#Modelo predictivo SEGUROS
#Importar base de datos bd <- read.csv(“/Users/Regina/Desktop/seguros.csv”)
#Entender de la base de datos summary(bd)
install.packages(“dplyr”) library(dplyr)
count(bd,ClaimStatus, sort= TRUE) count(bd,IncidentDate, sort= TRUE) count(bd,IncidentDescription, sort= TRUE) count(bd,ReturnToWorkDate, sort= TRUE) count(bd,ClaimantOpenedDate, sort= TRUE) count(bd,ClaimantClosedDate, sort= TRUE) count(bd,EmployerNotificationDate, sort= TRUE) count(bd,ReceivedDate, sort= TRUE) count(bd,Gender, sort= TRUE) count(bd,ClaimantType, sort= TRUE) count(bd,InjuryNature, sort= TRUE) count(bd,BodyPartRegion, sort= TRUE) count(bd,BodyPart, sort= TRUE)
#Observaciones #1. Cambiar formato de variables de fecha DESPUES #AlT 126 = Guion Curvo, MAC OPTION Ñ
#Generar el Modelo Predictivo regresion <- lm(TotalIncurredCost ~ ClaimantAge_at_DOI + Gender + ClaimantType + InjuryNature + BodyPartRegion + BodyPart + AverageWeeklyWage1, data=bd) summary(regresion)
#Evaluar, y en caso necesario, ajustar la regresion regresion_ajustada <- lm(TotalIncurredCost ~ ClaimantAge_at_DOI + Gender + ClaimantType + BodyPartRegion + BodyPart + AverageWeeklyWage1, data=bd) summary(regresion_ajustada)
#Construir un modelo predictivo datos_nuevos <- data.frame(ClaimantAge_at_DOI = c(20,30,40,50,60,70,80,90), Gender = “Male”, ClaimantType = “MedicalOnly”, BodyPartRegion = “Head”, BodyPart = “Brain”, AverageWeeklyWage1 = 550) predict(regresion_ajustada,datos_nuevos)