Asignación de variables
x<-3
y<-2
Impresión resultados
x
## [1] 3
y
## [1] 2
Operaciones artiméticas
suma <- x+y
suma
## [1] 5
resta <- x-y
resta
## [1] 1
multiplicacion <- x*y
multiplicacion
## [1] 6
division<- x/y
division
## [1] 1.5
division_entera <- x%/%y
division_entera
## [1] 1
potencia<- x^2
potencia
## [1] 9
Funciones matemáticas
raiz_cuadrada <- sqrt(x)
raiz_cuadrada
## [1] 1.732051
raiz_cubica <- x ^ (1/3)
raiz_cubica
## [1] 1.44225
exponencial <- exp(1)
exponencial
## [1] 2.718282
z <- -4
z
## [1] -4
absoluto <- abs(z)
absoluto
## [1] 4
signo <- sign(z)
signo
## [1] -1
signo2 <- sign(x)
signo2
## [1] 1
redondeo_arriba <- ceiling(x/y)
redondeo_arriba
## [1] 2
redondeo_abajo <- floor(x/y)
redondeo_abajo
## [1] 1
truncar <- trunc(division)
truncar
## [1] 1
Constantes
pi
## [1] 3.141593
radio<-5
area_circulo <- pi*radio^2
area_circulo
## [1] 78.53982
Vectores
a<-c(1,2,3,4,5)
a
## [1] 1 2 3 4 5
longitud<-length(a)
longitud
## [1] 5
promedio <- mean(a)
promedio
## [1] 3
resumen<- summary(a)
resumen
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1 2 3 3 4 5
orden_ascendente <- sort(a)
orden_ascendente
## [1] 1 2 3 4 5
?sort
## starting httpd help server ... done
orden_descendente <- sort(a,decreasing=TRUE)
orden_descendente
## [1] 5 4 3 2 1
b <- c(1,2,3,4,5)
b
## [1] 1 2 3 4 5
suma_vectores <- a+b
suma_vectores
## [1] 2 4 6 8 10
plot(a,b, type="b", main="Ventas Totales por Semana", xlab="Semana", ylab="MXN")

?plot
LS0tDQp0aXRsZTogIkNvbWFuZG9zIELDoXNpY29zIg0KYXV0aG9yOiAiTmFpbGEgSXR6ZWwgU2FsaW5hcyBBbGZhcm8gLSBBMDA4MzI3MDIiDQpkYXRlOiAiMjAyMy0wMy0xNiINCm91dHB1dDogDQogIGh0bWxfZG9jdW1lbnQ6DQogICAgdG9jOiB0cnVlDQogICAgdG9jX2Zsb2F0OiB0cnVlDQogICAgY29kZV9kb3dubG9hZDogdHJ1ZQ0KLS0tDQoNCiMjIyBBc2lnbmFjacOzbiBkZSB2YXJpYWJsZXMNCmBgYHtyfQ0KeDwtMw0KeTwtMg0KYGBgDQoNCiMjIyBJbXByZXNpw7NuIHJlc3VsdGFkb3MNCmBgYHtyfQ0KeA0KeQ0KYGBgDQoNCiMjIyBPcGVyYWNpb25lcyBhcnRpbcOpdGljYXMNCmBgYHtyfQ0Kc3VtYSA8LSB4K3kNCnN1bWENCg0KcmVzdGEgPC0geC15DQpyZXN0YQ0KDQptdWx0aXBsaWNhY2lvbiA8LSB4KnkNCm11bHRpcGxpY2FjaW9uDQoNCmRpdmlzaW9uPC0geC95DQpkaXZpc2lvbg0KDQpkaXZpc2lvbl9lbnRlcmEgPC0geCUvJXkNCmRpdmlzaW9uX2VudGVyYQ0KDQpwb3RlbmNpYTwtIHheMg0KcG90ZW5jaWENCmBgYA0KDQojIyMgRnVuY2lvbmVzIG1hdGVtw6F0aWNhcw0KYGBge3J9DQpyYWl6X2N1YWRyYWRhIDwtIHNxcnQoeCkNCnJhaXpfY3VhZHJhZGENCg0KcmFpel9jdWJpY2EgPC0geCBeICgxLzMpDQpyYWl6X2N1YmljYQ0KDQpleHBvbmVuY2lhbCA8LSBleHAoMSkNCmV4cG9uZW5jaWFsDQoNCnogPC0gLTQNCnoNCg0KYWJzb2x1dG8gPC0gYWJzKHopDQphYnNvbHV0bw0KDQpzaWdubyA8LSBzaWduKHopDQpzaWdubw0KDQpzaWdubzIgPC0gc2lnbih4KQ0Kc2lnbm8yDQoNCnJlZG9uZGVvX2FycmliYSA8LSBjZWlsaW5nKHgveSkNCnJlZG9uZGVvX2FycmliYQ0KDQpyZWRvbmRlb19hYmFqbyA8LSBmbG9vcih4L3kpDQpyZWRvbmRlb19hYmFqbw0KDQp0cnVuY2FyIDwtIHRydW5jKGRpdmlzaW9uKQ0KdHJ1bmNhcg0KDQpgYGANCg0KIyMjIENvbnN0YW50ZXMNCmBgYHtyfQ0KcGkNCnJhZGlvPC01DQphcmVhX2NpcmN1bG8gPC0gcGkqcmFkaW9eMg0KYXJlYV9jaXJjdWxvDQpgYGANCg0KIyMjIFZlY3RvcmVzDQpgYGB7cn0NCmE8LWMoMSwyLDMsNCw1KQ0KYQ0KDQpsb25naXR1ZDwtbGVuZ3RoKGEpDQpsb25naXR1ZA0KDQpwcm9tZWRpbyA8LSBtZWFuKGEpDQpwcm9tZWRpbw0KDQpyZXN1bWVuPC0gc3VtbWFyeShhKQ0KcmVzdW1lbg0KDQpvcmRlbl9hc2NlbmRlbnRlIDwtIHNvcnQoYSkNCm9yZGVuX2FzY2VuZGVudGUNCg0KP3NvcnQNCg0Kb3JkZW5fZGVzY2VuZGVudGUgPC0gc29ydChhLGRlY3JlYXNpbmc9VFJVRSkNCm9yZGVuX2Rlc2NlbmRlbnRlDQoNCmIgPC0gYygxLDIsMyw0LDUpDQpiDQoNCnN1bWFfdmVjdG9yZXMgPC0gYStiDQpzdW1hX3ZlY3RvcmVzDQoNCnBsb3QoYSxiLCB0eXBlPSJiIiwgbWFpbj0iVmVudGFzIFRvdGFsZXMgcG9yIFNlbWFuYSIsIHhsYWI9IlNlbWFuYSIsIHlsYWI9Ik1YTiIpDQo/cGxvdA0KDQpgYGANCg0K