##Situación Problema ¿Como mejorar la posición competitiva en una de las aerolíneas mas grandes de Nueva York?

##Contexto: Te acabas de incorporar a una empresa consultora en Inteligencia de Negocios, actualmente están brindando servicios de análisis para la industria de la aviación y les interesa tener a la aerolínea American Airlines como cliente ya que es una de las aerolíneas líderes en los aeropuertos de Nueva York, motivo por el cuál te han contratado. Te han pedido que identifiques cómo puede dicha aerolínea mejorar su posición competitiva !! Para identificar oportunidades de mejorar la posición competitiva de la aerolínea American Airlines, necesitas realizar algunos análisis, para determinar si hay variaciones en la posición de liderazgo de dicha aerolínea.

library(nycflights13)
summary(flights)
##       year          month             day           dep_time    sched_dep_time
##  Min.   :2013   Min.   : 1.000   Min.   : 1.00   Min.   :   1   Min.   : 106  
##  1st Qu.:2013   1st Qu.: 4.000   1st Qu.: 8.00   1st Qu.: 907   1st Qu.: 906  
##  Median :2013   Median : 7.000   Median :16.00   Median :1401   Median :1359  
##  Mean   :2013   Mean   : 6.549   Mean   :15.71   Mean   :1349   Mean   :1344  
##  3rd Qu.:2013   3rd Qu.:10.000   3rd Qu.:23.00   3rd Qu.:1744   3rd Qu.:1729  
##  Max.   :2013   Max.   :12.000   Max.   :31.00   Max.   :2400   Max.   :2359  
##                                                  NA's   :8255                 
##    dep_delay          arr_time    sched_arr_time   arr_delay       
##  Min.   : -43.00   Min.   :   1   Min.   :   1   Min.   : -86.000  
##  1st Qu.:  -5.00   1st Qu.:1104   1st Qu.:1124   1st Qu.: -17.000  
##  Median :  -2.00   Median :1535   Median :1556   Median :  -5.000  
##  Mean   :  12.64   Mean   :1502   Mean   :1536   Mean   :   6.895  
##  3rd Qu.:  11.00   3rd Qu.:1940   3rd Qu.:1945   3rd Qu.:  14.000  
##  Max.   :1301.00   Max.   :2400   Max.   :2359   Max.   :1272.000  
##  NA's   :8255      NA's   :8713                  NA's   :9430      
##    carrier              flight       tailnum             origin         
##  Length:336776      Min.   :   1   Length:336776      Length:336776     
##  Class :character   1st Qu.: 553   Class :character   Class :character  
##  Mode  :character   Median :1496   Mode  :character   Mode  :character  
##                     Mean   :1972                                        
##                     3rd Qu.:3465                                        
##                     Max.   :8500                                        
##                                                                         
##      dest              air_time        distance         hour      
##  Length:336776      Min.   : 20.0   Min.   :  17   Min.   : 1.00  
##  Class :character   1st Qu.: 82.0   1st Qu.: 502   1st Qu.: 9.00  
##  Mode  :character   Median :129.0   Median : 872   Median :13.00  
##                     Mean   :150.7   Mean   :1040   Mean   :13.18  
##                     3rd Qu.:192.0   3rd Qu.:1389   3rd Qu.:17.00  
##                     Max.   :695.0   Max.   :4983   Max.   :23.00  
##                     NA's   :9430                                  
##      minute        time_hour                     
##  Min.   : 0.00   Min.   :2013-01-01 05:00:00.00  
##  1st Qu.: 8.00   1st Qu.:2013-04-04 13:00:00.00  
##  Median :29.00   Median :2013-07-03 10:00:00.00  
##  Mean   :26.23   Mean   :2013-07-03 05:22:54.64  
##  3rd Qu.:44.00   3rd Qu.:2013-10-01 07:00:00.00  
##  Max.   :59.00   Max.   :2013-12-31 23:00:00.00  
## 

Necesitas consultar para cada dataframe:

base de datos 1: Airlines

summary(airlines)
##    carrier              name          
##  Length:16          Length:16         
##  Class :character   Class :character  
##  Mode  :character   Mode  :character
str(airlines)
## tibble [16 × 2] (S3: tbl_df/tbl/data.frame)
##  $ carrier: chr [1:16] "9E" "AA" "AS" "B6" ...
##  $ name   : chr [1:16] "Endeavor Air Inc." "American Airlines Inc." "Alaska Airlines Inc." "JetBlue Airways" ...

Base de datos 2: Airports

summary(airports)
##      faa                name                lat             lon         
##  Length:1458        Length:1458        Min.   :19.72   Min.   :-176.65  
##  Class :character   Class :character   1st Qu.:34.26   1st Qu.:-119.19  
##  Mode  :character   Mode  :character   Median :40.09   Median : -94.66  
##                                        Mean   :41.65   Mean   :-103.39  
##                                        3rd Qu.:45.07   3rd Qu.: -82.52  
##                                        Max.   :72.27   Max.   : 174.11  
##       alt                tz              dst               tzone          
##  Min.   : -54.00   Min.   :-10.000   Length:1458        Length:1458       
##  1st Qu.:  70.25   1st Qu.: -8.000   Class :character   Class :character  
##  Median : 473.00   Median : -6.000   Mode  :character   Mode  :character  
##  Mean   :1001.42   Mean   : -6.519                                        
##  3rd Qu.:1062.50   3rd Qu.: -5.000                                        
##  Max.   :9078.00   Max.   :  8.000
str(airports)
## tibble [1,458 × 8] (S3: tbl_df/tbl/data.frame)
##  $ faa  : chr [1:1458] "04G" "06A" "06C" "06N" ...
##  $ name : chr [1:1458] "Lansdowne Airport" "Moton Field Municipal Airport" "Schaumburg Regional" "Randall Airport" ...
##  $ lat  : num [1:1458] 41.1 32.5 42 41.4 31.1 ...
##  $ lon  : num [1:1458] -80.6 -85.7 -88.1 -74.4 -81.4 ...
##  $ alt  : num [1:1458] 1044 264 801 523 11 ...
##  $ tz   : num [1:1458] -5 -6 -6 -5 -5 -5 -5 -5 -5 -8 ...
##  $ dst  : chr [1:1458] "A" "A" "A" "A" ...
##  $ tzone: chr [1:1458] "America/New_York" "America/Chicago" "America/Chicago" "America/New_York" ...
##  - attr(*, "spec")=List of 3
##   ..$ cols   :List of 12
##   .. ..$ id     : list()
##   .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
##   .. ..$ name   : list()
##   .. .. ..- attr(*, "class")= chr [1:2] "collector_character" "collector"
##   .. ..$ city   : list()
##   .. .. ..- attr(*, "class")= chr [1:2] "collector_character" "collector"
##   .. ..$ country: list()
##   .. .. ..- attr(*, "class")= chr [1:2] "collector_character" "collector"
##   .. ..$ faa    : list()
##   .. .. ..- attr(*, "class")= chr [1:2] "collector_character" "collector"
##   .. ..$ icao   : list()
##   .. .. ..- attr(*, "class")= chr [1:2] "collector_character" "collector"
##   .. ..$ lat    : list()
##   .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
##   .. ..$ lon    : list()
##   .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
##   .. ..$ alt    : list()
##   .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
##   .. ..$ tz     : list()
##   .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
##   .. ..$ dst    : list()
##   .. .. ..- attr(*, "class")= chr [1:2] "collector_character" "collector"
##   .. ..$ tzone  : list()
##   .. .. ..- attr(*, "class")= chr [1:2] "collector_character" "collector"
##   ..$ default: list()
##   .. ..- attr(*, "class")= chr [1:2] "collector_guess" "collector"
##   ..$ skip   : num 0
##   ..- attr(*, "class")= chr "col_spec"

Base de datos 3: Flights

summary(flights)
##       year          month             day           dep_time    sched_dep_time
##  Min.   :2013   Min.   : 1.000   Min.   : 1.00   Min.   :   1   Min.   : 106  
##  1st Qu.:2013   1st Qu.: 4.000   1st Qu.: 8.00   1st Qu.: 907   1st Qu.: 906  
##  Median :2013   Median : 7.000   Median :16.00   Median :1401   Median :1359  
##  Mean   :2013   Mean   : 6.549   Mean   :15.71   Mean   :1349   Mean   :1344  
##  3rd Qu.:2013   3rd Qu.:10.000   3rd Qu.:23.00   3rd Qu.:1744   3rd Qu.:1729  
##  Max.   :2013   Max.   :12.000   Max.   :31.00   Max.   :2400   Max.   :2359  
##                                                  NA's   :8255                 
##    dep_delay          arr_time    sched_arr_time   arr_delay       
##  Min.   : -43.00   Min.   :   1   Min.   :   1   Min.   : -86.000  
##  1st Qu.:  -5.00   1st Qu.:1104   1st Qu.:1124   1st Qu.: -17.000  
##  Median :  -2.00   Median :1535   Median :1556   Median :  -5.000  
##  Mean   :  12.64   Mean   :1502   Mean   :1536   Mean   :   6.895  
##  3rd Qu.:  11.00   3rd Qu.:1940   3rd Qu.:1945   3rd Qu.:  14.000  
##  Max.   :1301.00   Max.   :2400   Max.   :2359   Max.   :1272.000  
##  NA's   :8255      NA's   :8713                  NA's   :9430      
##    carrier              flight       tailnum             origin         
##  Length:336776      Min.   :   1   Length:336776      Length:336776     
##  Class :character   1st Qu.: 553   Class :character   Class :character  
##  Mode  :character   Median :1496   Mode  :character   Mode  :character  
##                     Mean   :1972                                        
##                     3rd Qu.:3465                                        
##                     Max.   :8500                                        
##                                                                         
##      dest              air_time        distance         hour      
##  Length:336776      Min.   : 20.0   Min.   :  17   Min.   : 1.00  
##  Class :character   1st Qu.: 82.0   1st Qu.: 502   1st Qu.: 9.00  
##  Mode  :character   Median :129.0   Median : 872   Median :13.00  
##                     Mean   :150.7   Mean   :1040   Mean   :13.18  
##                     3rd Qu.:192.0   3rd Qu.:1389   3rd Qu.:17.00  
##                     Max.   :695.0   Max.   :4983   Max.   :23.00  
##                     NA's   :9430                                  
##      minute        time_hour                     
##  Min.   : 0.00   Min.   :2013-01-01 05:00:00.00  
##  1st Qu.: 8.00   1st Qu.:2013-04-04 13:00:00.00  
##  Median :29.00   Median :2013-07-03 10:00:00.00  
##  Mean   :26.23   Mean   :2013-07-03 05:22:54.64  
##  3rd Qu.:44.00   3rd Qu.:2013-10-01 07:00:00.00  
##  Max.   :59.00   Max.   :2013-12-31 23:00:00.00  
## 
str(flights)
## tibble [336,776 × 19] (S3: tbl_df/tbl/data.frame)
##  $ year          : int [1:336776] 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 ...
##  $ month         : int [1:336776] 1 1 1 1 1 1 1 1 1 1 ...
##  $ day           : int [1:336776] 1 1 1 1 1 1 1 1 1 1 ...
##  $ dep_time      : int [1:336776] 517 533 542 544 554 554 555 557 557 558 ...
##  $ sched_dep_time: int [1:336776] 515 529 540 545 600 558 600 600 600 600 ...
##  $ dep_delay     : num [1:336776] 2 4 2 -1 -6 -4 -5 -3 -3 -2 ...
##  $ arr_time      : int [1:336776] 830 850 923 1004 812 740 913 709 838 753 ...
##  $ sched_arr_time: int [1:336776] 819 830 850 1022 837 728 854 723 846 745 ...
##  $ arr_delay     : num [1:336776] 11 20 33 -18 -25 12 19 -14 -8 8 ...
##  $ carrier       : chr [1:336776] "UA" "UA" "AA" "B6" ...
##  $ flight        : int [1:336776] 1545 1714 1141 725 461 1696 507 5708 79 301 ...
##  $ tailnum       : chr [1:336776] "N14228" "N24211" "N619AA" "N804JB" ...
##  $ origin        : chr [1:336776] "EWR" "LGA" "JFK" "JFK" ...
##  $ dest          : chr [1:336776] "IAH" "IAH" "MIA" "BQN" ...
##  $ air_time      : num [1:336776] 227 227 160 183 116 150 158 53 140 138 ...
##  $ distance      : num [1:336776] 1400 1416 1089 1576 762 ...
##  $ hour          : num [1:336776] 5 5 5 5 6 5 6 6 6 6 ...
##  $ minute        : num [1:336776] 15 29 40 45 0 58 0 0 0 0 ...
##  $ time_hour     : POSIXct[1:336776], format: "2013-01-01 05:00:00" "2013-01-01 05:00:00" ...

Base de datos 4: Planes

summary(planes)
##    tailnum               year          type           manufacturer      
##  Length:3322        Min.   :1956   Length:3322        Length:3322       
##  Class :character   1st Qu.:1997   Class :character   Class :character  
##  Mode  :character   Median :2001   Mode  :character   Mode  :character  
##                     Mean   :2000                                        
##                     3rd Qu.:2005                                        
##                     Max.   :2013                                        
##                     NA's   :70                                          
##     model              engines          seats           speed      
##  Length:3322        Min.   :1.000   Min.   :  2.0   Min.   : 90.0  
##  Class :character   1st Qu.:2.000   1st Qu.:140.0   1st Qu.:107.5  
##  Mode  :character   Median :2.000   Median :149.0   Median :162.0  
##                     Mean   :1.995   Mean   :154.3   Mean   :236.8  
##                     3rd Qu.:2.000   3rd Qu.:182.0   3rd Qu.:432.0  
##                     Max.   :4.000   Max.   :450.0   Max.   :432.0  
##                                                     NA's   :3299   
##     engine         
##  Length:3322       
##  Class :character  
##  Mode  :character  
##                    
##                    
##                    
## 
str(planes)
## tibble [3,322 × 9] (S3: tbl_df/tbl/data.frame)
##  $ tailnum     : chr [1:3322] "N10156" "N102UW" "N103US" "N104UW" ...
##  $ year        : int [1:3322] 2004 1998 1999 1999 2002 1999 1999 1999 1999 1999 ...
##  $ type        : chr [1:3322] "Fixed wing multi engine" "Fixed wing multi engine" "Fixed wing multi engine" "Fixed wing multi engine" ...
##  $ manufacturer: chr [1:3322] "EMBRAER" "AIRBUS INDUSTRIE" "AIRBUS INDUSTRIE" "AIRBUS INDUSTRIE" ...
##  $ model       : chr [1:3322] "EMB-145XR" "A320-214" "A320-214" "A320-214" ...
##  $ engines     : int [1:3322] 2 2 2 2 2 2 2 2 2 2 ...
##  $ seats       : int [1:3322] 55 182 182 182 55 182 182 182 182 182 ...
##  $ speed       : int [1:3322] NA NA NA NA NA NA NA NA NA NA ...
##  $ engine      : chr [1:3322] "Turbo-fan" "Turbo-fan" "Turbo-fan" "Turbo-fan" ...

Base de datos 5: Weather

summary(weather)
##     origin               year          month             day       
##  Length:26115       Min.   :2013   Min.   : 1.000   Min.   : 1.00  
##  Class :character   1st Qu.:2013   1st Qu.: 4.000   1st Qu.: 8.00  
##  Mode  :character   Median :2013   Median : 7.000   Median :16.00  
##                     Mean   :2013   Mean   : 6.504   Mean   :15.68  
##                     3rd Qu.:2013   3rd Qu.: 9.000   3rd Qu.:23.00  
##                     Max.   :2013   Max.   :12.000   Max.   :31.00  
##                                                                    
##       hour            temp             dewp           humid       
##  Min.   : 0.00   Min.   : 10.94   Min.   :-9.94   Min.   : 12.74  
##  1st Qu.: 6.00   1st Qu.: 39.92   1st Qu.:26.06   1st Qu.: 47.05  
##  Median :11.00   Median : 55.40   Median :42.08   Median : 61.79  
##  Mean   :11.49   Mean   : 55.26   Mean   :41.44   Mean   : 62.53  
##  3rd Qu.:17.00   3rd Qu.: 69.98   3rd Qu.:57.92   3rd Qu.: 78.79  
##  Max.   :23.00   Max.   :100.04   Max.   :78.08   Max.   :100.00  
##                  NA's   :1        NA's   :1       NA's   :1       
##     wind_dir       wind_speed         wind_gust         precip        
##  Min.   :  0.0   Min.   :   0.000   Min.   :16.11   Min.   :0.000000  
##  1st Qu.:120.0   1st Qu.:   6.905   1st Qu.:20.71   1st Qu.:0.000000  
##  Median :220.0   Median :  10.357   Median :24.17   Median :0.000000  
##  Mean   :199.8   Mean   :  10.518   Mean   :25.49   Mean   :0.004469  
##  3rd Qu.:290.0   3rd Qu.:  13.809   3rd Qu.:28.77   3rd Qu.:0.000000  
##  Max.   :360.0   Max.   :1048.361   Max.   :66.75   Max.   :1.210000  
##  NA's   :460     NA's   :4          NA's   :20778                     
##     pressure          visib          time_hour                    
##  Min.   : 983.8   Min.   : 0.000   Min.   :2013-01-01 01:00:00.0  
##  1st Qu.:1012.9   1st Qu.:10.000   1st Qu.:2013-04-01 21:30:00.0  
##  Median :1017.6   Median :10.000   Median :2013-07-01 14:00:00.0  
##  Mean   :1017.9   Mean   : 9.255   Mean   :2013-07-01 18:26:37.7  
##  3rd Qu.:1023.0   3rd Qu.:10.000   3rd Qu.:2013-09-30 13:00:00.0  
##  Max.   :1042.1   Max.   :10.000   Max.   :2013-12-30 18:00:00.0  
##  NA's   :2729
str(weather)
## tibble [26,115 × 15] (S3: tbl_df/tbl/data.frame)
##  $ origin    : chr [1:26115] "EWR" "EWR" "EWR" "EWR" ...
##  $ year      : int [1:26115] 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 ...
##  $ month     : int [1:26115] 1 1 1 1 1 1 1 1 1 1 ...
##  $ day       : int [1:26115] 1 1 1 1 1 1 1 1 1 1 ...
##  $ hour      : int [1:26115] 1 2 3 4 5 6 7 8 9 10 ...
##  $ temp      : num [1:26115] 39 39 39 39.9 39 ...
##  $ dewp      : num [1:26115] 26.1 27 28 28 28 ...
##  $ humid     : num [1:26115] 59.4 61.6 64.4 62.2 64.4 ...
##  $ wind_dir  : num [1:26115] 270 250 240 250 260 240 240 250 260 260 ...
##  $ wind_speed: num [1:26115] 10.36 8.06 11.51 12.66 12.66 ...
##  $ wind_gust : num [1:26115] NA NA NA NA NA NA NA NA NA NA ...
##  $ precip    : num [1:26115] 0 0 0 0 0 0 0 0 0 0 ...
##  $ pressure  : num [1:26115] 1012 1012 1012 1012 1012 ...
##  $ visib     : num [1:26115] 10 10 10 10 10 10 10 10 10 10 ...
##  $ time_hour : POSIXct[1:26115], format: "2013-01-01 01:00:00" "2013-01-01 02:00:00" ...

Identifica los diferentes tipos de datos y explica en qué consiste cada uno de ellos y cuál es la diferencia entre uno y otro, incluyendo los siguientes tipos de datos: int, dbl, chr, dttm.

-Integer Centiene ejemplos por ejemplo: year

-double Significa dobles o números reales, en estas tablas no hay ninguno.

-character Es una variable que tiene texto, por ejemplo: carrier.

-data time contiene fecha y tiempo, por ejemplo: time_hour

Base de datos 1: Planes

data(planes)
str(planes)
## tibble [3,322 × 9] (S3: tbl_df/tbl/data.frame)
##  $ tailnum     : chr [1:3322] "N10156" "N102UW" "N103US" "N104UW" ...
##  $ year        : int [1:3322] 2004 1998 1999 1999 2002 1999 1999 1999 1999 1999 ...
##  $ type        : chr [1:3322] "Fixed wing multi engine" "Fixed wing multi engine" "Fixed wing multi engine" "Fixed wing multi engine" ...
##  $ manufacturer: chr [1:3322] "EMBRAER" "AIRBUS INDUSTRIE" "AIRBUS INDUSTRIE" "AIRBUS INDUSTRIE" ...
##  $ model       : chr [1:3322] "EMB-145XR" "A320-214" "A320-214" "A320-214" ...
##  $ engines     : int [1:3322] 2 2 2 2 2 2 2 2 2 2 ...
##  $ seats       : int [1:3322] 55 182 182 182 55 182 182 182 182 182 ...
##  $ speed       : int [1:3322] NA NA NA NA NA NA NA NA NA NA ...
##  $ engine      : chr [1:3322] "Turbo-fan" "Turbo-fan" "Turbo-fan" "Turbo-fan" ...
ncol(planes)
## [1] 9
nrow(planes)
## [1] 3322
dim(planes)
## [1] 3322    9
head(planes)
## # A tibble: 6 × 9
##   tailnum  year type                    manuf…¹ model engines seats speed engine
##   <chr>   <int> <chr>                   <chr>   <chr>   <int> <int> <int> <chr> 
## 1 N10156   2004 Fixed wing multi engine EMBRAER EMB-…       2    55    NA Turbo…
## 2 N102UW   1998 Fixed wing multi engine AIRBUS… A320…       2   182    NA Turbo…
## 3 N103US   1999 Fixed wing multi engine AIRBUS… A320…       2   182    NA Turbo…
## 4 N104UW   1999 Fixed wing multi engine AIRBUS… A320…       2   182    NA Turbo…
## 5 N10575   2002 Fixed wing multi engine EMBRAER EMB-…       2    55    NA Turbo…
## 6 N105UW   1999 Fixed wing multi engine AIRBUS… A320…       2   182    NA Turbo…
## # … with abbreviated variable name ¹​manufacturer
tail(planes)
## # A tibble: 6 × 9
##   tailnum  year type                    manuf…¹ model engines seats speed engine
##   <chr>   <int> <chr>                   <chr>   <chr>   <int> <int> <int> <chr> 
## 1 N996DL   1991 Fixed wing multi engine MCDONN… MD-88       2   142    NA Turbo…
## 2 N997AT   2002 Fixed wing multi engine BOEING  717-…       2   100    NA Turbo…
## 3 N997DL   1992 Fixed wing multi engine MCDONN… MD-88       2   142    NA Turbo…
## 4 N998AT   2002 Fixed wing multi engine BOEING  717-…       2   100    NA Turbo…
## 5 N998DL   1992 Fixed wing multi engine MCDONN… MD-88       2   142    NA Turbo…
## 6 N999DN   1992 Fixed wing multi engine MCDONN… MD-88       2   142    NA Turbo…
## # … with abbreviated variable name ¹​manufacturer
summary (planes)
##    tailnum               year          type           manufacturer      
##  Length:3322        Min.   :1956   Length:3322        Length:3322       
##  Class :character   1st Qu.:1997   Class :character   Class :character  
##  Mode  :character   Median :2001   Mode  :character   Mode  :character  
##                     Mean   :2000                                        
##                     3rd Qu.:2005                                        
##                     Max.   :2013                                        
##                     NA's   :70                                          
##     model              engines          seats           speed      
##  Length:3322        Min.   :1.000   Min.   :  2.0   Min.   : 90.0  
##  Class :character   1st Qu.:2.000   1st Qu.:140.0   1st Qu.:107.5  
##  Mode  :character   Median :2.000   Median :149.0   Median :162.0  
##                     Mean   :1.995   Mean   :154.3   Mean   :236.8  
##                     3rd Qu.:2.000   3rd Qu.:182.0   3rd Qu.:432.0  
##                     Max.   :4.000   Max.   :450.0   Max.   :432.0  
##                                                     NA's   :3299   
##     engine         
##  Length:3322       
##  Class :character  
##  Mode  :character  
##                    
##                    
##                    
## 

Hallazgos

Mediante la exploración de datos pudimos identificar las variables los “dataframes”. Podemos observar si hay algunas variables con NA’s. O si tenemos preguntas para aclararar algo de la manipulación.

Se te ha solicitado consultar cuáles son las aerolíneas de mayor tráfico aéreo en origen y destino. Cuentas con un data frame llamado flights que contiene toda la información de los vuelos de todos los aeropuertos de New York. Para lograrlo considera las funciones sugeridas en los siguientes pasos:

Consulta el data frame flights para recordar su contenido.

View(flights)

Define un criterio para encontrar las aerolíneas que han recorrido más distancia (en millas) y crea un nuevo data frame que filtre solamente a las aeorlíneas que han recorrido una distancia superior a la media, se desean ver los campos carrier, distance, origin, dest en forma descendente por distancia.

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
mas_distancia <- select(flights, carrier, distance, origin, dest)
head(mas_distancia)
## # A tibble: 6 × 4
##   carrier distance origin dest 
##   <chr>      <dbl> <chr>  <chr>
## 1 UA          1400 EWR    IAH  
## 2 UA          1416 LGA    IAH  
## 3 AA          1089 JFK    MIA  
## 4 B6          1576 JFK    BQN  
## 5 DL           762 LGA    ATL  
## 6 UA           719 EWR    ORD
mayor_media <- filter(mas_distancia, distance>1040)
head(mayor_media)
## # A tibble: 6 × 4
##   carrier distance origin dest 
##   <chr>      <dbl> <chr>  <chr>
## 1 UA          1400 EWR    IAH  
## 2 UA          1416 LGA    IAH  
## 3 AA          1089 JFK    MIA  
## 4 B6          1576 JFK    BQN  
## 5 B6          1065 EWR    FLL  
## 6 UA          2475 JFK    LAX
orden <- arrange(mayor_media,desc(distance))
head(orden)
## # A tibble: 6 × 4
##   carrier distance origin dest 
##   <chr>      <dbl> <chr>  <chr>
## 1 HA          4983 JFK    HNL  
## 2 HA          4983 JFK    HNL  
## 3 HA          4983 JFK    HNL  
## 4 HA          4983 JFK    HNL  
## 5 HA          4983 JFK    HNL  
## 6 HA          4983 JFK    HNL
count(orden, carrier, sort=TRUE)
## # A tibble: 13 × 2
##    carrier     n
##    <chr>   <int>
##  1 UA      39294
##  2 B6      24426
##  3 AA      23190
##  4 DL      21637
##  5 VX       5162
##  6 EV       3991
##  7 WN       3832
##  8 US       2271
##  9 9E       1377
## 10 MQ        744
## 11 AS        714
## 12 F9        685
## 13 HA        342

Encuentra la suma y la media de las distancias recorridas por carrier, elimina los NA’S e interpreta que significa la suma y la media de las distancias recorridas. Función: group_by(), summarize(), mean(), sum(), na.rm=TRUE Ordena en forma descendente por distancia recorrida

distancias <- orden %>% group_by(carrier,origin,distance) %>%
  summarize(suma_distancia=sum(distance, na.rm =TRUE), 
promedio_distancia =mean(distance, na.rm =TRUE ))
## `summarise()` has grouped output by 'carrier', 'origin'. You can override using
## the `.groups` argument.
distancias
## # A tibble: 150 × 5
## # Groups:   carrier, origin [26]
##    carrier origin distance suma_distancia promedio_distancia
##    <chr>   <chr>     <dbl>          <dbl>              <dbl>
##  1 9E      JFK        1113         307188               1113
##  2 9E      JFK        1182         515352               1182
##  3 9E      JFK        1391         507715               1391
##  4 9E      JFK        1521           3042               1521
##  5 9E      JFK        1587          84111               1587
##  6 9E      LGA        1047          81666               1047
##  7 9E      LGA        1080          72360               1080
##  8 9E      LGA        1107          94095               1107
##  9 9E      LGA        1183           1183               1183
## 10 9E      LGA        1389          19446               1389
## # … with 140 more rows

Orden descendiente por distancia recorrida

distancias_orden <- arrange(distancias, desc(suma_distancia))
head(distancias_orden)
## # A tibble: 6 × 5
## # Groups:   carrier, origin [5]
##   carrier origin distance suma_distancia promedio_distancia
##   <chr>   <chr>     <dbl>          <dbl>              <dbl>
## 1 UA      EWR        2565       11142360               2565
## 2 UA      EWR        2454        9236856               2454
## 3 AA      JFK        2475        7962075               2475
## 4 AA      LGA        1389        6717204               1389
## 5 UA      JFK        2586        6400350               2586
## 6 DL      JFK        2475        6189975               2475

• Identifica si las aerolíneas líderes son las mismas en los tres aeropuertos cuyo origen es Nueva York ( John F. Kennedy (JFK), LaGuardia (LGA) and Newark Liberty (EWR) ).

JFK <- distancias_orden %>%
  filter(origin =="JFK")%>%
  arrange(carrier,desc(suma_distancia))
JFK
## # A tibble: 69 × 5
## # Groups:   carrier, origin [8]
##    carrier origin distance suma_distancia promedio_distancia
##    <chr>   <chr>     <dbl>          <dbl>              <dbl>
##  1 9E      JFK        1182         515352               1182
##  2 9E      JFK        1391         507715               1391
##  3 9E      JFK        1113         307188               1113
##  4 9E      JFK        1587          84111               1587
##  5 9E      JFK        1521           3042               1521
##  6 AA      JFK        2475        7962075               2475
##  7 AA      JFK        2586        3677292               2586
##  8 AA      JFK        1089        2418669               1089
##  9 AA      JFK        1598        1756202               1598
## 10 AA      JFK        2248        1436472               2248
## # … with 59 more rows
LGA <- distancias_orden %>%
  filter(origin =="LGA")%>%
  arrange(carrier,desc(suma_distancia))
LGA
## # A tibble: 31 × 5
## # Groups:   carrier, origin [9]
##    carrier origin distance suma_distancia promedio_distancia
##    <chr>   <chr>     <dbl>          <dbl>              <dbl>
##  1 9E      LGA        1107          94095               1107
##  2 9E      LGA        1047          81666               1047
##  3 9E      LGA        1080          72360               1080
##  4 9E      LGA        1389          19446               1389
##  5 9E      LGA        1183           1183               1183
##  6 AA      LGA        1389        6717204               1389
##  7 AA      LGA        1096        4323720               1096
##  8 B6      LGA        1076        2354288               1076
##  9 B6      LGA        1080         394200               1080
## 10 B6      LGA        1047         382155               1047
## # … with 21 more rows
EWR <- distancias_orden %>%
  filter(origin =="EWR")%>%
  arrange(carrier,desc(suma_distancia))
EWR
## # A tibble: 50 × 5
## # Groups:   carrier, origin [9]
##    carrier origin distance suma_distancia promedio_distancia
##    <chr>   <chr>     <dbl>          <dbl>              <dbl>
##  1 AA      EWR        1372        2818088               1372
##  2 AA      EWR        1085        1158780               1085
##  3 AA      EWR        2454         895710               2454
##  4 AS      EWR        2402        1715028               2402
##  5 B6      EWR        1065        1476090               1065
##  6 B6      EWR        1608         609432               1608
##  7 B6      EWR        1068         389820               1068
##  8 DL      EWR        1969         697026               1969
##  9 EV      EWR        1092        1480752               1092
## 10 EV      EWR        1134         852768               1134
## # … with 40 more rows