package_version(R.version)
## [1] '4.2.2'
getwd()
## [1] "C:/data"
setwd("c:/data") 
#작업환경 설정방법

df<-read.csv("Data1.csv")
summary(df)
##        Q1              Q2              Q3              Q4       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:2.000   1st Qu.:2.000  
##  Median :4.000   Median :3.000   Median :3.000   Median :3.000  
##  Mean   :3.536   Mean   :3.291   Mean   :2.928   Mean   :3.061  
##  3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.:4.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :5.000  
##        Q5              Q6              Q7              Q8       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000  
##  Median :3.000   Median :3.000   Median :3.000   Median :3.000  
##  Mean   :3.041   Mean   :2.796   Mean   :3.086   Mean   :3.049  
##  3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.:4.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :5.000  
##        Q9             Q10             Q11            Q12             Q13       
##  Min.   :1.000   Min.   :1.000   Min.   :1.00   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.000   1st Qu.:3.00   1st Qu.:3.000   1st Qu.:3.000  
##  Median :3.000   Median :3.000   Median :4.00   Median :4.000   Median :4.000  
##  Mean   :3.066   Mean   :2.883   Mean   :3.47   Mean   :3.421   Mean   :3.588  
##  3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.:4.00   3rd Qu.:4.000   3rd Qu.:4.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.00   Max.   :5.000   Max.   :5.000  
##       Q14             Q15             Q16             Q17       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.000  
##  Median :4.000   Median :4.000   Median :4.000   Median :4.000  
##  Mean   :3.716   Mean   :3.542   Mean   :3.791   Mean   :3.516  
##  3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.:4.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :5.000  
##       Q18             Q19             Q20            Gender      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :0.0000  
##  1st Qu.:4.000   1st Qu.:3.000   1st Qu.:3.000   1st Qu.:0.0000  
##  Median :4.000   Median :3.000   Median :3.000   Median :0.0000  
##  Mean   :3.804   Mean   :3.364   Mean   :3.349   Mean   :0.4099  
##  3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.:1.0000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :1.0000  
##       EDU              BF              BM          Happiness    
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.400  
##  1st Qu.:2.000   1st Qu.:2.600   1st Qu.:2.400   1st Qu.:3.000  
##  Median :3.000   Median :3.200   Median :3.000   Median :3.600  
##  Mean   :2.616   Mean   :3.172   Mean   :2.976   Mean   :3.547  
##  3rd Qu.:3.000   3rd Qu.:3.800   3rd Qu.:3.600   3rd Qu.:4.000  
##  Max.   :4.000   Max.   :5.000   Max.   :5.000   Max.   :5.000  
##      Peace      
##  Min.   :1.200  
##  1st Qu.:3.200  
##  Median :3.600  
##  Mean   :3.564  
##  3rd Qu.:4.000  
##  Max.   :5.000
head(df)
##   Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Gender
## 1  4  4  2  3  4  2  2  4  4   4   4   4   4   4   4   4   4   4   4   4      0
## 2  4  4  4  4  4  3  2  4  4   4   4   4   4   4   4   4   3   4   2   1      0
## 3  4  4  4  4  2  4  4  4  4   2   4   4   4   4   3   4   4   4   4   3      0
## 4  5  4  4  4  4  4  4  4  4   4   4   4   4   4   4   4   4   4   4   4      0
## 5  4  4  4  4  4  4  4  4  2   4   4   4   4   4   4   4   4   4   4   4      0
## 6  4  4  4  4  4  4  4  4  4   4   4   4   4   4   4   4   4   4   4   4      0
##   EDU  BF  BM Happiness Peace
## 1   1 3.4 3.2       4.0   4.0
## 2   1 4.0 3.4       4.0   2.8
## 3   2 3.6 3.6       3.8   3.8
## 4   1 4.2 4.0       4.0   4.0
## 5   2 4.0 3.6       4.0   4.0
## 6   1 4.0 4.0       4.0   4.0
tail(df)
##      Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20
## 1920  4  4  3  4  4  2  2  3  4   2   2   4   3   4   4   3   4   4   3   4
## 1921  2  2  2  1  2  2  2  2  2   2   1   3   2   1   3   2   2   2   2   2
## 1922  3  2  2  2  3  1  1  1  1   1   3   3   3   4   4   4   4   5   2   2
## 1923  5  4  4  4  4  2  2  2  2   3   3   4   3   4   3   3   3   4   4   4
## 1924  4  4  4  2  2  4  2  4  4   3   3   2   3   4   3   4   4   4   3   4
## 1925  3  3  1  1  2  1  1  1  1   1   4   4   3   2   2   3   4   4   3   2
##      Gender EDU  BF  BM Happiness Peace
## 1920      1   3 3.8 2.6       3.4   3.6
## 1921      1   2 1.8 2.0       2.0   2.0
## 1922      0   2 2.4 1.0       3.4   3.4
## 1923      0   2 4.2 2.2       3.4   3.6
## 1924      1   2 3.2 3.4       3.0   3.8
## 1925      0   3 2.0 1.0       3.0   3.2
names(df)
##  [1] "Q1"        "Q2"        "Q3"        "Q4"        "Q5"        "Q6"       
##  [7] "Q7"        "Q8"        "Q9"        "Q10"       "Q11"       "Q12"      
## [13] "Q13"       "Q14"       "Q15"       "Q16"       "Q17"       "Q18"      
## [19] "Q19"       "Q20"       "Gender"    "EDU"       "BF"        "BM"       
## [25] "Happiness" "Peace"
names(df)[21]<-"Gender1"
names(df)[22]<-"Edu1"
names(df)
##  [1] "Q1"        "Q2"        "Q3"        "Q4"        "Q5"        "Q6"       
##  [7] "Q7"        "Q8"        "Q9"        "Q10"       "Q11"       "Q12"      
## [13] "Q13"       "Q14"       "Q15"       "Q16"       "Q17"       "Q18"      
## [19] "Q19"       "Q20"       "Gender1"   "Edu1"      "BF"        "BM"       
## [25] "Happiness" "Peace"
write.csv(df,"df_data.csv")
#df 새로운 엑셀데이터 저장
df1<-read.csv("df_data.csv")
names(df1)
##  [1] "X"         "Q1"        "Q2"        "Q3"        "Q4"        "Q5"       
##  [7] "Q6"        "Q7"        "Q8"        "Q9"        "Q10"       "Q11"      
## [13] "Q12"       "Q13"       "Q14"       "Q15"       "Q16"       "Q17"      
## [19] "Q18"       "Q19"       "Q20"       "Gender1"   "Edu1"      "BF"       
## [25] "BM"        "Happiness" "Peace"
str(df1)
## 'data.frame':    1925 obs. of  27 variables:
##  $ X        : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ Q1       : int  4 4 4 5 4 4 4 4 4 4 ...
##  $ Q2       : int  4 4 4 4 4 4 2 2 4 4 ...
##  $ Q3       : int  2 4 4 4 4 4 4 4 4 2 ...
##  $ Q4       : int  3 4 4 4 4 4 4 4 4 2 ...
##  $ Q5       : int  4 4 2 4 4 4 4 4 2 4 ...
##  $ Q6       : int  2 3 4 4 4 4 4 4 1 2 ...
##  $ Q7       : int  2 2 4 4 4 4 4 4 3 4 ...
##  $ Q8       : int  4 4 4 4 4 4 5 5 2 2 ...
##  $ Q9       : int  4 4 4 4 2 4 5 5 3 4 ...
##  $ Q10      : int  4 4 2 4 4 4 5 5 2 4 ...
##  $ Q11      : int  4 4 4 4 4 4 5 5 4 4 ...
##  $ Q12      : int  4 4 4 4 4 4 5 5 3 4 ...
##  $ Q13      : int  4 4 4 4 4 4 5 5 4 4 ...
##  $ Q14      : int  4 4 4 4 4 4 5 5 5 4 ...
##  $ Q15      : int  4 4 3 4 4 4 4 2 3 4 ...
##  $ Q16      : int  4 4 4 4 4 4 5 2 4 4 ...
##  $ Q17      : int  4 3 4 4 4 4 2 2 4 4 ...
##  $ Q18      : int  4 4 4 4 4 4 4 4 4 4 ...
##  $ Q19      : int  4 2 4 4 4 4 4 2 4 2 ...
##  $ Q20      : int  4 1 3 4 4 4 4 2 4 2 ...
##  $ Gender1  : int  0 0 0 0 0 0 0 0 1 0 ...
##  $ Edu1     : int  1 1 2 1 2 1 1 1 4 3 ...
##  $ BF       : num  3.4 4 3.6 4.2 4 4 3.6 3.6 3.6 3.2 ...
##  $ BM       : num  3.2 3.4 3.6 4 3.6 4 4.6 4.6 2.2 3.2 ...
##  $ Happiness: num  4 4 3.8 4 4 4 4.8 4.4 3.8 4 ...
##  $ Peace    : num  4 2.8 3.8 4 4 4 3.8 2.4 4 3.2 ...
write.csv(df, "df_data.csv",  row.names = FALSE)
#필요없는 row 생성 방지
df1<-read.csv("df_data.csv")
names(df1)
##  [1] "Q1"        "Q2"        "Q3"        "Q4"        "Q5"        "Q6"       
##  [7] "Q7"        "Q8"        "Q9"        "Q10"       "Q11"       "Q12"      
## [13] "Q13"       "Q14"       "Q15"       "Q16"       "Q17"       "Q18"      
## [19] "Q19"       "Q20"       "Gender1"   "Edu1"      "BF"        "BM"       
## [25] "Happiness" "Peace"
str(df1)
## 'data.frame':    1925 obs. of  26 variables:
##  $ Q1       : int  4 4 4 5 4 4 4 4 4 4 ...
##  $ Q2       : int  4 4 4 4 4 4 2 2 4 4 ...
##  $ Q3       : int  2 4 4 4 4 4 4 4 4 2 ...
##  $ Q4       : int  3 4 4 4 4 4 4 4 4 2 ...
##  $ Q5       : int  4 4 2 4 4 4 4 4 2 4 ...
##  $ Q6       : int  2 3 4 4 4 4 4 4 1 2 ...
##  $ Q7       : int  2 2 4 4 4 4 4 4 3 4 ...
##  $ Q8       : int  4 4 4 4 4 4 5 5 2 2 ...
##  $ Q9       : int  4 4 4 4 2 4 5 5 3 4 ...
##  $ Q10      : int  4 4 2 4 4 4 5 5 2 4 ...
##  $ Q11      : int  4 4 4 4 4 4 5 5 4 4 ...
##  $ Q12      : int  4 4 4 4 4 4 5 5 3 4 ...
##  $ Q13      : int  4 4 4 4 4 4 5 5 4 4 ...
##  $ Q14      : int  4 4 4 4 4 4 5 5 5 4 ...
##  $ Q15      : int  4 4 3 4 4 4 4 2 3 4 ...
##  $ Q16      : int  4 4 4 4 4 4 5 2 4 4 ...
##  $ Q17      : int  4 3 4 4 4 4 2 2 4 4 ...
##  $ Q18      : int  4 4 4 4 4 4 4 4 4 4 ...
##  $ Q19      : int  4 2 4 4 4 4 4 2 4 2 ...
##  $ Q20      : int  4 1 3 4 4 4 4 2 4 2 ...
##  $ Gender1  : int  0 0 0 0 0 0 0 0 1 0 ...
##  $ Edu1     : int  1 1 2 1 2 1 1 1 4 3 ...
##  $ BF       : num  3.4 4 3.6 4.2 4 4 3.6 3.6 3.6 3.2 ...
##  $ BM       : num  3.2 3.4 3.6 4 3.6 4 4.6 4.6 2.2 3.2 ...
##  $ Happiness: num  4 4 3.8 4 4 4 4.8 4.4 3.8 4 ...
##  $ Peace    : num  4 2.8 3.8 4 4 4 3.8 2.4 4 3.2 ...
View(df1)

library(dplyr)
## 
## 다음의 패키지를 부착합니다: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
glimpse(df1)
## Rows: 1,925
## Columns: 26
## $ Q1        <int> 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, …
## $ Q2        <int> 4, 4, 4, 4, 4, 4, 2, 2, 4, 4, 4, 4, 4, 2, 4, 4, 2, 4, 2, 2, …
## $ Q3        <int> 2, 4, 4, 4, 4, 4, 4, 4, 4, 2, 4, 2, 4, 4, 4, 4, 4, 3, 2, 3, …
## $ Q4        <int> 3, 4, 4, 4, 4, 4, 4, 4, 4, 2, 4, 4, 4, 2, 4, 4, 4, 2, 2, 4, …
## $ Q5        <int> 4, 4, 2, 4, 4, 4, 4, 4, 2, 4, 4, 2, 4, 4, 4, 4, 4, 3, 1, 2, …
## $ Q6        <int> 2, 3, 4, 4, 4, 4, 4, 4, 1, 2, 2, 2, 4, 4, 3, 5, 2, 2, 1, 4, …
## $ Q7        <int> 2, 2, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 5, 4, 4, 5, 4, 3, 4, 4, …
## $ Q8        <int> 4, 4, 4, 4, 4, 4, 5, 5, 2, 2, 4, 4, 4, 4, 3, 5, 4, 2, 4, 4, …
## $ Q9        <int> 4, 4, 4, 4, 2, 4, 5, 5, 3, 4, 4, 4, 2, 2, 4, 5, 2, 4, 2, 4, …
## $ Q10       <int> 4, 4, 2, 4, 4, 4, 5, 5, 2, 4, 2, 4, 4, 4, 3, 4, 4, 3, 2, 3, …
## $ Q11       <int> 4, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 3, 4, 4, 4, 4, 5, 4, 3, 3, …
## $ Q12       <int> 4, 4, 4, 4, 4, 4, 5, 5, 3, 4, 4, 3, 4, 3, 3, 4, 5, 4, 4, 2, …
## $ Q13       <int> 4, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 4, 2, 4, 4, 4, 5, 4, 4, 4, …
## $ Q14       <int> 4, 4, 4, 4, 4, 4, 5, 5, 5, 4, 4, 4, 3, 4, 5, 4, 5, 4, 4, 4, …
## $ Q15       <int> 4, 4, 3, 4, 4, 4, 4, 2, 3, 4, 4, 3, 1, 4, 4, 4, 5, 4, 4, 4, …
## $ Q16       <int> 4, 4, 4, 4, 4, 4, 5, 2, 4, 4, 4, 4, 4, 4, 5, 4, 5, 4, 4, 4, …
## $ Q17       <int> 4, 3, 4, 4, 4, 4, 2, 2, 4, 4, 4, 4, 3, 2, 4, 5, 4, 4, 3, 4, …
## $ Q18       <int> 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 2, 4, 4, 4, …
## $ Q19       <int> 4, 2, 4, 4, 4, 4, 4, 2, 4, 2, 4, 4, 1, 4, 4, 4, 5, 4, 2, 3, …
## $ Q20       <int> 4, 1, 3, 4, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 4, 5, 5, 4, 2, 4, …
## $ Gender1   <int> 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ Edu1      <int> 1, 1, 2, 1, 2, 1, 1, 1, 4, 3, 2, 1, 1, 3, 3, 2, 1, 1, 1, 4, …
## $ BF        <dbl> 3.4, 4.0, 3.6, 4.2, 4.0, 4.0, 3.6, 3.6, 3.6, 3.2, 4.0, 3.2, …
## $ BM        <dbl> 3.2, 3.4, 3.6, 4.0, 3.6, 4.0, 4.6, 4.6, 2.2, 3.2, 3.2, 3.6, …
## $ Happiness <dbl> 4.0, 4.0, 3.8, 4.0, 4.0, 4.0, 4.8, 4.4, 3.8, 4.0, 4.0, 3.4, …
## $ Peace     <dbl> 4.0, 2.8, 3.8, 4.0, 4.0, 4.0, 3.8, 2.4, 4.0, 3.2, 4.0, 3.9, …
#str와 동일기능 이지만, 가독성이 더 좋음

data(iris)
glimpse(iris)
## Rows: 150
## Columns: 5
## $ Sepal.Length <dbl> 5.1, 4.9, 4.7, 4.6, 5.0, 5.4, 4.6, 5.0, 4.4, 4.9, 5.4, 4.…
## $ Sepal.Width  <dbl> 3.5, 3.0, 3.2, 3.1, 3.6, 3.9, 3.4, 3.4, 2.9, 3.1, 3.7, 3.…
## $ Petal.Length <dbl> 1.4, 1.4, 1.3, 1.5, 1.4, 1.7, 1.4, 1.5, 1.4, 1.5, 1.5, 1.…
## $ Petal.Width  <dbl> 0.2, 0.2, 0.2, 0.2, 0.2, 0.4, 0.3, 0.2, 0.2, 0.1, 0.2, 0.…
## $ Species      <fct> setosa, setosa, setosa, setosa, setosa, setosa, setosa, s…
#fct 분류

library(hflights)
glimpse(hflights)
## Rows: 227,496
## Columns: 21
## $ Year              <int> 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011, 2011…
## $ Month             <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
## $ DayofMonth        <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1…
## $ DayOfWeek         <int> 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2…
## $ DepTime           <int> 1400, 1401, 1352, 1403, 1405, 1359, 1359, 1355, 1443…
## $ ArrTime           <int> 1500, 1501, 1502, 1513, 1507, 1503, 1509, 1454, 1554…
## $ UniqueCarrier     <chr> "AA", "AA", "AA", "AA", "AA", "AA", "AA", "AA", "AA"…
## $ FlightNum         <int> 428, 428, 428, 428, 428, 428, 428, 428, 428, 428, 42…
## $ TailNum           <chr> "N576AA", "N557AA", "N541AA", "N403AA", "N492AA", "N…
## $ ActualElapsedTime <int> 60, 60, 70, 70, 62, 64, 70, 59, 71, 70, 70, 56, 63, …
## $ AirTime           <int> 40, 45, 48, 39, 44, 45, 43, 40, 41, 45, 42, 41, 44, …
## $ ArrDelay          <int> -10, -9, -8, 3, -3, -7, -1, -16, 44, 43, 29, 5, -9, …
## $ DepDelay          <int> 0, 1, -8, 3, 5, -1, -1, -5, 43, 43, 29, 19, -2, -3, …
## $ Origin            <chr> "IAH", "IAH", "IAH", "IAH", "IAH", "IAH", "IAH", "IA…
## $ Dest              <chr> "DFW", "DFW", "DFW", "DFW", "DFW", "DFW", "DFW", "DF…
## $ Distance          <int> 224, 224, 224, 224, 224, 224, 224, 224, 224, 224, 22…
## $ TaxiIn            <int> 7, 6, 5, 9, 9, 6, 12, 7, 8, 6, 8, 4, 6, 5, 6, 12, 8,…
## $ TaxiOut           <int> 13, 9, 17, 22, 9, 13, 15, 12, 22, 19, 20, 11, 13, 15…
## $ Cancelled         <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ CancellationCode  <chr> "", "", "", "", "", "", "", "", "", "", "", "", "", …
## $ Diverted          <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
#p.58 연구집단의 전체 평균
glimpse(df1)
## Rows: 1,925
## Columns: 26
## $ Q1        <int> 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, …
## $ Q2        <int> 4, 4, 4, 4, 4, 4, 2, 2, 4, 4, 4, 4, 4, 2, 4, 4, 2, 4, 2, 2, …
## $ Q3        <int> 2, 4, 4, 4, 4, 4, 4, 4, 4, 2, 4, 2, 4, 4, 4, 4, 4, 3, 2, 3, …
## $ Q4        <int> 3, 4, 4, 4, 4, 4, 4, 4, 4, 2, 4, 4, 4, 2, 4, 4, 4, 2, 2, 4, …
## $ Q5        <int> 4, 4, 2, 4, 4, 4, 4, 4, 2, 4, 4, 2, 4, 4, 4, 4, 4, 3, 1, 2, …
## $ Q6        <int> 2, 3, 4, 4, 4, 4, 4, 4, 1, 2, 2, 2, 4, 4, 3, 5, 2, 2, 1, 4, …
## $ Q7        <int> 2, 2, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 5, 4, 4, 5, 4, 3, 4, 4, …
## $ Q8        <int> 4, 4, 4, 4, 4, 4, 5, 5, 2, 2, 4, 4, 4, 4, 3, 5, 4, 2, 4, 4, …
## $ Q9        <int> 4, 4, 4, 4, 2, 4, 5, 5, 3, 4, 4, 4, 2, 2, 4, 5, 2, 4, 2, 4, …
## $ Q10       <int> 4, 4, 2, 4, 4, 4, 5, 5, 2, 4, 2, 4, 4, 4, 3, 4, 4, 3, 2, 3, …
## $ Q11       <int> 4, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 3, 4, 4, 4, 4, 5, 4, 3, 3, …
## $ Q12       <int> 4, 4, 4, 4, 4, 4, 5, 5, 3, 4, 4, 3, 4, 3, 3, 4, 5, 4, 4, 2, …
## $ Q13       <int> 4, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 4, 2, 4, 4, 4, 5, 4, 4, 4, …
## $ Q14       <int> 4, 4, 4, 4, 4, 4, 5, 5, 5, 4, 4, 4, 3, 4, 5, 4, 5, 4, 4, 4, …
## $ Q15       <int> 4, 4, 3, 4, 4, 4, 4, 2, 3, 4, 4, 3, 1, 4, 4, 4, 5, 4, 4, 4, …
## $ Q16       <int> 4, 4, 4, 4, 4, 4, 5, 2, 4, 4, 4, 4, 4, 4, 5, 4, 5, 4, 4, 4, …
## $ Q17       <int> 4, 3, 4, 4, 4, 4, 2, 2, 4, 4, 4, 4, 3, 2, 4, 5, 4, 4, 3, 4, …
## $ Q18       <int> 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 2, 4, 4, 4, …
## $ Q19       <int> 4, 2, 4, 4, 4, 4, 4, 2, 4, 2, 4, 4, 1, 4, 4, 4, 5, 4, 2, 3, …
## $ Q20       <int> 4, 1, 3, 4, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 4, 5, 5, 4, 2, 4, …
## $ Gender1   <int> 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ Edu1      <int> 1, 1, 2, 1, 2, 1, 1, 1, 4, 3, 2, 1, 1, 3, 3, 2, 1, 1, 1, 4, …
## $ BF        <dbl> 3.4, 4.0, 3.6, 4.2, 4.0, 4.0, 3.6, 3.6, 3.6, 3.2, 4.0, 3.2, …
## $ BM        <dbl> 3.2, 3.4, 3.6, 4.0, 3.6, 4.0, 4.6, 4.6, 2.2, 3.2, 3.2, 3.6, …
## $ Happiness <dbl> 4.0, 4.0, 3.8, 4.0, 4.0, 4.0, 4.8, 4.4, 3.8, 4.0, 4.0, 3.4, …
## $ Peace     <dbl> 4.0, 2.8, 3.8, 4.0, 4.0, 4.0, 3.8, 2.4, 4.0, 3.2, 4.0, 3.9, …
options(scipen = 100)
options(scipen = -100)
t.test(df1$Happiness)
## 
##  One Sample t-test
## 
## data:  df1$Happiness
## t = 2.0806e+02, df = 1.924e+03, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0e+00
## 9.5e+01 percent confidence interval:
##  3.513629e+00 3.580501e+00
## sample estimates:
##    mean of x 
## 3.547065e+00
t.test(df1$Happiness, conf.level = .99)
## 
##  One Sample t-test
## 
## data:  df1$Happiness
## t = 2.0806e+02, df = 1.924e+03, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0e+00
## 9.9e+01 percent confidence interval:
##  3.503107e+00 3.591023e+00
## sample estimates:
##    mean of x 
## 3.547065e+00
options(scipen = 100)

t.test(df1$Happiness, mu=3.5)
## 
##  One Sample t-test
## 
## data:  df1$Happiness
## t = 2.7606, df = 1924, p-value = 0.005824
## alternative hypothesis: true mean is not equal to 3.5
## 95 percent confidence interval:
##  3.513629 3.580501
## sample estimates:
## mean of x 
##  3.547065
glimpse(df1)
## Rows: 1,925
## Columns: 26
## $ Q1        <int> 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, …
## $ Q2        <int> 4, 4, 4, 4, 4, 4, 2, 2, 4, 4, 4, 4, 4, 2, 4, 4, 2, 4, 2, 2, …
## $ Q3        <int> 2, 4, 4, 4, 4, 4, 4, 4, 4, 2, 4, 2, 4, 4, 4, 4, 4, 3, 2, 3, …
## $ Q4        <int> 3, 4, 4, 4, 4, 4, 4, 4, 4, 2, 4, 4, 4, 2, 4, 4, 4, 2, 2, 4, …
## $ Q5        <int> 4, 4, 2, 4, 4, 4, 4, 4, 2, 4, 4, 2, 4, 4, 4, 4, 4, 3, 1, 2, …
## $ Q6        <int> 2, 3, 4, 4, 4, 4, 4, 4, 1, 2, 2, 2, 4, 4, 3, 5, 2, 2, 1, 4, …
## $ Q7        <int> 2, 2, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 5, 4, 4, 5, 4, 3, 4, 4, …
## $ Q8        <int> 4, 4, 4, 4, 4, 4, 5, 5, 2, 2, 4, 4, 4, 4, 3, 5, 4, 2, 4, 4, …
## $ Q9        <int> 4, 4, 4, 4, 2, 4, 5, 5, 3, 4, 4, 4, 2, 2, 4, 5, 2, 4, 2, 4, …
## $ Q10       <int> 4, 4, 2, 4, 4, 4, 5, 5, 2, 4, 2, 4, 4, 4, 3, 4, 4, 3, 2, 3, …
## $ Q11       <int> 4, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 3, 4, 4, 4, 4, 5, 4, 3, 3, …
## $ Q12       <int> 4, 4, 4, 4, 4, 4, 5, 5, 3, 4, 4, 3, 4, 3, 3, 4, 5, 4, 4, 2, …
## $ Q13       <int> 4, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 4, 2, 4, 4, 4, 5, 4, 4, 4, …
## $ Q14       <int> 4, 4, 4, 4, 4, 4, 5, 5, 5, 4, 4, 4, 3, 4, 5, 4, 5, 4, 4, 4, …
## $ Q15       <int> 4, 4, 3, 4, 4, 4, 4, 2, 3, 4, 4, 3, 1, 4, 4, 4, 5, 4, 4, 4, …
## $ Q16       <int> 4, 4, 4, 4, 4, 4, 5, 2, 4, 4, 4, 4, 4, 4, 5, 4, 5, 4, 4, 4, …
## $ Q17       <int> 4, 3, 4, 4, 4, 4, 2, 2, 4, 4, 4, 4, 3, 2, 4, 5, 4, 4, 3, 4, …
## $ Q18       <int> 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 2, 4, 4, 4, …
## $ Q19       <int> 4, 2, 4, 4, 4, 4, 4, 2, 4, 2, 4, 4, 1, 4, 4, 4, 5, 4, 2, 3, …
## $ Q20       <int> 4, 1, 3, 4, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 4, 5, 5, 4, 2, 4, …
## $ Gender1   <int> 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ Edu1      <int> 1, 1, 2, 1, 2, 1, 1, 1, 4, 3, 2, 1, 1, 3, 3, 2, 1, 1, 1, 4, …
## $ BF        <dbl> 3.4, 4.0, 3.6, 4.2, 4.0, 4.0, 3.6, 3.6, 3.6, 3.2, 4.0, 3.2, …
## $ BM        <dbl> 3.2, 3.4, 3.6, 4.0, 3.6, 4.0, 4.6, 4.6, 2.2, 3.2, 3.2, 3.6, …
## $ Happiness <dbl> 4.0, 4.0, 3.8, 4.0, 4.0, 4.0, 4.8, 4.4, 3.8, 4.0, 4.0, 3.4, …
## $ Peace     <dbl> 4.0, 2.8, 3.8, 4.0, 4.0, 4.0, 3.8, 2.4, 4.0, 3.2, 4.0, 3.9, …
t.test(df$BF, mu=3.2)
## 
##  One Sample t-test
## 
## data:  df$BF
## t = -1.6755, df = 1924, p-value = 0.09401
## alternative hypothesis: true mean is not equal to 3.2
## 95 percent confidence interval:
##  3.138323 3.204846
## sample estimates:
## mean of x 
##  3.171584
t.test(df$Peace, mu=3.5)
## 
##  One Sample t-test
## 
## data:  df$Peace
## t = 4.2908, df = 1924, p-value = 0.00001869
## alternative hypothesis: true mean is not equal to 3.5
## 95 percent confidence interval:
##  3.534889 3.593631
## sample estimates:
## mean of x 
##   3.56426
#p.62 두 변수의 평균 비교
t.test(df1$Happiness,df1$Peace,
       paired = TRUE)
## 
##  Paired t-test
## 
## data:  df1$Happiness and df1$Peace
## t = -1.1468, df = 1924, p-value = 0.2516
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
##  -0.04660127  0.01221166
## sample estimates:
## mean difference 
##     -0.01719481