The objectives of this problem set is to orient you to a number of
activities in R
and to conduct a thoughtful exercise in
appreciating the importance of data visualization. For each question
enter your code or text response in the code chunk that
completes/answers the activity or question requested. To submit this
homework you will create the document in Rstudio, using the knitr
package (button included in Rstudio) and then submit the document to
your Rpubs account. Once uploaded you
will submit the link to that document on Canvas. Please make sure that
this link is hyper linked and that I can see the visualization and the
code required to create it. Each question is worth 5 points.
anscombe
data that is part of the
library(datasets)
in R
. And assign that data
to a new object called data
.data(anscombe)
data=anscombe
summary(data)
## x1 x2 x3 x4 y1
## Min. : 4.0 Min. : 4.0 Min. : 4.0 Min. : 8 Min. : 4.260
## 1st Qu.: 6.5 1st Qu.: 6.5 1st Qu.: 6.5 1st Qu.: 8 1st Qu.: 6.315
## Median : 9.0 Median : 9.0 Median : 9.0 Median : 8 Median : 7.580
## Mean : 9.0 Mean : 9.0 Mean : 9.0 Mean : 9 Mean : 7.501
## 3rd Qu.:11.5 3rd Qu.:11.5 3rd Qu.:11.5 3rd Qu.: 8 3rd Qu.: 8.570
## Max. :14.0 Max. :14.0 Max. :14.0 Max. :19 Max. :10.840
## y2 y3 y4
## Min. :3.100 Min. : 5.39 Min. : 5.250
## 1st Qu.:6.695 1st Qu.: 6.25 1st Qu.: 6.170
## Median :8.140 Median : 7.11 Median : 7.040
## Mean :7.501 Mean : 7.50 Mean : 7.501
## 3rd Qu.:8.950 3rd Qu.: 7.98 3rd Qu.: 8.190
## Max. :9.260 Max. :12.74 Max. :12.500
dplyr
package!)library(dplyr)
colMeans(data)
## x1 x2 x3 x4 y1 y2 y3 y4
## 9.000000 9.000000 9.000000 9.000000 7.500909 7.500909 7.500000 7.500909
apply(data,2,var)
## x1 x2 x3 x4 y1 y2 y3 y4
## 11.000000 11.000000 11.000000 11.000000 4.127269 4.127629 4.122620 4.123249
cor(data[,1:4],data[,5:8])
## y1 y2 y3 y4
## x1 0.8164205 0.8162365 0.8162867 -0.3140467
## x2 0.8164205 0.8162365 0.8162867 -0.3140467
## x3 0.8164205 0.8162365 0.8162867 -0.3140467
## x4 -0.5290927 -0.7184365 -0.3446610 0.8165214
library(ggplot2)
data = data.frame(x = c(data$x1, data$x2, data$x3, data$x4),
y = c(data$y1, data$y2, data$y3, data$y4),
dataset = factor(rep(1:4, each = 11)))
ggplot(data, aes(x = x, y = y)) +
geom_point() +
labs(title = "Scatterplot for x and y Pairs") +
facet_wrap(~ dataset, nrow = 2)
bplot = ggplot(data, aes(x = x, y = y)) +
geom_point(shape = 19, color = "blue") +
labs(title = "Scatterplot for x and y Pairs") +
facet_wrap(~ dataset, nrow = 2)
bplot
lm()
function.lm1 = lm(anscombe$y1~anscombe$x1)
lm2 = lm(anscombe$y2~anscombe$x2)
lm3 = lm(anscombe$y3~anscombe$x3)
lm4 = lm(anscombe$y4~anscombe$x4)
bplot +
geom_smooth(method = "lm", se = FALSE, col = "purple", size=0.5) +
labs(title = "Anscombe's Quartet")
## `geom_smooth()` using formula 'y ~ x'
anova(lm1)
Analysis of Variance Table
Response: anscombe\(y1 Df Sum Sq Mean Sq F
value Pr(>F) anscombe\)x1 1 27.510 27.5100 17.99 0.00217 **
Residuals 9 13.763 1.5292
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05
‘.’ 0.1 ’ ’ 1
anova(lm2)
Analysis of Variance Table
Response: anscombe\(y2 Df Sum Sq Mean Sq F
value Pr(>F) anscombe\)x2 1 27.500 27.5000 17.966 0.002179 **
Residuals 9 13.776 1.5307
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05
‘.’ 0.1 ’ ’ 1
anova(lm3)
Analysis of Variance Table
Response: anscombe\(y3 Df Sum Sq Mean Sq F
value Pr(>F) anscombe\)x3 1 27.470 27.4700 17.972 0.002176 **
Residuals 9 13.756 1.5285
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05
‘.’ 0.1 ’ ’ 1
anova(lm4)
Analysis of Variance Table
Response: anscombe\(y4 Df Sum Sq Mean Sq F
value Pr(>F) anscombe\)x4 1 27.490 27.4900 18.003 0.002165 **
Residuals 9 13.742 1.5269
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05
‘.’ 0.1 ’ ’ 1
# Anscombe's Quartet consists of four datasets with nearly identical statistical properties such as mean, variance, and correlations. However, when plotting these datasets, we can uncover the difference that is hidden in summary statistics. This exercise highlights data visualization importance during data exploration. It helps understand the data and reveal patterns or relationships. This makes data visualization an important part of data exploration and interpretation.