The objectives of this problem set is to orient you to a number of
activities in R and to conduct a thoughtful exercise in
appreciating the importance of data visualization. For each question
enter your code or text response in the code chunk that
completes/answers the activity or question requested. To submit this
homework you will create the document in Rstudio, using the knitr
package (button included in Rstudio) and then submit the document to
your Rpubs account. Once uploaded you
will submit the link to that document on Canvas. Please make sure that
this link is hyper linked and that I can see the visualization and the
code required to create it. Each question is worth 5 points.
anscombe data that is part of the
library(datasets) in R. And assign that data
to a new object called data.data=anscombe
head(data)
## x1 x2 x3 x4 y1 y2 y3 y4
## 1 10 10 10 8 8.04 9.14 7.46 6.58
## 2 8 8 8 8 6.95 8.14 6.77 5.76
## 3 13 13 13 8 7.58 8.74 12.74 7.71
## 4 9 9 9 8 8.81 8.77 7.11 8.84
## 5 11 11 11 8 8.33 9.26 7.81 8.47
## 6 14 14 14 8 9.96 8.10 8.84 7.04
dplyr package!)library(resample)
## Registered S3 method overwritten by 'resample':
## method from
## print.resample modelr
mean1=colMeans(data)
cor1=cor(data$x1,data$y1)
cor2=cor(data$x2,data$y2)
cor3=cor(data$x3,data$y3)
cor4=cor(data$x4,data$y4)
var1=var(data)
mean1
## x1 x2 x3 x4 y1 y2 y3 y4
## 9.000000 9.000000 9.000000 9.000000 7.500909 7.500909 7.500000 7.500909
cor1
## [1] 0.8164205
cor2
## [1] 0.8162365
cor3
## [1] 0.8162867
cor4
## [1] 0.8165214
var1
## x1 x2 x3 x4 y1 y2 y3 y4
## x1 11.000 11.000 11.000 -5.500 5.501000 5.500000 5.49700 -2.115000
## x2 11.000 11.000 11.000 -5.500 5.501000 5.500000 5.49700 -2.115000
## x3 11.000 11.000 11.000 -5.500 5.501000 5.500000 5.49700 -2.115000
## x4 -5.500 -5.500 -5.500 11.000 -3.565000 -4.841000 -2.32100 5.499000
## y1 5.501 5.501 5.501 -3.565 4.127269 3.095609 1.93343 -2.017731
## y2 5.500 5.500 5.500 -4.841 3.095609 4.127629 2.42524 -1.972351
## y3 5.497 5.497 5.497 -2.321 1.933430 2.425240 4.12262 -0.641000
## y4 -2.115 -2.115 -2.115 5.499 -2.017731 -1.972351 -0.64100 4.123249
library(ggplot2)
plot(data$x1,data$y1)
plot(data$x2,data$y2)
plot(data$x3,data$y3)
plot(data$x4,data$y4)
plot(data$x1,data$y1,pch=20,col="blue")
plot(data$x2,data$y2,pch=20,col="blue")
plot(data$x3,data$y3,pch=20,col="blue")
plot(data$x4,data$y4,pch=20,col="blue")
lm()
function.attach(data)
lm1=lm(x1~y1)
lm2=lm(x2~y2)
lm3=lm(x3~y3)
lm4=lm(x4~y4)
lm1
##
## Call:
## lm(formula = x1 ~ y1)
##
## Coefficients:
## (Intercept) y1
## -0.9975 1.3328
lm2
##
## Call:
## lm(formula = x2 ~ y2)
##
## Coefficients:
## (Intercept) y2
## -0.9948 1.3325
lm3
##
## Call:
## lm(formula = x3 ~ y3)
##
## Coefficients:
## (Intercept) y3
## -1.000 1.333
lm4
##
## Call:
## lm(formula = x4 ~ y4)
##
## Coefficients:
## (Intercept) y4
## -1.004 1.334
par(mfrow=c(2,2))
plot(data$x1,data$y1,pch=20,col="blue")
abline(lm1)
plot(data$x2,data$y2,pch=20,col="blue")
abline(lm2)
plot(data$x3,data$y3,pch=20,col="blue")
abline(lm3)
plot(data$x4,data$y4,pch=20,col="blue")
abline(lm4)
summary(lm1)
Call: lm(formula = x1 ~ y1)
Residuals: Min 1Q Median 3Q Max -2.6522 -1.5117 -0.2657 1.2341 3.8946
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.9975 2.4344 -0.410 0.69156
y1 1.3328 0.3142 4.241 0.00217 ** — Signif. codes: 0 ‘’
0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ’ ’ 1
Residual standard error: 2.019 on 9 degrees of freedom Multiple R-squared: 0.6665, Adjusted R-squared: 0.6295 F-statistic: 17.99 on 1 and 9 DF, p-value: 0.00217
summary(lm2)
Call: lm(formula = x2 ~ y2)
Residuals: Min 1Q Median 3Q Max -1.8516 -1.4315 -0.3440 0.8467 4.2017
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.9948 2.4354 -0.408 0.69246
y2 1.3325 0.3144 4.239 0.00218 ** — Signif. codes: 0 ‘’
0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ’ ’ 1
Residual standard error: 2.02 on 9 degrees of freedom Multiple R-squared: 0.6662, Adjusted R-squared: 0.6292 F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002179
summary(lm3)
Call: lm(formula = x3 ~ y3)
Residuals: Min 1Q Median 3Q Max -2.9869 -1.3733 -0.0266 1.3200 3.2133
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.0003 2.4362 -0.411 0.69097
y3 1.3334 0.3145 4.239 0.00218 ** — Signif. codes: 0 ‘’
0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ’ ’ 1
Residual standard error: 2.019 on 9 degrees of freedom Multiple R-squared: 0.6663, Adjusted R-squared: 0.6292 F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002176
summary(lm4)
Call: lm(formula = x4 ~ y4)
Residuals: Min 1Q Median 3Q Max -2.7859 -1.4122 -0.1853 1.4551 3.3329
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.0036 2.4349 -0.412 0.68985
y4 1.3337 0.3143 4.243 0.00216 ** — Signif. codes: 0 ‘’
0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ’ ’ 1
Residual standard error: 2.018 on 9 degrees of freedom Multiple R-squared: 0.6667, Adjusted R-squared: 0.6297 F-statistic: 18 on 1 and 9 DF, p-value: 0.002165
Anscombe’s Quartet shows us the mportance of data visualisation in terms of interpreting datasets. It helps us identify anomalies in the dataset including outliers and diversity in the data.
```