library(ProFound)
## Loading required package: Rfits
## Loading required package: magicaxis
## Loading required package: Rcpp
library(Rfits)
library(Rwcs)
Pass in an image with a WCS attached (as per Rfits_read_image [Rfits], read.fits [astro], readFITS [FITSio]).
You can always plot the output of profoundProFound to get a handy 3x3 diagnostic plot.
There are a lot of parameters in ProFound. Most do not need to be touched, some need to be touched a lot. Here are the ones to focus on in early experimentation (i.e. usually need to be adjusted away from defaults for a given data set):
Useful things and suggested settings:
= Rfits_read_image(system.file("extdata", 'VIKING/mystery_VIKING_Z.fits', package="ProFound")) image
=profoundProFound(image, magzero=30, plot=TRUE)
profound=profoundProFound(image, magzero=30, plot=TRUE, skycut = 2)
profound=profoundProFound(image, magzero=30, plot=TRUE, tolerance = 10)
profound=profoundProFound(image, magzero=30, plot=TRUE, box = 50)
profound=profoundProFound(image, magzero=30, plot=TRUE, SBdilate = 1)
profound=profoundProFound(image, magzero=30, plot=TRUE, roughpedestal = TRUE) profound
Some different data:
= Rfits_read_image(system.file("extdata", 'GALEX_NUV.fits', package="magicaxis"))
GALEX_NUV = Rfits_read_image(system.file("extdata", 'VST_r.fits', package="magicaxis"))
VST_r = Rfits_read_image(system.file("extdata", 'VISTA_K.fits', package="magicaxis"))
VISTA_K
# Warp to common WCS:
library(ProPane)
= propaneWarp(GALEX_NUV, keyvalues_out=VST_r$keyvalues)$imDat
GALEX_NUV_VST = propaneWarp(VISTA_K, keyvalues_out=VST_r$keyvalues)$imDat
VISTA_K_VST
=profoundMultiBand(inputlist=list(GALEX_NUV_VST, VST_r$imDat, VISTA_K_VST),
multimagzero=c(20.08,0,30), detectbands=c('r','K'), multibands=c('NUV','r','K'))
Good but not perfect:
=profoundProFound(VST_r, roughpedestal=TRUE, SBdilate=1, plot=TRUE) profound
Try to find the best parameters for the above galaxy (e.g. particularly play with the tolerance and reltol. Once you have a decent effort, we can fix the remainder:
=profoundSegimFix(list(R=VISTA_K_VST, G=VST_r$imDat, B=GALEX_NUV_VST), segim=profound$segim) fixedRGB
profoundSegimPlot(image=VST_r$imDat, segim=fixedRGB$segim)
We can now feed this back into ProFound for our best final effort:
=profoundProFound(VST_r, segim=fixedRGB$segim, plot=TRUE) profound2