Asignación de variables

x<-3
y<-2

Impresión de resultados

x
## [1] 3
y
## [1] 2

Operaciones aritméticas

suma <- x+y
suma
## [1] 5
resta <- x-y
resta
## [1] 1
multiplicacion <- x*y
multiplicacion
## [1] 6
division <- x/y
division
## [1] 1.5
division_entera <- x%/%y
division_entera
## [1] 1
potencia <- x^2
potencia
## [1] 9

Funciones matemáticas

raiz_cuadrada <- sqrt(x)
raiz_cuadrada
## [1] 1.732051
raiz_cubica <- x^(1/3)
raiz_cubica
## [1] 1.44225
exponencial <- exp(1)
exponencial
## [1] 2.718282
z <- -4
z
## [1] -4
absoluto <- abs(z)
absoluto
## [1] 4
signo <- sign(z)
signo
## [1] -1
signo2 <- sign(x)
signo2
## [1] 1
redondeo_arriba <- ceiling(x/y)
redondeo_arriba
## [1] 2
redondeo_abajo <- floor(x/y)
redondeo_abajo
## [1] 1
truncar <- trunc(division)
truncar
## [1] 1

Constantes

pi
## [1] 3.141593
radio<-5
area_circulo <- pi*radio^2
area_circulo
## [1] 78.53982

Vectores

a <- c(1,2,3,4,5)
a
## [1] 1 2 3 4 5
longitud <- length(a)
longitud
## [1] 5
promedio <- mean(a)
promedio
## [1] 3
resumen <- summary(a)
resumen
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       1       2       3       3       4       5
orden_ascendente <- sort(a)
orden_ascendente
## [1] 1 2 3 4 5
orden_descendente <- sort(a,decreasing=TRUE)
orden_descendente
## [1] 5 4 3 2 1
b <- c(1,2,3,4,5)
b
## [1] 1 2 3 4 5
suma_vectores <-a+b
suma_vectores
## [1]  2  4  6  8 10

Gráficas

plot(a,b, type="b") #puede ser "l" o p,l,b,c,o,h,s,n

?plot
## starting httpd help server ... done
plot(a,b, type="b", main= "Ventas Totales por Seamana", xlab= "Semana", ylab= "MXN")

LS0tDQp0aXRsZTogIkNvbWFuZG9zIGLDoXNpY29zIg0KYXV0aG9yOiAiTWFyaWFuYSBSYW3DrXJleiBSYW1vcyAtIEEwMTE3NDE1NSINCm91dHB1dDoNCiAgaHRtbF9kb2N1bWVudDoNCiAgICB0b2M6IHRydWUNCiAgICB0b2NfZmxvYXQ6IHRydWUNCiAgICBjb2RlX2Rvd25sb2FkOiB0cnVlDQotLS0NCg0KIVtdKEM6XFxVc2Vyc1xcbWFyaTBcXERvd25sb2Fkc1xcUmxvZ28ucG5nKQ0KDQojIyMgQXNpZ25hY2nDs24gZGUgdmFyaWFibGVzDQoNCmBgYHtyfQ0KeDwtMw0KeTwtMg0KYGBgDQoNCiMjIyBJbXByZXNpw7NuIGRlIHJlc3VsdGFkb3MNCg0KYGBge3J9DQp4DQp5DQpgYGANCg0KIyMjIE9wZXJhY2lvbmVzIGFyaXRtw6l0aWNhcw0KDQpgYGB7cn0NCnN1bWEgPC0geCt5DQpzdW1hDQoNCnJlc3RhIDwtIHgteQ0KcmVzdGENCg0KbXVsdGlwbGljYWNpb24gPC0geCp5DQptdWx0aXBsaWNhY2lvbg0KDQpkaXZpc2lvbiA8LSB4L3kNCmRpdmlzaW9uDQoNCmRpdmlzaW9uX2VudGVyYSA8LSB4JS8leQ0KZGl2aXNpb25fZW50ZXJhDQoNCnBvdGVuY2lhIDwtIHheMg0KcG90ZW5jaWENCmBgYA0KDQojIyMgRnVuY2lvbmVzIG1hdGVtw6F0aWNhcw0KDQpgYGB7cn0NCnJhaXpfY3VhZHJhZGEgPC0gc3FydCh4KQ0KcmFpel9jdWFkcmFkYQ0KDQpyYWl6X2N1YmljYSA8LSB4XigxLzMpDQpyYWl6X2N1YmljYQ0KDQpleHBvbmVuY2lhbCA8LSBleHAoMSkNCmV4cG9uZW5jaWFsDQoNCnogPC0gLTQNCnoNCg0KYWJzb2x1dG8gPC0gYWJzKHopDQphYnNvbHV0bw0KDQpzaWdubyA8LSBzaWduKHopDQpzaWdubw0KDQpzaWdubzIgPC0gc2lnbih4KQ0Kc2lnbm8yDQoNCnJlZG9uZGVvX2FycmliYSA8LSBjZWlsaW5nKHgveSkNCnJlZG9uZGVvX2FycmliYQ0KDQpyZWRvbmRlb19hYmFqbyA8LSBmbG9vcih4L3kpDQpyZWRvbmRlb19hYmFqbw0KDQp0cnVuY2FyIDwtIHRydW5jKGRpdmlzaW9uKQ0KdHJ1bmNhcg0KYGBgDQoNCiMjIyBDb25zdGFudGVzDQoNCmBgYHtyfQ0KcGkNCnJhZGlvPC01DQphcmVhX2NpcmN1bG8gPC0gcGkqcmFkaW9eMg0KYXJlYV9jaXJjdWxvDQpgYGANCg0KIyMjIFZlY3RvcmVzDQoNCmBgYHtyfQ0KYSA8LSBjKDEsMiwzLDQsNSkNCmENCg0KbG9uZ2l0dWQgPC0gbGVuZ3RoKGEpDQpsb25naXR1ZA0KDQpwcm9tZWRpbyA8LSBtZWFuKGEpDQpwcm9tZWRpbw0KDQpyZXN1bWVuIDwtIHN1bW1hcnkoYSkNCnJlc3VtZW4NCg0Kb3JkZW5fYXNjZW5kZW50ZSA8LSBzb3J0KGEpDQpvcmRlbl9hc2NlbmRlbnRlDQoNCm9yZGVuX2Rlc2NlbmRlbnRlIDwtIHNvcnQoYSxkZWNyZWFzaW5nPVRSVUUpDQpvcmRlbl9kZXNjZW5kZW50ZQ0KDQpiIDwtIGMoMSwyLDMsNCw1KQ0KYg0KDQpzdW1hX3ZlY3RvcmVzIDwtYStiDQpzdW1hX3ZlY3RvcmVzDQpgYGANCg0KIyMjIEdyw6FmaWNhcw0KDQpgYGB7cn0NCnBsb3QoYSxiLCB0eXBlPSJiIikgI3B1ZWRlIHNlciAibCIgbyBwLGwsYixjLG8saCxzLG4NCj9wbG90DQoNCnBsb3QoYSxiLCB0eXBlPSJiIiwgbWFpbj0gIlZlbnRhcyBUb3RhbGVzIHBvciBTZWFtYW5hIiwgeGxhYj0gIlNlbWFuYSIsIHlsYWI9ICJNWE4iKQ0KYGBgDQoNCg==