Goal

Measure portfolio risk using skewness. Skewness is the extent to which returns are asymmetric around the mean. It is important because a positively skewed distribution means large positive returns are more likely while a negatively skewed distribution implies large negative returns are more likely.

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”

from 2012-12-31 to 2017-12-31

1 Import stock prices

2 Convert prices to returns

3 Assign a weight to each asset

## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
## [1] 0.25 0.25 0.20 0.20 0.10
## # A tibble: 5 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AGG        0.25
## 2 EEM        0.25
## 3 EFA        0.2 
## 4 IJS        0.2 
## 5 SPY        0.1

4 Build a portfolio

## # A tibble: 60 × 2
##    date        returns
##    <date>        <dbl>
##  1 2013-01-31  0.0204 
##  2 2013-02-28 -0.00239
##  3 2013-03-28  0.0121 
##  4 2013-04-30  0.0174 
##  5 2013-05-31 -0.0128 
##  6 2013-06-28 -0.0247 
##  7 2013-07-31  0.0321 
##  8 2013-08-30 -0.0224 
##  9 2013-09-30  0.0511 
## 10 2013-10-31  0.0301 
## # … with 50 more rows

5 Calculate Skewness

## # A tibble: 1 × 1
##   Skewness
##      <dbl>
## 1   -0.168

6 Plot

Expected Returns vs Risk

24 Months Rolling Volatility