iris <- read.table("https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data",
header = FALSE,
sep = ",",
col.names = c("sepal_length", "sepal_width", "petal_length", "petal_width", "class"))
head(iris)
## sepal_length sepal_width petal_length petal_width class
## 1 5.1 3.5 1.4 0.2 Iris-setosa
## 2 4.9 3.0 1.4 0.2 Iris-setosa
## 3 4.7 3.2 1.3 0.2 Iris-setosa
## 4 4.6 3.1 1.5 0.2 Iris-setosa
## 5 5.0 3.6 1.4 0.2 Iris-setosa
## 6 5.4 3.9 1.7 0.4 Iris-setosa
Dataset: Iris Dataset
Description:
The Iris dataset is a classic dataset that is often used for machine
learning and data visualization exercises. It consists of measurements
for 150 iris flowers from three different species - Setosa, Versicolor,
and Virginica. The four variables measured for each flower are sepal
length, sepal width, petal length, and petal width.
Column Description:
1: Sepal length (in cm)
2: Sepal width (in cm)
3: Petal length (in cm)
4: Petal width (in cm)
5: Class: Species of the flower (Setosa, Versicolor, or
Virginica)
Each row in the dataset represents an individual iris flower, with
150 observations in total.
Descriptive Analytics:
The Iris dataset is a clean and complete dataset with no missing
values.