3)
factor= gl(3, 16, 48, c("v1", "v2", "v3"))
dt= data.frame(factor, rto)
library(collapsibleTree)
collapsibleTree(dt, hierarchy =c("factor", "rto"))
set.seed (34)
rto= sort(round(rnorm(48, 3, 0.3), 2), F)
factor= gl(3, 16, 48, c("v1", "v2", "v3"))
dt1= data.frame(factor, rto)
library (collapsibleTree)
collapsibleTree(dt1, hierarchy =c("factor", "rto"))
boxplot(rto~factor, data=dt1, xlab="variedades", ylab="rendimiento")
\[H1: V1=V2=V3 (todas~tienen~el~mismo~rendimiento)\]
\[H2: Hay~diferencias~entre~las~variables\]
\[y=\mu+f_1+\epsilon\]
modelo = aov(rto~factor, data=dt1)
resumen= summary(modelo)
ifelse(unlist(resumen)[9]<0.05, "rechazo H1", "no rechazo H1")
## Pr(>F)1
## "rechazo H1"
\[H3: los~residuales~tienen~distribución~normal\]
residuales=modelo$residuals
normalidad=shapiro.test(residuales)
normalidad
##
## Shapiro-Wilk normality test
##
## data: residuales
## W = 0.96945, p-value = 0.2411
\[H4: las~varianzas~son~iguales\]
homocedasticidad= bartlett.test(modelo$residuals,factor)
homocedasticidad
##
## Bartlett test of homogeneity of variances
##
## data: modelo$residuals and factor
## Bartlett's K-squared = 15.125, df = 2, p-value = 0.0005195