Harold Nelson
2023-03-16
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ ggplot2 3.3.6 ✔ purrr 0.3.4
## ✔ tibble 3.1.8 ✔ dplyr 1.0.10
## ✔ tidyr 1.2.1 ✔ stringr 1.4.1
## ✔ readr 2.1.2 ✔ forcats 0.5.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## terra 1.7.3
##
## Attaching package: 'terra'
##
## The following object is masked from 'package:tidyr':
##
## extract
## Linking to GEOS 3.11.0, GDAL 3.5.3, PROJ 9.1.0; sf_use_s2() is TRUE
Get the land cover data for Washington state downloaded from https://datagateway.nrcs.usda.gov/.
load("thurston_sf.Rdata")
tm_shape(wa_lcd) +
tm_raster() +
tm_shape(thurston_sf) +
tm_borders(lwd = 3, col = "green") +
tm_layout(legend.show = F)
## stars object downsampled to 1039 by 963 cells. See tm_shape manual (argument raster.downsample)
## Warning: Duplicated levels found. They have been omitted
## Crop to Thurston County
thurston_sf = st_transform(thurston_sf,crs(wa_lcd))
thurston_rast = crop(wa_lcd,thurston_sf)
tm_shape(thurston_rast) +
tm_raster() +
tm_shape(thurston_sf) +
tm_borders(lwd = 3,col = "green") +
tm_layout(legend.show = F)
## stars object downsampled to 1076 by 929 cells. See tm_shape manual (argument raster.downsample)
source("rasterdf.R")
thurston_df <- rasterdf(thurston_rast)
ggplot(data = thurston_df) +
geom_raster(aes(x = x,
y = y,
fill = value))
## [1] 11 21 22 23 24 31 41 42 43 52 71 81 82 90 95
Also get the official colors matching these names.
LCnames <-c(
"Water",
"DevelopedOpen",
"DevelopedLow",
"DevelopedMed",
"DevelopedHigh",
"Barren",
"DeciduousForest",
"EvergreenForest",
"MixedForest",
"ShrubScrub",
"GrassHerbaceous",
"PastureHay",
"CultCrops",
"WoodyWetlands",
"EmergentHerbWet")
nlcdcols <- data.frame(coltab(thurston_rast))
nlcdcols <- nlcdcols[LCcodes + 1,]
LCcolors <- rgb(red = nlcdcols$red,
green = nlcdcols$green,
blue = nlcdcols$blue,
names = as.character(LCcodes),
maxColorValue = 255)
LCcolors
## 11 21 22 23 24 31 41 42
## "#466B9F" "#DEC5C5" "#D99282" "#EB0000" "#AB0000" "#B3AC9F" "#68AB5F" "#1C5F2C"
## 43 52 71 81 82 90 95
## "#B5C58F" "#CCB879" "#DFDFC2" "#DCD939" "#AB6C28" "#B8D9EB" "#6C9FB8"