The objectives of this problem set is to orient you to a number of
activities in R and to conduct a thoughtful exercise in
appreciating the importance of data visualization. For each question
enter your code or text response in the code chunk that
completes/answers the activity or question requested. To submit this
homework you will create the document in Rstudio, using the knitr
package (button included in Rstudio) and then submit the document to
your Rpubs account. Once uploaded you
will submit the link to that document on Canvas. Please make sure that
this link is hyper linked and that I can see the visualization and the
code required to create it. Each question is worth 5 points.
anscombe data that is part of the
library(datasets) in R. And assign that data
to a new object called data.library(datasets)
library(dplyr)
data <- anscombe
dplyr package!)summary_data <- data %>%
summarise(
mean_x1 = mean(x1),
var_x1 = var(x1),
mean_x2 = mean(x2),
var_x2 = var(x2),
mean_x3 = mean(x3),
var_x3 = var(x3),
mean_x4 = mean(x4),
var_x4 = var(x4),
corr_x1y1= cor(x1,y1),
corr_x2y2= cor(x2,y2),
corr_x3y3= cor(x3,y3),
corr_x4y4= cor(x4,y4),
)
plot1<-ggplot(data,aes(x=x1,y=y1)) +
geom_point()
plot2<-ggplot(data,aes(x=x2,y=y2)) +
geom_point()
plot3<-ggplot(data,aes(x=x3,y=y3)) +
geom_point()
plot4<-ggplot(data,aes(x=x4,y=y4)) +
geom_point()
plot_grid(plot1, plot2, plot3, plot4)
plot1<-ggplot(data,aes(x=x1,y=y1)) +
geom_point(shape=21, fill="blue")
plot2<-ggplot(data,aes(x=x2,y=y2)) +
geom_point(shape=21, fill="blue")
plot3<-ggplot(data,aes(x=x3,y=y3)) +
geom_point(shape=21, fill="blue")
plot4<-ggplot(data,aes(x=x4,y=y4)) +
geom_point(shape=21, fill="blue")
plot_grid(plot1, plot2, plot3, plot4)
lm()
function.model1 <- lm(y1 ~ x1, data=data)
model2 <- lm(y2 ~ x2, data=data)
model3 <- lm(y3 ~ x3, data=data)
model4 <- lm(y4 ~ x4, data=data)
plot1<-ggplot(data,aes(x=x1,y=y1)) +
geom_point(shape=21, fill="blue") +
geom_smooth(method='lm')
plot2<-ggplot(data,aes(x=x2,y=y2)) +
geom_point(shape=21, fill="blue") +
geom_smooth(method='lm')
plot3<-ggplot(data,aes(x=x3,y=y3)) +
geom_point(shape=21, fill="blue") +
geom_smooth(method='lm')
plot4<-ggplot(data,aes(x=x4,y=y4)) +
geom_point(shape=21, fill="blue") +
geom_smooth(method='lm')
plot_grid(plot1, plot2, plot3, plot4)
## `geom_smooth()` using formula 'y ~ x'
## `geom_smooth()` using formula 'y ~ x'
## `geom_smooth()` using formula 'y ~ x'
## `geom_smooth()` using formula 'y ~ x'
summary(model1)
Call: lm(formula = y1 ~ x1, data = data)
Residuals: Min 1Q Median 3Q Max -1.92127 -0.45577 -0.04136 0.70941 1.83882
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0001 1.1247 2.667 0.02573 * x1 0.5001 0.1179 4.241 0.00217
** — Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05
‘.’ 0.1 ’ ’ 1
Residual standard error: 1.237 on 9 degrees of freedom Multiple R-squared: 0.6665, Adjusted R-squared: 0.6295 F-statistic: 17.99 on 1 and 9 DF, p-value: 0.00217
summary(model2)
Call: lm(formula = y2 ~ x2, data = data)
Residuals: Min 1Q Median 3Q Max -1.9009 -0.7609 0.1291 0.9491 1.2691
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.001 1.125 2.667 0.02576 * x2 0.500 0.118 4.239 0.00218 **
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05
‘.’ 0.1 ’ ’ 1
Residual standard error: 1.237 on 9 degrees of freedom Multiple R-squared: 0.6662, Adjusted R-squared: 0.6292 F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002179
summary(model3)
Call: lm(formula = y3 ~ x3, data = data)
Residuals: Min 1Q Median 3Q Max -1.1586 -0.6146 -0.2303 0.1540 3.2411
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0025 1.1245 2.670 0.02562 * x3 0.4997 0.1179 4.239 0.00218
** — Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05
‘.’ 0.1 ’ ’ 1
Residual standard error: 1.236 on 9 degrees of freedom Multiple R-squared: 0.6663, Adjusted R-squared: 0.6292 F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002176
summary(model4)
Call: lm(formula = y4 ~ x4, data = data)
Residuals: Min 1Q Median 3Q Max -1.751 -0.831 0.000 0.809 1.839
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0017 1.1239 2.671 0.02559 * x4 0.4999 0.1178 4.243 0.00216
** — Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05
‘.’ 0.1 ’ ’ 1
Residual standard error: 1.236 on 9 degrees of freedom Multiple R-squared: 0.6667, Adjusted R-squared: 0.6297 F-statistic: 18 on 1 and 9 DF, p-value: 0.002165
From this example, we can see that for the 4 datasets, when looked at through the lens of descriptive statistics (the mean, variance and correlation statistics that were calculated) they appear to be similar if not exactly the same. However, when the data is visualized, we can see that in reality the 4 datasets are completely different from one another. Even the model fits being so similar is striking given how visually different the 4 sets of data appear. What this tells us is of the importance of data visualizations, which allow us to absorb data over multiple visual cues and datapoints which cannot be recreated with descriptive statistics or models.