
Asignación de variables
x<-3
y<-2
Impresión de Resultados
x
## [1] 3
y
## [1] 2
Operaciones Aritméticas
Suma
suma <- x+y
suma
## [1] 5
Resta
resta <- x-y
resta
## [1] 1
Multiplicación
multiplicacion <- x*y
multiplicacion
## [1] 6
División
division <- x/y
division
## [1] 1.5
División Entera
division_entera <- x%/%y
division_entera
## [1] 1
Potencia
potencia <- x^2
potencia
## [1] 9
Funciones Matematicas
Raiz Cuadrada
raiz_cuadrada <- sqrt(x)
raiz_cuadrada
## [1] 1.732051
Raiz Cubica
raiz_cubica <- x^(1/3)
raiz_cubica
## [1] 1.44225
Exponencial
exponencial <- exp(1)
exponencial
## [1] 2.718282
Tercera variable
z=-4
z
## [1] -4
Absoluto
absoluto = abs(z)
absoluto
## [1] 4
Signo
signo = sign(z)
signo
## [1] -1
signo2 = sign(x)
signo2
## [1] 1
Redondeo
redondeo_arriba = ceiling(x/y)
redondeo_arriba
## [1] 2
redondeo_abajo = floor(x/y)
redondeo_abajo
## [1] 1
Truncar
truncar = trunc(division)
truncar
## [1] 1
Constantes
pi
## [1] 3.141593
radio=5
area_circulo = pi*radio^2
area_circulo
## [1] 78.53982
Vectores
a = c(1,2,3,4,5)
a
## [1] 1 2 3 4 5
longitud = length(a)
longitud
## [1] 5
promedio = mean(a)
promedio
## [1] 3
resumen = summary(a)
resumen
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1 2 3 3 4 5
orden_ascendente = sort(a)
orden_ascendente
## [1] 1 2 3 4 5
orden_descendente = sort(a, decreasing =TRUE)
orden_descendente
## [1] 5 4 3 2 1
b = c(1,2,3,4,5)
b
## [1] 1 2 3 4 5
suma_vectores = a+b
suma_vectores
## [1] 2 4 6 8 10
Gráficos
plot(a,b, type = "b", main = "Ventas Totales por semana", xlab = "Semanas", ylab = "MXN")

LS0tDQp0aXRsZTogIkNvbWFuZG9zIELDoXNpY29zIg0KYXV0aG9yOiAiSm9zw6kgQXJ0dXJvIFNpbHZhIEZsb3JlcyBBMDExOTgwNDkiDQpkYXRlOiAiMjAyMy0wMy0xNiINCm91dHB1dDogDQogIGh0bWxfZG9jdW1lbnQ6DQogICAgdG9jOiB0cnVlDQogICAgdG9jX2Zsb2F0OiB0cnVlDQogICAgY29kZV9kb3dubG9hZDogdHJ1ZQ0KLS0tDQohW10oQzpcXFVzZXJzXFxTaWx2YVxcRG9jdW1lbnRzXFxjb21hbmQucG5nKQ0KDQojIyMgQXNpZ25hY2nDs24gZGUgdmFyaWFibGVzDQpgYGB7cn0NCng8LTMNCnk8LTINCmBgYA0KDQojIyMgSW1wcmVzacOzbiBkZSBSZXN1bHRhZG9zDQpgYGB7cn0NCngNCnkNCmBgYA0KDQojIyMgT3BlcmFjaW9uZXMgQXJpdG3DqXRpY2FzDQoNCioqU3VtYSoqDQpgYGB7cn0NCnN1bWEgPC0geCt5DQpzdW1hDQpgYGANCg0KKipSZXN0YSoqDQpgYGB7cn0NCnJlc3RhIDwtIHgteQ0KcmVzdGENCmBgYA0KDQoqKk11bHRpcGxpY2FjacOzbioqDQpgYGB7cn0NCm11bHRpcGxpY2FjaW9uIDwtIHgqeQ0KbXVsdGlwbGljYWNpb24NCmBgYA0KDQoqKkRpdmlzacOzbioqDQpgYGB7cn0NCmRpdmlzaW9uIDwtIHgveQ0KZGl2aXNpb24NCmBgYA0KDQoqKkRpdmlzacOzbiBFbnRlcmEqKg0KYGBge3J9DQpkaXZpc2lvbl9lbnRlcmEgPC0geCUvJXkNCmRpdmlzaW9uX2VudGVyYQ0KYGBgDQoNCioqUG90ZW5jaWEqKg0KYGBge3J9DQpwb3RlbmNpYSA8LSB4XjINCnBvdGVuY2lhDQpgYGANCg0KIyMjIEZ1bmNpb25lcyBNYXRlbWF0aWNhcw0KDQoqKlJhaXogQ3VhZHJhZGEqKg0KYGBge3J9DQpyYWl6X2N1YWRyYWRhIDwtIHNxcnQoeCkNCnJhaXpfY3VhZHJhZGENCmBgYA0KDQoqKlJhaXogQ3ViaWNhKioNCmBgYHtyfQ0KcmFpel9jdWJpY2EgPC0geF4oMS8zKQ0KcmFpel9jdWJpY2ENCmBgYA0KDQoqKkV4cG9uZW5jaWFsKioNCmBgYHtyfQ0KZXhwb25lbmNpYWwgPC0gZXhwKDEpDQpleHBvbmVuY2lhbA0KYGBgDQoNClRlcmNlcmEgdmFyaWFibGUNCmBgYHtyfQ0Kej0tNA0Keg0KYGBgDQoNCioqQWJzb2x1dG8qKg0KYGBge3J9DQphYnNvbHV0byA9IGFicyh6KQ0KYWJzb2x1dG8NCmBgYA0KDQoqKlNpZ25vKioNCmBgYHtyfQ0Kc2lnbm8gPSBzaWduKHopDQpzaWdubw0KDQpzaWdubzIgPSBzaWduKHgpDQpzaWdubzINCmBgYA0KDQoqKlJlZG9uZGVvKioNCmBgYHtyfQ0KcmVkb25kZW9fYXJyaWJhID0gY2VpbGluZyh4L3kpDQpyZWRvbmRlb19hcnJpYmENCg0KcmVkb25kZW9fYWJham8gPSBmbG9vcih4L3kpDQpyZWRvbmRlb19hYmFqbw0KYGBgDQoNCioqVHJ1bmNhcioqDQpgYGB7cn0NCnRydW5jYXIgPSB0cnVuYyhkaXZpc2lvbikNCnRydW5jYXINCmBgYA0KDQojIyMgQ29uc3RhbnRlcw0KYGBge3J9DQpwaQ0KcmFkaW89NQ0KYXJlYV9jaXJjdWxvID0gcGkqcmFkaW9eMg0KYXJlYV9jaXJjdWxvDQpgYGANCg0KIyMjIFZlY3RvcmVzIA0KYGBge3J9DQphID0gYygxLDIsMyw0LDUpDQphDQoNCmxvbmdpdHVkID0gbGVuZ3RoKGEpDQpsb25naXR1ZA0KDQpwcm9tZWRpbyA9IG1lYW4oYSkNCnByb21lZGlvDQoNCnJlc3VtZW4gPSBzdW1tYXJ5KGEpDQpyZXN1bWVuDQoNCm9yZGVuX2FzY2VuZGVudGUgPSBzb3J0KGEpDQpvcmRlbl9hc2NlbmRlbnRlDQoNCm9yZGVuX2Rlc2NlbmRlbnRlID0gc29ydChhLCBkZWNyZWFzaW5nID1UUlVFKQ0Kb3JkZW5fZGVzY2VuZGVudGUNCg0KYiA9IGMoMSwyLDMsNCw1KQ0KYg0KDQpzdW1hX3ZlY3RvcmVzID0gYStiDQpzdW1hX3ZlY3RvcmVzDQpgYGANCg0KIyMjIEdyw6FmaWNvcyANCmBgYHtyfQ0KcGxvdChhLGIsIHR5cGUgPSAiYiIsIG1haW4gPSAiVmVudGFzIFRvdGFsZXMgcG9yIHNlbWFuYSIsIHhsYWIgPSAiU2VtYW5hcyIsIHlsYWIgPSAgIk1YTiIpDQoNCmBgYA0KDQo=