
Asignación de variables
# Asignación de variables
x<-3
y<-2
Impresión de Resultados
x
## [1] 3
y
## [1] 2
Operaciones Aritmeticas
suma <- x+y
suma
## [1] 5
resta <- x-y
resta
## [1] 1
multiplicacion <- x*y
multiplicacion
## [1] 6
division <- x/y
division
## [1] 1.5
division_entera <- x%/%y
division_entera
## [1] 1
potencia <- x^2
potencia
## [1] 9
Funciones Matematicas
raiz_cuadrada <- sqrt(x)
raiz_cuadrada
## [1] 1.732051
raiz_cubica <- x^(1/3)
raiz_cubica
## [1] 1.44225
exponencial <- exp(1)
exponencial
## [1] 2.718282
z <- -4
z
## [1] -4
absoluto <- abs(z)
absoluto
## [1] 4
signo <- sign(z)
signo
## [1] -1
signo2 <- sign(x)
signo2
## [1] 1
redondeo_arriba <- ceiling(x/y)
redondeo_arriba
## [1] 2
redondeo_abajo <- floor (x/y)
redondeo_abajo
## [1] 1
truncar <- trunc(division)
truncar
## [1] 1
Constantes
pi
## [1] 3.141593
radio <- 5
area_circulo <- pi*radio^2
area_circulo
## [1] 78.53982
Vectores
a <- c(1,2,3,4,5)
a
## [1] 1 2 3 4 5
longitud <- length(a)
longitud
## [1] 5
promedio <- mean(a)
promedio
## [1] 3
resumen <- summary(a)
resumen
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1 2 3 3 4 5
orden_ascendente <- sort(a)
orden_ascendente
## [1] 1 2 3 4 5
?sort
orden_descendente <- sort(a,decreasing=TRUE)
orden_descendente
## [1] 5 4 3 2 1
b <- c(1,2,3,4,5)
b
## [1] 1 2 3 4 5
suma_vectores <- a+b
suma_vectores
## [1] 2 4 6 8 10
plot(a,b, type="b", main="ventas totales x semana", xlab="semana", ylab="MXN")

LS0tCnRpdGxlOiAiQ29tYW5kb3MgQsOhc2ljb3MiCmF1dGhvcjogIlhpbWVuYSBNZWxlbmRleiIKZGF0ZTogIjIwMjMtMDMtMTciCm91dHB1dDogCiAgaHRtbF9kb2N1bWVudDoKICAgIHRvYzogdHJ1ZQogICAgdG9jX2Zsb2F0OiB0cnVlCiAgICBjb2RlX2Rvd25sb2FkOiB0cnVlCi0tLQohW10oL1VzZXJzL3hpbWVuYW1lbGVuZGV6L0Rlc2t0b3AvTWFuaXB1bGFjaW/MgW4gZGUgRGF0b3MvY21iK20uUE5HKQoKIyMjIEFzaWduYWNpw7NuIGRlIHZhcmlhYmxlcyAKYGBge3J9CiMgQXNpZ25hY2nDs24gZGUgdmFyaWFibGVzIAp4PC0zCnk8LTIKYGBgCgojIyMgSW1wcmVzacOzbiBkZSBSZXN1bHRhZG9zCmBgYHtyfQp4CnkKYGBgCgojIyMgT3BlcmFjaW9uZXMgQXJpdG1ldGljYXMKYGBge3J9CnN1bWEgPC0geCt5CnN1bWEKCnJlc3RhIDwtIHgteQpyZXN0YQoKbXVsdGlwbGljYWNpb24gPC0geCp5Cm11bHRpcGxpY2FjaW9uIAoKZGl2aXNpb24gPC0geC95CmRpdmlzaW9uIAoKZGl2aXNpb25fZW50ZXJhIDwtIHglLyV5CmRpdmlzaW9uX2VudGVyYQoKcG90ZW5jaWEgPC0geF4yCnBvdGVuY2lhCmBgYAoKIyMjIEZ1bmNpb25lcyBNYXRlbWF0aWNhcyAKYGBge3J9CnJhaXpfY3VhZHJhZGEgPC0gc3FydCh4KQpyYWl6X2N1YWRyYWRhCgpyYWl6X2N1YmljYSA8LSB4XigxLzMpCnJhaXpfY3ViaWNhCgpleHBvbmVuY2lhbCA8LSBleHAoMSkKZXhwb25lbmNpYWwKCnogPC0gLTQKegoKYWJzb2x1dG8gPC0gYWJzKHopCmFic29sdXRvCgpzaWdubyA8LSBzaWduKHopCnNpZ25vCgpzaWdubzIgPC0gc2lnbih4KQpzaWdubzIKCnJlZG9uZGVvX2FycmliYSA8LSBjZWlsaW5nKHgveSkKcmVkb25kZW9fYXJyaWJhCgpyZWRvbmRlb19hYmFqbyA8LSBmbG9vciAoeC95KQpyZWRvbmRlb19hYmFqbwoKdHJ1bmNhciA8LSB0cnVuYyhkaXZpc2lvbikKdHJ1bmNhcgpgYGAKCiMjIyBDb25zdGFudGVzCmBgYHtyfQpwaQpyYWRpbyA8LSA1CmFyZWFfY2lyY3VsbyA8LSBwaSpyYWRpb14yCmFyZWFfY2lyY3VsbwpgYGAKCiMjIyBWZWN0b3JlcwpgYGB7cn0KYSA8LSBjKDEsMiwzLDQsNSkKYQoKbG9uZ2l0dWQgPC0gbGVuZ3RoKGEpCmxvbmdpdHVkCgpwcm9tZWRpbyA8LSBtZWFuKGEpCnByb21lZGlvCgpyZXN1bWVuIDwtIHN1bW1hcnkoYSkKcmVzdW1lbgoKb3JkZW5fYXNjZW5kZW50ZSA8LSBzb3J0KGEpCm9yZGVuX2FzY2VuZGVudGUKCj9zb3J0CgpvcmRlbl9kZXNjZW5kZW50ZSA8LSBzb3J0KGEsZGVjcmVhc2luZz1UUlVFKQpvcmRlbl9kZXNjZW5kZW50ZQoKYiA8LSBjKDEsMiwzLDQsNSkKYgoKc3VtYV92ZWN0b3JlcyA8LSBhK2IKc3VtYV92ZWN0b3JlcwoKcGxvdChhLGIsIHR5cGU9ImIiLCBtYWluPSJ2ZW50YXMgdG90YWxlcyB4IHNlbWFuYSIsIHhsYWI9InNlbWFuYSIsIHlsYWI9Ik1YTiIpCmBgYA==