Asignación de variable.
x<-3
y<-2
Impresión de resultados.
x
## [1] 3
y
## [1] 2
Operaciones aritméticas.
suma <- x+y
suma
## [1] 5
resta <- x-y
resta
## [1] 1
multiplicacion <- x*y
multiplicacion
## [1] 6
division <- x/y
division
## [1] 1.5
division_entera <- x%/%y
division_entera
## [1] 1
potencia <- x^2
potencia
## [1] 9
Funciones matemáticas.
raiz_cuadrada <- sqrt(x)
raiz_cuadrada
## [1] 1.732051
raiz_cubica <- x^(1/3)
raiz_cubica
## [1] 1.44225
exponencial <- exp(1)
exponencial
## [1] 2.718282
z <- -4
z
## [1] -4
absoluto <- abs(z)
absoluto
## [1] 4
signo <- sign(z)
signo
## [1] -1
signo2 <- sign(x)
signo2
## [1] 1
redondeo_arriva <- ceiling(x/y)
redondeo_arriva
## [1] 2
redondeo_abajo <- floor(x/y)
redondeo_abajo
## [1] 1
truncar <- trunc(division)
truncar
## [1] 1
Constantes.
pi
## [1] 3.141593
radio <- 5
area_circulo <- pi*radio^2
area_circulo
## [1] 78.53982
Vectores.
a <- c(1,2,3,4,5)
a
## [1] 1 2 3 4 5
longitud <- length(a)
longitud
## [1] 5
promedio <- mean(a)
promedio
## [1] 3
resumen <- summary(a)
resumen
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1 2 3 3 4 5
orden_ascendente <- sort(a)
orden_ascendente
## [1] 1 2 3 4 5
orden_descendente <- sort(a, decreasing=TRUE)
orden_descendente
## [1] 5 4 3 2 1
b <- c(1, 2, 3, 4, 5)
b
## [1] 1 2 3 4 5
suma_vectores <- a+b
suma_vectores
## [1] 2 4 6 8 10
plot(a,b, type="b", main="Ventas Totales por Semana", xla="Semana", ylab="MXN")

LS0tCnRpdGxlOiAiQ29tYW5kb3MgYsOhc2ljb3MiCmF1dGhvcjogIkVtaWxpYW5vIE1hcnTDrW5leiBDb3JvbmEgQTAxMDY3NDU2IgpkYXRlOiAiMjAyMy0wMy0xNyIKb3V0cHV0OgogIGh0bWxfZG9jdW1lbnQ6CiAgICB0b2M6IHRydWUKICAgIHRvY19mbG9hdDogdHJ1ZQogICAgY29kZV9kb3dubG9hZDogdHJ1ZQotLS0KIyMjIEFzaWduYWNpw7NuIGRlIHZhcmlhYmxlLgpgYGB7cn0KeDwtMwp5PC0yCmBgYAoKIyMjIEltcHJlc2nDs24gZGUgcmVzdWx0YWRvcy4KYGBge3J9CngKeQpgYGAKCiMjIyBPcGVyYWNpb25lcyBhcml0bcOpdGljYXMuCmBgYHtyfQpzdW1hIDwtIHgreQpzdW1hCgpyZXN0YSA8LSB4LXkKcmVzdGEKCm11bHRpcGxpY2FjaW9uIDwtIHgqeQptdWx0aXBsaWNhY2lvbgoKZGl2aXNpb24gPC0geC95CmRpdmlzaW9uCgpkaXZpc2lvbl9lbnRlcmEgPC0geCUvJXkKZGl2aXNpb25fZW50ZXJhCgpwb3RlbmNpYSA8LSB4XjIKcG90ZW5jaWEKYGBgCgojIyMgRnVuY2lvbmVzIG1hdGVtw6F0aWNhcy4KYGBge3J9CnJhaXpfY3VhZHJhZGEgPC0gc3FydCh4KQpyYWl6X2N1YWRyYWRhCgpyYWl6X2N1YmljYSA8LSB4XigxLzMpCnJhaXpfY3ViaWNhCgpleHBvbmVuY2lhbCA8LSBleHAoMSkKZXhwb25lbmNpYWwKCnogPC0gLTQKegphYnNvbHV0byA8LSBhYnMoeikKYWJzb2x1dG8KCnNpZ25vIDwtIHNpZ24oeikKc2lnbm8KCnNpZ25vMiA8LSBzaWduKHgpCnNpZ25vMgoKcmVkb25kZW9fYXJyaXZhIDwtIGNlaWxpbmcoeC95KQpyZWRvbmRlb19hcnJpdmEKCnJlZG9uZGVvX2FiYWpvIDwtIGZsb29yKHgveSkKcmVkb25kZW9fYWJham8KCnRydW5jYXIgPC0gdHJ1bmMoZGl2aXNpb24pCnRydW5jYXIKYGBgCgojIyMgQ29uc3RhbnRlcy4KYGBge3J9CnBpCnJhZGlvIDwtIDUKYXJlYV9jaXJjdWxvIDwtIHBpKnJhZGlvXjIKYXJlYV9jaXJjdWxvCmBgYAoKIyMjIFZlY3RvcmVzLgpgYGB7cn0KYSA8LSBjKDEsMiwzLDQsNSkKYQoKbG9uZ2l0dWQgPC0gbGVuZ3RoKGEpCmxvbmdpdHVkCgpwcm9tZWRpbyA8LSBtZWFuKGEpCnByb21lZGlvCgpyZXN1bWVuIDwtIHN1bW1hcnkoYSkKcmVzdW1lbgoKb3JkZW5fYXNjZW5kZW50ZSA8LSBzb3J0KGEpCm9yZGVuX2FzY2VuZGVudGUKCm9yZGVuX2Rlc2NlbmRlbnRlIDwtIHNvcnQoYSwgZGVjcmVhc2luZz1UUlVFKQpvcmRlbl9kZXNjZW5kZW50ZQoKYiA8LSBjKDEsIDIsIDMsIDQsIDUpCmIKCnN1bWFfdmVjdG9yZXMgPC0gYStiCnN1bWFfdmVjdG9yZXMKCnBsb3QoYSxiLCB0eXBlPSJiIiwgbWFpbj0iVmVudGFzIFRvdGFsZXMgcG9yIFNlbWFuYSIsIHhsYT0iU2VtYW5hIiwgeWxhYj0iTVhOIikKYGBgCgo=