#Asignación de variables

x<-3
y<-2

#Impresion de resultados

x
## [1] 3
y
## [1] 2

#Operaciones Aritmeticas

suma<- x+y
suma
## [1] 5
resta<- x-y
resta
## [1] 1
multiplicacion<-x*y
multiplicacion
## [1] 6
division<-x/y
division
## [1] 1.5
division_entrea<-x%/%y
division_entrea
## [1] 1
potencia<-x^2
potencia
## [1] 9

#Funciones matematicas

raiz_cuadrada<-sqrt(x)
raiz_cuadrada
## [1] 1.732051
raiz_cubica<-x^(1/3)
raiz_cubica
## [1] 1.44225
exponencial<-exp(1)
exponencial
## [1] 2.718282
z<--4
z
## [1] -4
absoluto<-abs(z)
absoluto
## [1] 4
signo<-sign(z)
signo
## [1] -1
signo2<-sign(x)
signo2
## [1] 1
redondeo_arriba<-ceiling(x/y)
redondeo_arriba
## [1] 2
redondeo_abajo<- floor(x/y)
redondeo_abajo
## [1] 1
truncar<- trunc(division)
truncar
## [1] 1

#Constantes

pi
## [1] 3.141593
radio<-5
area_circulo<- pi*radio^2
area_circulo
## [1] 78.53982

#Vectores

#a <- c(1,2,3,4,5)
#a

#longitud <-length (a)
#longitud

#promedio<- mean(a)
#promedio

#resumen<-summary (a)
#resumen

#orden_ascendente<- sort(a)
#orden_ascendente

#?sort

#orden_descendente<- sort(a,decresins=TRUE)
#orden_descendente

#b <-c(1,2,3,4,5)
#b

#suma_de_vectores<-a+b
#suma_de_vectores

#GENERAR GRÁFCA

#plot(a,b, type="l")

#TTIULO DE GRÁFICA

#plot(a,b,type="b", main="Ventas Totales por Semana")

#NOMBRE A LOS EJES

#plot(a,b,type="b", main="Ventas Totales por Semana", xlab= "Semana", ylab="MXN")
LS0tDQp0aXRsZTogIkNvbWFuZG9zIELDoXNpY29zIg0KYXV0aG9yOiAiTHVpcyBBZHJpYW4gTWVuZG96YSBSZHoiDQpkYXRlOiAiMjAyMy0wMy0xNyINCm91dHB1dCA6IA0KICBodG1sX2RvY3VtZW50Og0KICAgIHRvYzogdHJ1ZQ0KICAgIHRvY19mbG9hdDogdHJ1ZQ0KICAgIGNvZGVfZG93bmxvYWQ6IHRydWUNCi0tLQ0KDQogICFbXShodHRwczovLzEuYnAuYmxvZ3Nwb3QuY29tLy1zcjBFem5jLU92VS9YS0VrOUpOUjNJSS9BQUFBQUFBQUFLUS9lTW0tczl2aUxFNFpuczJYQWNHUDFYM0ZpeFhfR3JBSXdDTGNCR0FzL3MxNjAwL21haW50ZW5hbmNlMi5wbmcpDQoNCiNBc2lnbmFjacOzbiBkZSB2YXJpYWJsZXMgDQpgYGB7cn0NCng8LTMNCnk8LTINCmBgYA0KDQojSW1wcmVzaW9uIGRlIHJlc3VsdGFkb3MNCmBgYHtyfQ0KeA0KeQ0KYGBgDQoNCiNPcGVyYWNpb25lcyBBcml0bWV0aWNhcw0KYGBge3J9DQpzdW1hPC0geCt5DQpzdW1hDQoNCnJlc3RhPC0geC15DQpyZXN0YQ0KDQptdWx0aXBsaWNhY2lvbjwteCp5DQptdWx0aXBsaWNhY2lvbg0KDQpkaXZpc2lvbjwteC95DQpkaXZpc2lvbg0KDQpkaXZpc2lvbl9lbnRyZWE8LXglLyV5DQpkaXZpc2lvbl9lbnRyZWENCg0KcG90ZW5jaWE8LXheMg0KcG90ZW5jaWENCg0KYGBgDQoNCiNGdW5jaW9uZXMgbWF0ZW1hdGljYXMNCmBgYHtyfQ0KDQpyYWl6X2N1YWRyYWRhPC1zcXJ0KHgpDQpyYWl6X2N1YWRyYWRhDQoNCnJhaXpfY3ViaWNhPC14XigxLzMpDQpyYWl6X2N1YmljYQ0KDQpleHBvbmVuY2lhbDwtZXhwKDEpDQpleHBvbmVuY2lhbA0KDQp6PC0tNA0Keg0KDQphYnNvbHV0bzwtYWJzKHopDQphYnNvbHV0bw0KDQpzaWdubzwtc2lnbih6KQ0Kc2lnbm8NCg0Kc2lnbm8yPC1zaWduKHgpDQpzaWdubzINCg0KcmVkb25kZW9fYXJyaWJhPC1jZWlsaW5nKHgveSkNCnJlZG9uZGVvX2FycmliYQ0KDQpyZWRvbmRlb19hYmFqbzwtIGZsb29yKHgveSkNCnJlZG9uZGVvX2FiYWpvDQoNCnRydW5jYXI8LSB0cnVuYyhkaXZpc2lvbikNCnRydW5jYXINCmBgYA0KDQojQ29uc3RhbnRlcw0KYGBge3J9DQpwaQ0KcmFkaW88LTUNCmFyZWFfY2lyY3VsbzwtIHBpKnJhZGlvXjINCmFyZWFfY2lyY3Vsbw0KYGBgDQoNCiNWZWN0b3Jlcw0KYGBge3J9DQojYSA8LSBjKDEsMiwzLDQsNSkNCiNhDQoNCiNsb25naXR1ZCA8LWxlbmd0aCAoYSkNCiNsb25naXR1ZA0KDQojcHJvbWVkaW88LSBtZWFuKGEpDQojcHJvbWVkaW8NCg0KI3Jlc3VtZW48LXN1bW1hcnkgKGEpDQojcmVzdW1lbg0KDQojb3JkZW5fYXNjZW5kZW50ZTwtIHNvcnQoYSkNCiNvcmRlbl9hc2NlbmRlbnRlDQoNCiM/c29ydA0KDQojb3JkZW5fZGVzY2VuZGVudGU8LSBzb3J0KGEsZGVjcmVzaW5zPVRSVUUpDQojb3JkZW5fZGVzY2VuZGVudGUNCg0KI2IgPC1jKDEsMiwzLDQsNSkNCiNiDQoNCiNzdW1hX2RlX3ZlY3RvcmVzPC1hK2INCiNzdW1hX2RlX3ZlY3RvcmVzDQpgYGANCg0KI0dFTkVSQVIgR1LDgUZDQQ0KYGBge3J9DQojcGxvdChhLGIsIHR5cGU9ImwiKQ0KYGBgDQoNCiNUVElVTE8gREUgR1LDgUZJQ0ENCmBgYHtyfQ0KI3Bsb3QoYSxiLHR5cGU9ImIiLCBtYWluPSJWZW50YXMgVG90YWxlcyBwb3IgU2VtYW5hIikNCmBgYA0KDQojTk9NQlJFIEEgTE9TIEVKRVMNCmBgYHtyfQ0KI3Bsb3QoYSxiLHR5cGU9ImIiLCBtYWluPSJWZW50YXMgVG90YWxlcyBwb3IgU2VtYW5hIiwgeGxhYj0gIlNlbWFuYSIsIHlsYWI9Ik1YTiIpDQpgYGANCg0KDQo=