package_version(R.version)
## [1] '4.2.2'
getwd()
## [1] "C:/data"
setwd("c:/data")
#작업환경 설정방법
df<-read.csv("Data1.csv")
summary(df)
## Q1 Q2 Q3 Q4
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:3.000 1st Qu.:3.000 1st Qu.:2.000 1st Qu.:2.000
## Median :4.000 Median :3.000 Median :3.000 Median :3.000
## Mean :3.536 Mean :3.291 Mean :2.928 Mean :3.061
## 3rd Qu.:4.000 3rd Qu.:4.000 3rd Qu.:4.000 3rd Qu.:4.000
## Max. :5.000 Max. :5.000 Max. :5.000 Max. :5.000
## Q5 Q6 Q7 Q8
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:2.000 1st Qu.:2.000 1st Qu.:2.000 1st Qu.:2.000
## Median :3.000 Median :3.000 Median :3.000 Median :3.000
## Mean :3.041 Mean :2.796 Mean :3.086 Mean :3.049
## 3rd Qu.:4.000 3rd Qu.:4.000 3rd Qu.:4.000 3rd Qu.:4.000
## Max. :5.000 Max. :5.000 Max. :5.000 Max. :5.000
## Q9 Q10 Q11 Q12 Q13
## Min. :1.000 Min. :1.000 Min. :1.00 Min. :1.000 Min. :1.000
## 1st Qu.:2.000 1st Qu.:2.000 1st Qu.:3.00 1st Qu.:3.000 1st Qu.:3.000
## Median :3.000 Median :3.000 Median :4.00 Median :4.000 Median :4.000
## Mean :3.066 Mean :2.883 Mean :3.47 Mean :3.421 Mean :3.588
## 3rd Qu.:4.000 3rd Qu.:4.000 3rd Qu.:4.00 3rd Qu.:4.000 3rd Qu.:4.000
## Max. :5.000 Max. :5.000 Max. :5.00 Max. :5.000 Max. :5.000
## Q14 Q15 Q16 Q17
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:3.000 1st Qu.:3.000 1st Qu.:3.000 1st Qu.:3.000
## Median :4.000 Median :4.000 Median :4.000 Median :4.000
## Mean :3.716 Mean :3.542 Mean :3.791 Mean :3.516
## 3rd Qu.:4.000 3rd Qu.:4.000 3rd Qu.:4.000 3rd Qu.:4.000
## Max. :5.000 Max. :5.000 Max. :5.000 Max. :5.000
## Q18 Q19 Q20 Gender
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :0.0000
## 1st Qu.:4.000 1st Qu.:3.000 1st Qu.:3.000 1st Qu.:0.0000
## Median :4.000 Median :3.000 Median :3.000 Median :0.0000
## Mean :3.804 Mean :3.364 Mean :3.349 Mean :0.4099
## 3rd Qu.:4.000 3rd Qu.:4.000 3rd Qu.:4.000 3rd Qu.:1.0000
## Max. :5.000 Max. :5.000 Max. :5.000 Max. :1.0000
## EDU BF BM Happiness
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.400
## 1st Qu.:2.000 1st Qu.:2.600 1st Qu.:2.400 1st Qu.:3.000
## Median :3.000 Median :3.200 Median :3.000 Median :3.600
## Mean :2.616 Mean :3.172 Mean :2.976 Mean :3.547
## 3rd Qu.:3.000 3rd Qu.:3.800 3rd Qu.:3.600 3rd Qu.:4.000
## Max. :4.000 Max. :5.000 Max. :5.000 Max. :5.000
## Peace
## Min. :1.200
## 1st Qu.:3.200
## Median :3.600
## Mean :3.564
## 3rd Qu.:4.000
## Max. :5.000
head(df)
## Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Gender
## 1 4 4 2 3 4 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 0
## 2 4 4 4 4 4 3 2 4 4 4 4 4 4 4 4 4 3 4 2 1 0
## 3 4 4 4 4 2 4 4 4 4 2 4 4 4 4 3 4 4 4 4 3 0
## 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0
## 5 4 4 4 4 4 4 4 4 2 4 4 4 4 4 4 4 4 4 4 4 0
## 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0
## EDU BF BM Happiness Peace
## 1 1 3.4 3.2 4.0 4.0
## 2 1 4.0 3.4 4.0 2.8
## 3 2 3.6 3.6 3.8 3.8
## 4 1 4.2 4.0 4.0 4.0
## 5 2 4.0 3.6 4.0 4.0
## 6 1 4.0 4.0 4.0 4.0
tail(df)
## Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20
## 1920 4 4 3 4 4 2 2 3 4 2 2 4 3 4 4 3 4 4 3 4
## 1921 2 2 2 1 2 2 2 2 2 2 1 3 2 1 3 2 2 2 2 2
## 1922 3 2 2 2 3 1 1 1 1 1 3 3 3 4 4 4 4 5 2 2
## 1923 5 4 4 4 4 2 2 2 2 3 3 4 3 4 3 3 3 4 4 4
## 1924 4 4 4 2 2 4 2 4 4 3 3 2 3 4 3 4 4 4 3 4
## 1925 3 3 1 1 2 1 1 1 1 1 4 4 3 2 2 3 4 4 3 2
## Gender EDU BF BM Happiness Peace
## 1920 1 3 3.8 2.6 3.4 3.6
## 1921 1 2 1.8 2.0 2.0 2.0
## 1922 0 2 2.4 1.0 3.4 3.4
## 1923 0 2 4.2 2.2 3.4 3.6
## 1924 1 2 3.2 3.4 3.0 3.8
## 1925 0 3 2.0 1.0 3.0 3.2
names(df)
## [1] "Q1" "Q2" "Q3" "Q4" "Q5" "Q6"
## [7] "Q7" "Q8" "Q9" "Q10" "Q11" "Q12"
## [13] "Q13" "Q14" "Q15" "Q16" "Q17" "Q18"
## [19] "Q19" "Q20" "Gender" "EDU" "BF" "BM"
## [25] "Happiness" "Peace"
names(df)[21]<-"Gender1"
names(df)[22]<-"Edu1"
names(df)
## [1] "Q1" "Q2" "Q3" "Q4" "Q5" "Q6"
## [7] "Q7" "Q8" "Q9" "Q10" "Q11" "Q12"
## [13] "Q13" "Q14" "Q15" "Q16" "Q17" "Q18"
## [19] "Q19" "Q20" "Gender1" "Edu1" "BF" "BM"
## [25] "Happiness" "Peace"
write.csv(df,"df_data.csv")
#df 새로운 엑셀데이터 저장
df1<-read.csv("df_data.csv")
names(df1)
## [1] "X" "Q1" "Q2" "Q3" "Q4" "Q5"
## [7] "Q6" "Q7" "Q8" "Q9" "Q10" "Q11"
## [13] "Q12" "Q13" "Q14" "Q15" "Q16" "Q17"
## [19] "Q18" "Q19" "Q20" "Gender1" "Edu1" "BF"
## [25] "BM" "Happiness" "Peace"
str(df1)
## 'data.frame': 1925 obs. of 27 variables:
## $ X : int 1 2 3 4 5 6 7 8 9 10 ...
## $ Q1 : int 4 4 4 5 4 4 4 4 4 4 ...
## $ Q2 : int 4 4 4 4 4 4 2 2 4 4 ...
## $ Q3 : int 2 4 4 4 4 4 4 4 4 2 ...
## $ Q4 : int 3 4 4 4 4 4 4 4 4 2 ...
## $ Q5 : int 4 4 2 4 4 4 4 4 2 4 ...
## $ Q6 : int 2 3 4 4 4 4 4 4 1 2 ...
## $ Q7 : int 2 2 4 4 4 4 4 4 3 4 ...
## $ Q8 : int 4 4 4 4 4 4 5 5 2 2 ...
## $ Q9 : int 4 4 4 4 2 4 5 5 3 4 ...
## $ Q10 : int 4 4 2 4 4 4 5 5 2 4 ...
## $ Q11 : int 4 4 4 4 4 4 5 5 4 4 ...
## $ Q12 : int 4 4 4 4 4 4 5 5 3 4 ...
## $ Q13 : int 4 4 4 4 4 4 5 5 4 4 ...
## $ Q14 : int 4 4 4 4 4 4 5 5 5 4 ...
## $ Q15 : int 4 4 3 4 4 4 4 2 3 4 ...
## $ Q16 : int 4 4 4 4 4 4 5 2 4 4 ...
## $ Q17 : int 4 3 4 4 4 4 2 2 4 4 ...
## $ Q18 : int 4 4 4 4 4 4 4 4 4 4 ...
## $ Q19 : int 4 2 4 4 4 4 4 2 4 2 ...
## $ Q20 : int 4 1 3 4 4 4 4 2 4 2 ...
## $ Gender1 : int 0 0 0 0 0 0 0 0 1 0 ...
## $ Edu1 : int 1 1 2 1 2 1 1 1 4 3 ...
## $ BF : num 3.4 4 3.6 4.2 4 4 3.6 3.6 3.6 3.2 ...
## $ BM : num 3.2 3.4 3.6 4 3.6 4 4.6 4.6 2.2 3.2 ...
## $ Happiness: num 4 4 3.8 4 4 4 4.8 4.4 3.8 4 ...
## $ Peace : num 4 2.8 3.8 4 4 4 3.8 2.4 4 3.2 ...
write.csv(df, "df_data.csv", row.names = FALSE)
#필요없는 row 생성 방지
df1<-read.csv("df_data.csv")
names(df1)
## [1] "Q1" "Q2" "Q3" "Q4" "Q5" "Q6"
## [7] "Q7" "Q8" "Q9" "Q10" "Q11" "Q12"
## [13] "Q13" "Q14" "Q15" "Q16" "Q17" "Q18"
## [19] "Q19" "Q20" "Gender1" "Edu1" "BF" "BM"
## [25] "Happiness" "Peace"
str(df1)
## 'data.frame': 1925 obs. of 26 variables:
## $ Q1 : int 4 4 4 5 4 4 4 4 4 4 ...
## $ Q2 : int 4 4 4 4 4 4 2 2 4 4 ...
## $ Q3 : int 2 4 4 4 4 4 4 4 4 2 ...
## $ Q4 : int 3 4 4 4 4 4 4 4 4 2 ...
## $ Q5 : int 4 4 2 4 4 4 4 4 2 4 ...
## $ Q6 : int 2 3 4 4 4 4 4 4 1 2 ...
## $ Q7 : int 2 2 4 4 4 4 4 4 3 4 ...
## $ Q8 : int 4 4 4 4 4 4 5 5 2 2 ...
## $ Q9 : int 4 4 4 4 2 4 5 5 3 4 ...
## $ Q10 : int 4 4 2 4 4 4 5 5 2 4 ...
## $ Q11 : int 4 4 4 4 4 4 5 5 4 4 ...
## $ Q12 : int 4 4 4 4 4 4 5 5 3 4 ...
## $ Q13 : int 4 4 4 4 4 4 5 5 4 4 ...
## $ Q14 : int 4 4 4 4 4 4 5 5 5 4 ...
## $ Q15 : int 4 4 3 4 4 4 4 2 3 4 ...
## $ Q16 : int 4 4 4 4 4 4 5 2 4 4 ...
## $ Q17 : int 4 3 4 4 4 4 2 2 4 4 ...
## $ Q18 : int 4 4 4 4 4 4 4 4 4 4 ...
## $ Q19 : int 4 2 4 4 4 4 4 2 4 2 ...
## $ Q20 : int 4 1 3 4 4 4 4 2 4 2 ...
## $ Gender1 : int 0 0 0 0 0 0 0 0 1 0 ...
## $ Edu1 : int 1 1 2 1 2 1 1 1 4 3 ...
## $ BF : num 3.4 4 3.6 4.2 4 4 3.6 3.6 3.6 3.2 ...
## $ BM : num 3.2 3.4 3.6 4 3.6 4 4.6 4.6 2.2 3.2 ...
## $ Happiness: num 4 4 3.8 4 4 4 4.8 4.4 3.8 4 ...
## $ Peace : num 4 2.8 3.8 4 4 4 3.8 2.4 4 3.2 ...
View(df1)
library(dplyr)
##
## 다음의 패키지를 부착합니다: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
glimpse(df1)
## Rows: 1,925
## Columns: 26
## $ Q1 <int> 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, …
## $ Q2 <int> 4, 4, 4, 4, 4, 4, 2, 2, 4, 4, 4, 4, 4, 2, 4, 4, 2, 4, 2, 2, …
## $ Q3 <int> 2, 4, 4, 4, 4, 4, 4, 4, 4, 2, 4, 2, 4, 4, 4, 4, 4, 3, 2, 3, …
## $ Q4 <int> 3, 4, 4, 4, 4, 4, 4, 4, 4, 2, 4, 4, 4, 2, 4, 4, 4, 2, 2, 4, …
## $ Q5 <int> 4, 4, 2, 4, 4, 4, 4, 4, 2, 4, 4, 2, 4, 4, 4, 4, 4, 3, 1, 2, …
## $ Q6 <int> 2, 3, 4, 4, 4, 4, 4, 4, 1, 2, 2, 2, 4, 4, 3, 5, 2, 2, 1, 4, …
## $ Q7 <int> 2, 2, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 5, 4, 4, 5, 4, 3, 4, 4, …
## $ Q8 <int> 4, 4, 4, 4, 4, 4, 5, 5, 2, 2, 4, 4, 4, 4, 3, 5, 4, 2, 4, 4, …
## $ Q9 <int> 4, 4, 4, 4, 2, 4, 5, 5, 3, 4, 4, 4, 2, 2, 4, 5, 2, 4, 2, 4, …
## $ Q10 <int> 4, 4, 2, 4, 4, 4, 5, 5, 2, 4, 2, 4, 4, 4, 3, 4, 4, 3, 2, 3, …
## $ Q11 <int> 4, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 3, 4, 4, 4, 4, 5, 4, 3, 3, …
## $ Q12 <int> 4, 4, 4, 4, 4, 4, 5, 5, 3, 4, 4, 3, 4, 3, 3, 4, 5, 4, 4, 2, …
## $ Q13 <int> 4, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 4, 2, 4, 4, 4, 5, 4, 4, 4, …
## $ Q14 <int> 4, 4, 4, 4, 4, 4, 5, 5, 5, 4, 4, 4, 3, 4, 5, 4, 5, 4, 4, 4, …
## $ Q15 <int> 4, 4, 3, 4, 4, 4, 4, 2, 3, 4, 4, 3, 1, 4, 4, 4, 5, 4, 4, 4, …
## $ Q16 <int> 4, 4, 4, 4, 4, 4, 5, 2, 4, 4, 4, 4, 4, 4, 5, 4, 5, 4, 4, 4, …
## $ Q17 <int> 4, 3, 4, 4, 4, 4, 2, 2, 4, 4, 4, 4, 3, 2, 4, 5, 4, 4, 3, 4, …
## $ Q18 <int> 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 2, 4, 4, 4, …
## $ Q19 <int> 4, 2, 4, 4, 4, 4, 4, 2, 4, 2, 4, 4, 1, 4, 4, 4, 5, 4, 2, 3, …
## $ Q20 <int> 4, 1, 3, 4, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 4, 5, 5, 4, 2, 4, …
## $ Gender1 <int> 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ Edu1 <int> 1, 1, 2, 1, 2, 1, 1, 1, 4, 3, 2, 1, 1, 3, 3, 2, 1, 1, 1, 4, …
## $ BF <dbl> 3.4, 4.0, 3.6, 4.2, 4.0, 4.0, 3.6, 3.6, 3.6, 3.2, 4.0, 3.2, …
## $ BM <dbl> 3.2, 3.4, 3.6, 4.0, 3.6, 4.0, 4.6, 4.6, 2.2, 3.2, 3.2, 3.6, …
## $ Happiness <dbl> 4.0, 4.0, 3.8, 4.0, 4.0, 4.0, 4.8, 4.4, 3.8, 4.0, 4.0, 3.4, …
## $ Peace <dbl> 4.0, 2.8, 3.8, 4.0, 4.0, 4.0, 3.8, 2.4, 4.0, 3.2, 4.0, 3.9, …
#str와 동일기능 이지만, 가독성이 더 좋음
data(iris)
glimpse(iris)
## Rows: 150
## Columns: 5
## $ Sepal.Length <dbl> 5.1, 4.9, 4.7, 4.6, 5.0, 5.4, 4.6, 5.0, 4.4, 4.9, 5.4, 4.…
## $ Sepal.Width <dbl> 3.5, 3.0, 3.2, 3.1, 3.6, 3.9, 3.4, 3.4, 2.9, 3.1, 3.7, 3.…
## $ Petal.Length <dbl> 1.4, 1.4, 1.3, 1.5, 1.4, 1.7, 1.4, 1.5, 1.4, 1.5, 1.5, 1.…
## $ Petal.Width <dbl> 0.2, 0.2, 0.2, 0.2, 0.2, 0.4, 0.3, 0.2, 0.2, 0.1, 0.2, 0.…
## $ Species <fct> setosa, setosa, setosa, setosa, setosa, setosa, setosa, s…
#fct 분류
library(hflights)
glimpse(hflights)
## Rows: 227,496
## Columns: 21
## $ Year <int> 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011…
## $ Month <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
## $ DayofMonth <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1…
## $ DayOfWeek <int> 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2…
## $ DepTime <int> 1400, 1401, 1352, 1403, 1405, 1359, 1359, 1355, 1443…
## $ ArrTime <int> 1500, 1501, 1502, 1513, 1507, 1503, 1509, 1454, 1554…
## $ UniqueCarrier <chr> "AA", "AA", "AA", "AA", "AA", "AA", "AA", "AA", "AA"…
## $ FlightNum <int> 428, 428, 428, 428, 428, 428, 428, 428, 428, 428, 42…
## $ TailNum <chr> "N576AA", "N557AA", "N541AA", "N403AA", "N492AA", "N…
## $ ActualElapsedTime <int> 60, 60, 70, 70, 62, 64, 70, 59, 71, 70, 70, 56, 63, …
## $ AirTime <int> 40, 45, 48, 39, 44, 45, 43, 40, 41, 45, 42, 41, 44, …
## $ ArrDelay <int> -10, -9, -8, 3, -3, -7, -1, -16, 44, 43, 29, 5, -9, …
## $ DepDelay <int> 0, 1, -8, 3, 5, -1, -1, -5, 43, 43, 29, 19, -2, -3, …
## $ Origin <chr> "IAH", "IAH", "IAH", "IAH", "IAH", "IAH", "IAH", "IA…
## $ Dest <chr> "DFW", "DFW", "DFW", "DFW", "DFW", "DFW", "DFW", "DF…
## $ Distance <int> 224, 224, 224, 224, 224, 224, 224, 224, 224, 224, 22…
## $ TaxiIn <int> 7, 6, 5, 9, 9, 6, 12, 7, 8, 6, 8, 4, 6, 5, 6, 12, 8,…
## $ TaxiOut <int> 13, 9, 17, 22, 9, 13, 15, 12, 22, 19, 20, 11, 13, 15…
## $ Cancelled <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ CancellationCode <chr> "", "", "", "", "", "", "", "", "", "", "", "", "", …
## $ Diverted <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
#p.58 연구집단의 전체 평균
glimpse(df1)
## Rows: 1,925
## Columns: 26
## $ Q1 <int> 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, …
## $ Q2 <int> 4, 4, 4, 4, 4, 4, 2, 2, 4, 4, 4, 4, 4, 2, 4, 4, 2, 4, 2, 2, …
## $ Q3 <int> 2, 4, 4, 4, 4, 4, 4, 4, 4, 2, 4, 2, 4, 4, 4, 4, 4, 3, 2, 3, …
## $ Q4 <int> 3, 4, 4, 4, 4, 4, 4, 4, 4, 2, 4, 4, 4, 2, 4, 4, 4, 2, 2, 4, …
## $ Q5 <int> 4, 4, 2, 4, 4, 4, 4, 4, 2, 4, 4, 2, 4, 4, 4, 4, 4, 3, 1, 2, …
## $ Q6 <int> 2, 3, 4, 4, 4, 4, 4, 4, 1, 2, 2, 2, 4, 4, 3, 5, 2, 2, 1, 4, …
## $ Q7 <int> 2, 2, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 5, 4, 4, 5, 4, 3, 4, 4, …
## $ Q8 <int> 4, 4, 4, 4, 4, 4, 5, 5, 2, 2, 4, 4, 4, 4, 3, 5, 4, 2, 4, 4, …
## $ Q9 <int> 4, 4, 4, 4, 2, 4, 5, 5, 3, 4, 4, 4, 2, 2, 4, 5, 2, 4, 2, 4, …
## $ Q10 <int> 4, 4, 2, 4, 4, 4, 5, 5, 2, 4, 2, 4, 4, 4, 3, 4, 4, 3, 2, 3, …
## $ Q11 <int> 4, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 3, 4, 4, 4, 4, 5, 4, 3, 3, …
## $ Q12 <int> 4, 4, 4, 4, 4, 4, 5, 5, 3, 4, 4, 3, 4, 3, 3, 4, 5, 4, 4, 2, …
## $ Q13 <int> 4, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 4, 2, 4, 4, 4, 5, 4, 4, 4, …
## $ Q14 <int> 4, 4, 4, 4, 4, 4, 5, 5, 5, 4, 4, 4, 3, 4, 5, 4, 5, 4, 4, 4, …
## $ Q15 <int> 4, 4, 3, 4, 4, 4, 4, 2, 3, 4, 4, 3, 1, 4, 4, 4, 5, 4, 4, 4, …
## $ Q16 <int> 4, 4, 4, 4, 4, 4, 5, 2, 4, 4, 4, 4, 4, 4, 5, 4, 5, 4, 4, 4, …
## $ Q17 <int> 4, 3, 4, 4, 4, 4, 2, 2, 4, 4, 4, 4, 3, 2, 4, 5, 4, 4, 3, 4, …
## $ Q18 <int> 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 2, 4, 4, 4, …
## $ Q19 <int> 4, 2, 4, 4, 4, 4, 4, 2, 4, 2, 4, 4, 1, 4, 4, 4, 5, 4, 2, 3, …
## $ Q20 <int> 4, 1, 3, 4, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 4, 5, 5, 4, 2, 4, …
## $ Gender1 <int> 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ Edu1 <int> 1, 1, 2, 1, 2, 1, 1, 1, 4, 3, 2, 1, 1, 3, 3, 2, 1, 1, 1, 4, …
## $ BF <dbl> 3.4, 4.0, 3.6, 4.2, 4.0, 4.0, 3.6, 3.6, 3.6, 3.2, 4.0, 3.2, …
## $ BM <dbl> 3.2, 3.4, 3.6, 4.0, 3.6, 4.0, 4.6, 4.6, 2.2, 3.2, 3.2, 3.6, …
## $ Happiness <dbl> 4.0, 4.0, 3.8, 4.0, 4.0, 4.0, 4.8, 4.4, 3.8, 4.0, 4.0, 3.4, …
## $ Peace <dbl> 4.0, 2.8, 3.8, 4.0, 4.0, 4.0, 3.8, 2.4, 4.0, 3.2, 4.0, 3.9, …
options(scipen = 100)
options(scipen = -100)
t.test(df1$Happiness)
##
## One Sample t-test
##
## data: df1$Happiness
## t = 2.0806e+02, df = 1.924e+03, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0e+00
## 9.5e+01 percent confidence interval:
## 3.513629e+00 3.580501e+00
## sample estimates:
## mean of x
## 3.547065e+00
t.test(df1$Happiness, conf.level = .99)
##
## One Sample t-test
##
## data: df1$Happiness
## t = 2.0806e+02, df = 1.924e+03, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0e+00
## 9.9e+01 percent confidence interval:
## 3.503107e+00 3.591023e+00
## sample estimates:
## mean of x
## 3.547065e+00
options(scipen = 100)
t.test(df1$Happiness, mu=3.5)
##
## One Sample t-test
##
## data: df1$Happiness
## t = 2.7606, df = 1924, p-value = 0.005824
## alternative hypothesis: true mean is not equal to 3.5
## 95 percent confidence interval:
## 3.513629 3.580501
## sample estimates:
## mean of x
## 3.547065
glimpse(df1)
## Rows: 1,925
## Columns: 26
## $ Q1 <int> 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, …
## $ Q2 <int> 4, 4, 4, 4, 4, 4, 2, 2, 4, 4, 4, 4, 4, 2, 4, 4, 2, 4, 2, 2, …
## $ Q3 <int> 2, 4, 4, 4, 4, 4, 4, 4, 4, 2, 4, 2, 4, 4, 4, 4, 4, 3, 2, 3, …
## $ Q4 <int> 3, 4, 4, 4, 4, 4, 4, 4, 4, 2, 4, 4, 4, 2, 4, 4, 4, 2, 2, 4, …
## $ Q5 <int> 4, 4, 2, 4, 4, 4, 4, 4, 2, 4, 4, 2, 4, 4, 4, 4, 4, 3, 1, 2, …
## $ Q6 <int> 2, 3, 4, 4, 4, 4, 4, 4, 1, 2, 2, 2, 4, 4, 3, 5, 2, 2, 1, 4, …
## $ Q7 <int> 2, 2, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 5, 4, 4, 5, 4, 3, 4, 4, …
## $ Q8 <int> 4, 4, 4, 4, 4, 4, 5, 5, 2, 2, 4, 4, 4, 4, 3, 5, 4, 2, 4, 4, …
## $ Q9 <int> 4, 4, 4, 4, 2, 4, 5, 5, 3, 4, 4, 4, 2, 2, 4, 5, 2, 4, 2, 4, …
## $ Q10 <int> 4, 4, 2, 4, 4, 4, 5, 5, 2, 4, 2, 4, 4, 4, 3, 4, 4, 3, 2, 3, …
## $ Q11 <int> 4, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 3, 4, 4, 4, 4, 5, 4, 3, 3, …
## $ Q12 <int> 4, 4, 4, 4, 4, 4, 5, 5, 3, 4, 4, 3, 4, 3, 3, 4, 5, 4, 4, 2, …
## $ Q13 <int> 4, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 4, 2, 4, 4, 4, 5, 4, 4, 4, …
## $ Q14 <int> 4, 4, 4, 4, 4, 4, 5, 5, 5, 4, 4, 4, 3, 4, 5, 4, 5, 4, 4, 4, …
## $ Q15 <int> 4, 4, 3, 4, 4, 4, 4, 2, 3, 4, 4, 3, 1, 4, 4, 4, 5, 4, 4, 4, …
## $ Q16 <int> 4, 4, 4, 4, 4, 4, 5, 2, 4, 4, 4, 4, 4, 4, 5, 4, 5, 4, 4, 4, …
## $ Q17 <int> 4, 3, 4, 4, 4, 4, 2, 2, 4, 4, 4, 4, 3, 2, 4, 5, 4, 4, 3, 4, …
## $ Q18 <int> 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 2, 4, 4, 4, …
## $ Q19 <int> 4, 2, 4, 4, 4, 4, 4, 2, 4, 2, 4, 4, 1, 4, 4, 4, 5, 4, 2, 3, …
## $ Q20 <int> 4, 1, 3, 4, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 4, 5, 5, 4, 2, 4, …
## $ Gender1 <int> 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ Edu1 <int> 1, 1, 2, 1, 2, 1, 1, 1, 4, 3, 2, 1, 1, 3, 3, 2, 1, 1, 1, 4, …
## $ BF <dbl> 3.4, 4.0, 3.6, 4.2, 4.0, 4.0, 3.6, 3.6, 3.6, 3.2, 4.0, 3.2, …
## $ BM <dbl> 3.2, 3.4, 3.6, 4.0, 3.6, 4.0, 4.6, 4.6, 2.2, 3.2, 3.2, 3.6, …
## $ Happiness <dbl> 4.0, 4.0, 3.8, 4.0, 4.0, 4.0, 4.8, 4.4, 3.8, 4.0, 4.0, 3.4, …
## $ Peace <dbl> 4.0, 2.8, 3.8, 4.0, 4.0, 4.0, 3.8, 2.4, 4.0, 3.2, 4.0, 3.9, …
t.test(df$BF, mu=3.2)
##
## One Sample t-test
##
## data: df$BF
## t = -1.6755, df = 1924, p-value = 0.09401
## alternative hypothesis: true mean is not equal to 3.2
## 95 percent confidence interval:
## 3.138323 3.204846
## sample estimates:
## mean of x
## 3.171584
t.test(df$Peace, mu=3.5)
##
## One Sample t-test
##
## data: df$Peace
## t = 4.2908, df = 1924, p-value = 0.00001869
## alternative hypothesis: true mean is not equal to 3.5
## 95 percent confidence interval:
## 3.534889 3.593631
## sample estimates:
## mean of x
## 3.56426
#p.62 두 변수의 평균 비교
t.test(df1$Happiness,df1$Peace,
paired = TRUE)
##
## Paired t-test
##
## data: df1$Happiness and df1$Peace
## t = -1.1468, df = 1924, p-value = 0.2516
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## -0.04660127 0.01221166
## sample estimates:
## mean difference
## -0.01719481