Asignacion de Variables
x<-3
y<-2
##Asignacion de Variables
x
## [1] 3
y
## [1] 2
##Operaciones Arimeticas
suma <- x+y
suma
## [1] 5
resta <- x-y
resta
## [1] 1
multiplicacion <- x*y
multiplicacion
## [1] 6
division <- x/y
division
## [1] 1.5
division_entera <- x%/%y
division_entera
## [1] 1
potencia <- x^2
potencia
## [1] 9
###Fuciones matematicas
raiz_cuadrada <- sqrt(x)
raiz_cuadrada
## [1] 1.732051
raiz_cubica <- x ^(1/3)
raiz_cubica
## [1] 1.44225
exponencial <- exp(1)
exponencial
## [1] 2.718282
z <-4
z
## [1] 4
absoluto <- abs(z)
absoluto
## [1] 4
signo <- sign(z)
signo
## [1] 1
redondeo_arriba<- ceiling(x/y)
redondeo_arriba
## [1] 2
redondeo_abajo <-floor(x/y)
redondeo_abajo
## [1] 1
redondeo_abajo <-floor(x/y)
redondeo_abajo
## [1] 1
truncar <- trunc(division)
truncar
## [1] 1
##constantes
pi
## [1] 3.141593
radio <-5
area_circulo <-pi*radio^2
area_circulo
## [1] 78.53982
##Vectores
a <- c(1,2,3,4,5)
a
## [1] 1 2 3 4 5
longitud <- length(a)
longitud
## [1] 5
promedio <-mean(a)
promedio
## [1] 3
resumen <-summary(a)
resumen
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1 2 3 3 4 5
orden_ascendente <-sort(a)
orden_ascendente
## [1] 1 2 3 4 5
orden_ascendente <- sort(a,decreasing = TRUE)
orden_ascendente
## [1] 5 4 3 2 1
b <-c(1,2,3,4,5)
b
## [1] 1 2 3 4 5
suma_vectores <-a+b
suma_vectores
## [1] 2 4 6 8 10
plot(a,b, type="b", main="Ventas Totales por Semana", xlab="Semana", ylab="MXN")

?plot
## starting httpd help server ... done
LS0tDQp0aXRsZTogIkNvbWFuZG9zIGJhc2ljb3MiDQphdXRob3I6ICJTZWJhc3RpYW4gRXNwaW5vemEgQTAwODMzNzA0Ig0KZGF0ZTogIjIwMjMtMDMtMTUiDQpvdXRwdXQ6DQogIGh0bWxfZG9jdW1lbnQ6DQogICAgdG9jOiB0cnVlDQogICAgdG9jX2Zsb2F0OiB0cnVlDQogICAgY29kZV9kb3dubG9hZDogdHJ1ZQ0KLS0tDQojIyBBc2lnbmFjaW9uIGRlIFZhcmlhYmxlcw0KYGBge3J9DQp4PC0zDQp5PC0yDQoNCmBgYA0KDQoNCiMjQXNpZ25hY2lvbiBkZSBWYXJpYWJsZXMNCmBgYHtyfQ0KeA0KeQ0KYGBgDQoNCg0KIyNPcGVyYWNpb25lcyBBcmltZXRpY2FzDQpgYGB7cn0NCnN1bWEgPC0geCt5DQpzdW1hDQpgYGANCg0KYGBge3J9DQpyZXN0YSA8LSB4LXkNCnJlc3RhDQpgYGANCg0KYGBge3J9DQptdWx0aXBsaWNhY2lvbiA8LSB4KnkNCm11bHRpcGxpY2FjaW9uDQpgYGANCg0KYGBge3J9DQpkaXZpc2lvbiA8LSB4L3kNCmRpdmlzaW9uDQpgYGANCg0KYGBge3J9DQpkaXZpc2lvbl9lbnRlcmEgPC0geCUvJXkNCmRpdmlzaW9uX2VudGVyYQ0KYGBgDQoNCmBgYHtyfQ0KcG90ZW5jaWEgPC0geF4yDQpwb3RlbmNpYQ0KYGBgDQoNCiMjI0Z1Y2lvbmVzIG1hdGVtYXRpY2FzDQoNCmBgYHtyfQ0KcmFpel9jdWFkcmFkYSA8LSBzcXJ0KHgpDQpyYWl6X2N1YWRyYWRhDQpgYGANCg0KYGBge3J9DQpyYWl6X2N1YmljYSA8LSB4IF4oMS8zKQ0KcmFpel9jdWJpY2ENCmBgYA0KDQpgYGB7cn0NCmV4cG9uZW5jaWFsIDwtIGV4cCgxKQ0KZXhwb25lbmNpYWwNCmBgYA0KDQpgYGB7cn0NCnogPC00DQp6DQpgYGANCg0KDQpgYGB7cn0NCmFic29sdXRvIDwtIGFicyh6KQ0KYWJzb2x1dG8NCmBgYA0KDQoNCmBgYHtyfQ0Kc2lnbm8gPC0gc2lnbih6KQ0Kc2lnbm8NCmBgYA0KDQoNCmBgYHtyfQ0KcmVkb25kZW9fYXJyaWJhPC0gY2VpbGluZyh4L3kpDQpyZWRvbmRlb19hcnJpYmENCmBgYA0KDQpgYGB7cn0NCnJlZG9uZGVvX2FiYWpvIDwtZmxvb3IoeC95KQ0KcmVkb25kZW9fYWJham8NCmBgYA0KDQoNCmBgYHtyfQ0KcmVkb25kZW9fYWJham8gPC1mbG9vcih4L3kpDQpyZWRvbmRlb19hYmFqbw0KYGBgDQoNCg0KYGBge3J9DQp0cnVuY2FyIDwtIHRydW5jKGRpdmlzaW9uKQ0KdHJ1bmNhcg0KYGBgDQoNCg0KIyNjb25zdGFudGVzDQpgYGB7cn0NCnBpDQpgYGANCg0KYGBge3J9DQpyYWRpbyA8LTUNCmFyZWFfY2lyY3VsbyA8LXBpKnJhZGlvXjINCmFyZWFfY2lyY3Vsbw0KYGBgDQoNCg0KIyNWZWN0b3Jlcw0KYGBge3J9DQphIDwtIGMoMSwyLDMsNCw1KQ0KYQ0KYGBgDQoNCmBgYHtyfQ0KbG9uZ2l0dWQgPC0gbGVuZ3RoKGEpDQpsb25naXR1ZA0KYGBgDQoNCmBgYHtyfQ0KcHJvbWVkaW8gPC1tZWFuKGEpDQpwcm9tZWRpbw0KYGBgDQoNCmBgYHtyfQ0KcmVzdW1lbiA8LXN1bW1hcnkoYSkNCnJlc3VtZW4NCmBgYA0KDQoNCmBgYHtyfQ0Kb3JkZW5fYXNjZW5kZW50ZSA8LXNvcnQoYSkNCm9yZGVuX2FzY2VuZGVudGUNCmBgYA0KDQpgYGB7cn0NCm9yZGVuX2FzY2VuZGVudGUgPC0gc29ydChhLGRlY3JlYXNpbmcgPSBUUlVFKQ0Kb3JkZW5fYXNjZW5kZW50ZQ0KYGBgDQoNCg0KYGBge3J9DQpiIDwtYygxLDIsMyw0LDUpDQpiDQpgYGANCg0KDQpgYGB7cn0NCnN1bWFfdmVjdG9yZXMgPC1hK2INCnN1bWFfdmVjdG9yZXMNCmBgYA0KDQpgYGB7cn0NCnBsb3QoYSxiLCB0eXBlPSJiIiwgbWFpbj0iVmVudGFzIFRvdGFsZXMgcG9yIFNlbWFuYSIsIHhsYWI9IlNlbWFuYSIsIHlsYWI9Ik1YTiIpDQpgYGANCg0KYGBge3J9DQo/cGxvdA0KYGBgDQo=