%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
embed_youtube("huSkDf3UOCc")
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\[n(\Omega) = \]
\[n(E\cap C) = \]
\[n(I\cap C) = \]
\[n(I\cap E) = \]
\[n(I\cap C\cap E) = \]
\[n(\overline{I} \cap \overline{C}\cap E) = \]
\[n({I} \cap \overline{C}\cap \overline{E}) = \]
\[n({I} \cap \overline{C}\cap \overline{E}) + n(\overline{I} \cap {C}\cap \overline{E})+ n(\overline{I} \cap \overline{C}\cap {E}) = \]
\[n({I} \cup {C}\cup {E}) = \]
\[n(\overline{{I} \cup {C}\cup {E}}) = n(\overline{I} \cap \overline{C}\cap \overline{E}) = \]
\[(g)+(i)\]
\[n({I} \cap \overline{C})\]
\[n({E} \cap \overline{C})\]
\[n({I} \cap {C}\cap \overline{E}) + n(\overline{I} \cap {C}\cap {E})+ n({I} \cap \overline{C}\cap {E}) = \]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
embed_youtube("fd5kmNUwVK4")
\[ P(A)=\frac{\sharp (A)}{\sharp (\Omega)} \]
\[ \mathbb{P}(A) = \lim_{n \rightarrow \infty} \dfrac{n_A}{n} \]
\[ \mathbb{P}(A) \approx \lim_{n \rightarrow \infty} \dfrac{n_A}{n} \]
\[ \mathbb{P}\left(\displaystyle \bigcup_{n=1}^{\infty}A_n \right) = \sum_{n=1}^{\infty}\mathbb{P}(A_n) \]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
embed_youtube("Eu02WA6uKkU")
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
embed_youtube("u8695ip7Tww")
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
embed_youtube("u8695ip7Tww")
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
embed_youtube("TFLqPRYhNok")
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
embed_youtube("ikDb-OVMQ0g")
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
embed_youtube("NqFN5ZiTgpo")
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
embed_youtube("PNQ0-KemMqk")
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
embed_youtube("-qoj80YMeAw")
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
embed_youtube("ylQyzYjcmXM")
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
embed_youtube("AOyJwcR4Khg")
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
embed_youtube("AOyJwcR4Khg")
\(x\) | 1 | 2 | 3 |
---|---|---|---|
\(f(x)\) | \(\dfrac{1}{4}\) | \(\dfrac{1}{2}\) | \(\dfrac{1}{4}\) |
\[f(x)= \left\{ \begin{array}{lcc} \dfrac{1}{4} & si & x=1, \\ \\ \dfrac{1}{2} & si & x=2, \\ \\ \dfrac{1}{4} & si & x=3, \\ \\ 0 & en & otro & caso \end{array} \right.\]
\[\mu =\mathbb{E}(X)=\sum_{x\in\Omega}xf(x)\]
\[ \mathbb{V}(X)=\sum_{x\in\Omega}(x-\mu)^2f(x)=\mathbb{E}(X^2)-\mu^2 \]
\(\mathbb{P}(X = 0) =\mathbb{P}(\{SS\}) = 1/4\), \(\mathbb{P}(X = 1) = \mathbb{P}(\{ CS, SC\}) = 1/2\) y \(\mathbb{P}(X = 2) = \mathbb{P}(\{CC \} ) = 1/4\).
\(\{X=x\}\) | 0 | 1 | 2 |
---|---|---|---|
\(\mathbb{P}\{X=x\}\) | \(\dfrac{1}{4}\) | \(\dfrac{1}{2}\) | \(\dfrac{1}{4}\) |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\[f(x)= \left\{ \begin{array}{lcc} (\dfrac{1}{2})^x & si & x=1,2,\cdots, \\ \\ 0 & en& otro&caso \end{array} \right.\]
\[\mu =\mathbb{E}(X)=\sum_{x\in\Omega}xf(x)=\sum_{x=1}^{\infty}x (\dfrac{1}{2})^x=1*(\dfrac{1}{2})^1+2*(\dfrac{1}{2})^2+3*(\dfrac{1}{2})^3+\cdots+\\=\sum_{x=1}^{\infty}[\sum_{y=1}^{x}1] (\dfrac{1}{2})^x=\sum_{y=1}^{\infty}[\sum_{x=y}^{\infty}(\dfrac{1}{2})^x] \\ =\sum_{y=1}^{\infty}\dfrac{(\dfrac{1}{2})^y-(\dfrac{1}{2})^{\infty}}{1-\dfrac{1}{2}} \\ =2\sum_{y=1}^{\infty}(\dfrac{1}{2})^y \\ =2\dfrac{(\dfrac{1}{2})^1-(\dfrac{1}{2})^{\infty}}{1-\dfrac{1}{2}} = 2 \]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\[\mathbb{E}(X^2)=\sum_{x\in\Omega}x^2f(x)=\sum_{x=1}^{\infty}x^2(\dfrac{1}{2})^x \\ =1^2*(\dfrac{1}{2})^1+2^2*(\dfrac{1}{2})^2+3^2*(\dfrac{1}{2})^3+\cdots+\\ =\sum_{x=1}^{\infty}[(x(x-1)+x)] (\dfrac{1}{2})^x \\ =\sum_{x=1}^{\infty}[x(x-1) (\dfrac{1}{2})^x]+\sum_{x=1}^{\infty}x (\dfrac{1}{2})^x \\ =2\sum_{x=1}^{\infty}[\sum_{y=1}^{x-1}y (\dfrac{1}{2})^x]+2 \\ =2*\dfrac{1}{2}\sum_{x=1}^{\infty}[\sum_{y=1}^{x-1}y (\dfrac{1}{2})^{x-1}]+2 \\ =\sum_{y=1}^{\infty}[\sum_{x=y}^{\infty}y (\dfrac{1}{2})^{x}]+2 \\ =\sum_{y=1}^{\infty}y\dfrac{(\dfrac{1}{2})^y-(\dfrac{1}{2})^{\infty}}{1-\dfrac{1}{2}}+2 \\ =2\sum_{y=1}^{\infty}y(\dfrac{1}{2})^y +2\\ =2\mathbb{E}({X}) +2 = 2*2+2=6 \]
\[\sigma^2=\mathbb{E}(X^2)-\mu^2= 6-4 =2\]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Distribucion | Nombre | Parametro |
---|---|---|
Binomio | binom | n= numero de ensayos; p= probabilidad de exito de un ensayo |
Geometrico | geom | p= probabilidad de exito de un ensayo |
Hipergeometrico | hyper | m= numero de bolas blancas en la urna; n= numero de bolas negras en la urna; k= numero de bolas extraidas de la urna |
Binomial negativo (NegBinomial) | nbinom | size= numero de ensayos exitosos |
Poisson | pois | lambda= media |
\(\{X =x\}\) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|
\(f(x)=P\{X=x\}\) | \(\frac{1}{10}\) | \(\frac{1}{10}\) | \(\frac{1}{10}\) | \(\frac{1}{10}\) | \(\frac{1}{10}\) | \(\frac{1}{10}\) | \(\frac{1}{10}\) | \(\frac{1}{10}\) | \(\frac{1}{10}\) | \(\frac{1}{10}\) |
\[f(x)= \left\{ \begin{array}{lcc} \dfrac{1}{10} & si & x=0, 1,2,\cdots, 9\\ \\ 0 & en& otro&caso \end{array} \right.\]
dunifdisc<-function(x, min=0, max=9) ifelse(x>=min & x<=max & round(x)==x, 1/(max-min+1), 0)
for (x in 0:9)
print(x)
## [1] 0
## [1] 1
## [1] 2
## [1] 3
## [1] 4
## [1] 5
## [1] 6
## [1] 7
## [1] 8
## [1] 9
for (x in 0:9)
print(dunifdisc(x))
## [1] 0.1
## [1] 0.1
## [1] 0.1
## [1] 0.1
## [1] 0.1
## [1] 0.1
## [1] 0.1
## [1] 0.1
## [1] 0.1
## [1] 0.1
(https://r-charts.com/es/r-base/simbolos-pch/)
x<-0:9
plot(x,dunifdisc(x),type="h", lty = 1, lwd = 5, pch = 12, xlab="valores de {X=x}",ylab="P{X=x}",
main="Distribución Uniforme: X~ U({0,1,...,9})", col="#0000FF", ylim = c(0,0.15))
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
embed_youtube("S_bPftkha2I")
\[{\displaystyle \operatorname {P} [X=x]=p^{x}(1-p)^{1-x}\qquad x=0,1}\]
}}
\(\{X =x\}\) | 0 | 1 |
---|---|---|
\(f(x)=P\{X=x\}\) | \(\frac{1}{2}\) | \(\frac{1}{2}\) |
\[f(k) \;=\; P(X=k) \;=\; {n\choose k} p^k\, (1-p)^{n-k}, \qquad k=0,1,2, \ldots, n\]
\[f(k) \;=\; P(X=k) \;=\; {10\choose k} 0.5^k\, (1-0.5)^{10-k}, \qquad k=0,1,2, \ldots, 10\]
plot(dbinom(0:10,10,0.5),type="h",xlab="k",ylab="P(X=k)",main="X ~ B(10,0.5)")
\[f(6) \;=\; P(X=6) \;=\; {10\choose 6} 0.5^6\, (1-0.5)^{10-6}\;=\;0.20508\]
dbinom(6,10,0.5)
## [1] 0.2050781
# Rejilla de valores del eje X
x <- 0:10
# n = 10, p = 0.5
plot(dbinom(x, size = 10, prob = 0.5), type = "h", lwd = 10,
main = "Función de probabilidad binomial",
ylab = "P(X = x)", xlab = "Número de éxitos", col = 1:10)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
embed_youtube("MkZSiGu49Vo")
\[{n\choose k}=\frac{n!}{k!(n-k)!} \]
choose(5,2)
## [1] 10
choose(8,5)
## [1] 56
combn(8, 5)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
## [1,] 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2,] 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [3,] 3 3 3 3 3 3 3 3 3 3 4 4 4 4
## [4,] 4 4 4 4 5 5 5 6 6 7 5 5 5 6
## [5,] 5 6 7 8 6 7 8 7 8 8 6 7 8 7
## [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]
## [1,] 1 1 1 1 1 1 1 1 1 1 1 1
## [2,] 2 2 2 2 2 2 3 3 3 3 3 3
## [3,] 4 4 5 5 5 6 4 4 4 4 4 4
## [4,] 6 7 6 6 7 7 5 5 5 6 6 7
## [5,] 8 8 7 8 8 8 6 7 8 7 8 8
## [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38]
## [1,] 1 1 1 1 1 1 1 1 1 2 2 2
## [2,] 3 3 3 3 4 4 4 4 5 3 3 3
## [3,] 5 5 5 6 5 5 5 6 6 4 4 4
## [4,] 6 6 7 7 6 6 7 7 7 5 5 5
## [5,] 7 8 8 8 7 8 8 8 8 6 7 8
## [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49] [,50]
## [1,] 2 2 2 2 2 2 2 2 2 2 2 2
## [2,] 3 3 3 3 3 3 3 4 4 4 4 5
## [3,] 4 4 4 5 5 5 6 5 5 5 6 6
## [4,] 6 6 7 6 6 7 7 6 6 7 7 7
## [5,] 7 8 8 7 8 8 8 7 8 8 8 8
## [,51] [,52] [,53] [,54] [,55] [,56]
## [1,] 3 3 3 3 3 4
## [2,] 4 4 4 4 5 5
## [3,] 5 5 5 6 6 6
## [4,] 6 6 7 7 7 7
## [5,] 7 8 8 8 8 8
# Seguimos con el equipo de Baloncesto
jugadores <- 1:8
k <- 5
combn(jugadores, k)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
## [1,] 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2,] 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [3,] 3 3 3 3 3 3 3 3 3 3 4 4 4 4
## [4,] 4 4 4 4 5 5 5 6 6 7 5 5 5 6
## [5,] 5 6 7 8 6 7 8 7 8 8 6 7 8 7
## [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]
## [1,] 1 1 1 1 1 1 1 1 1 1 1 1
## [2,] 2 2 2 2 2 2 3 3 3 3 3 3
## [3,] 4 4 5 5 5 6 4 4 4 4 4 4
## [4,] 6 7 6 6 7 7 5 5 5 6 6 7
## [5,] 8 8 7 8 8 8 6 7 8 7 8 8
## [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38]
## [1,] 1 1 1 1 1 1 1 1 1 2 2 2
## [2,] 3 3 3 3 4 4 4 4 5 3 3 3
## [3,] 5 5 5 6 5 5 5 6 6 4 4 4
## [4,] 6 6 7 7 6 6 7 7 7 5 5 5
## [5,] 7 8 8 8 7 8 8 8 8 6 7 8
## [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49] [,50]
## [1,] 2 2 2 2 2 2 2 2 2 2 2 2
## [2,] 3 3 3 3 3 3 3 4 4 4 4 5
## [3,] 4 4 4 5 5 5 6 5 5 5 6 6
## [4,] 6 6 7 6 6 7 7 6 6 7 7 7
## [5,] 7 8 8 7 8 8 8 7 8 8 8 8
## [,51] [,52] [,53] [,54] [,55] [,56]
## [1,] 3 3 3 3 3 4
## [2,] 4 4 4 4 5 5
## [3,] 5 5 5 6 6 6
## [4,] 6 6 7 7 7 7
## [5,] 7 8 8 8 8 8
# Bolillo Gómez tiene cinco defensores para jugar con Millos y quiere escoger tres
choose(5, 3) # De cúantas formas lo puede hacer
## [1] 10
combn(5, 3) # Cual puede ser la alineacion
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 1 1 1 1 1 1 2 2 2 3
## [2,] 2 2 2 3 3 4 3 3 4 4
## [3,] 3 4 5 4 5 5 4 5 5 5
# El Tecnico de la selección colombia quiere jugar con tres delanteros
combn(c("Diaz", "Borja", "Sinisterra", "Borre", "Falcao"), 3) #Cual puede ser la alineación
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] "Diaz" "Diaz" "Diaz" "Diaz" "Diaz" "Diaz"
## [2,] "Borja" "Borja" "Borja" "Sinisterra" "Sinisterra" "Borre"
## [3,] "Sinisterra" "Borre" "Falcao" "Borre" "Falcao" "Falcao"
## [,7] [,8] [,9] [,10]
## [1,] "Borja" "Borja" "Borja" "Sinisterra"
## [2,] "Sinisterra" "Sinisterra" "Borre" "Borre"
## [3,] "Borre" "Falcao" "Falcao" "Falcao"
\[f(k) \;=\; P(X=k) \;=\; {n\choose k} p^k\, (1-p)^{n-k}, \qquad k=0,1,2, \ldots, n\]
\[f(k) \;=\; P(X=k) \;=\; {10\choose k} 0.5^k\, (1-0.5)^{10-k}, \qquad k=0,1,2, \ldots, 10\]
\[f(6) \;=\; P(X=6) \;=\; {10\choose 6} 0.5^6\, (1-0.5)^{10-6}\;=\;0.20508\] #### \(\blacksquare\) Usando RStudio
dbinom(6,10,0.5)
## [1] 0.2050781
# Rejilla de valores del eje X
x <- 0:10
# n = 10, p = 0.5
plot(dbinom(x, size = 10, prob = 0.5), type = "h", lwd = 10,
main = "Función de probabilidad binomial",
ylab = "P(X = x)", xlab = "Número de éxitos", col = 1:10)
# Rejilla de valores del eje X
x <- 0:10
# n = 10, p = 0.5
plot(pbinom(x, size = 10, prob = 0.5), type = "h", lwd = 10,
main = "Función de probabilidad binomial X ~ B(10,0.5)",
ylab = "P(X = x)", xlab = "Número de éxitos", col = 1:10)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\[X\sim P\{\lambda\}\] \[ f(k,\lambda) = exp(-\lambda)*\lambda^k/k!, \qquad k=0,1,2, \ldots, \infty\]
\[ E(X)=\lambda, \qquad Var(X)=\lambda\]
plot(dpois(0:20,10),xlab="k",ylab="P(X=k)",main="Distribución de Poisson - X ~ P(10)", type = "h", lwd = 5, col = 1:10)
x<-0:20 # rango de la variable
l<-5 # valor de lambda
fx<-exp(-l)*l^x/factorial (x)
plot(x,fx, main="Función Poisson X ~ P(5)", sub="Fuente: elaboración propia",
xlab="Eje x", ylab="Eje y", type="h", lwd = 5, col = 1:10)
embed_youtube("olOo8R2k12s")
# Rejilla de valores del eje X
x <- 0:50
#-----------
# lambda: 5
#-----------
lambda <- 5
plot(dpois(x, lambda), type = "h", lwd = 2,
main = "Distribución de Poisson",
ylab = "P(X = x)", xlab = "Número de eventos")
#-----------
# lambda: 10
#-----------
lambda <- 10
lines(dpois(x, lambda), type = "h", lwd = 2, col = rgb(1,0,0, 0.7))
#-----------
# lambda: 20
#-----------
lambda <- 20
lines(dpois(x, lambda), type = "h", lwd = 2, col = rgb(0, 1, 0, 0.7))
# Leyenda
legend("topright", legend = c("Cartagena, 5", " Santa Marta, 10", "Barranquilla, 20"),
title = expression(lambda), title.adj = 0.75,
lty = 1, col = 1:3, lwd = 2, box.lty = 0)
## 3.27 Ejemplo: Sea
\(X\) el número de infracciones de
tránsito por día en un lugar emblemático en cada una de las ciudades:
Cartagena (en promedio 5 semanales), Santa Marta (en promedio 10) y
Barranquilla (en Promedio 20).
dpois(10:15, 10)
## [1] 0.12511004 0.11373640 0.09478033 0.07290795 0.05207710 0.03471807
sum(dpois(10:15, 10))
## [1] 0.4933299
dpois(10:15, 20)
## [1] 0.005816307 0.010575103 0.017625171 0.027115648 0.038736640 0.051648854
sum(dpois(10:15, 20))
## [1] 0.1515177
dpois(10:15, 5)
## [1] 0.0181327887 0.0082421767 0.0034342403 0.0013208616 0.0004717363
## [6] 0.0001572454
sum(dpois(10:15, 5))
## [1] 0.03175905
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\[Formula \ 1: f(k) \;=\; P(X=k) \;=\; {k+r-1\choose r-1} p^r\, (1-p)^{k}\;, \qquad k\geq0, r=1,2, \ldots \]
\[Formula \ 2: f(x) \;=\; P(X=x) \;=\; {x-1\choose x-r} p^r\, (1-p)^{x-r}\;=\; {x-1\choose r-1} p^r\, (1-p)^{x-r} \qquad x\geq r, r=1,2, \ldots \]
\[Formula \ 1: f(x) \;=\; P(X=x) \;=\; {x+2\choose 2} 0.8^2\, (1-0.8)^{x}\;, \qquad x\geq0, \]
x<-0:10
fx<-choose(x+2,2)*0.8^2*0.2^x
plot(x,fx, main="Función Binomia negativa", sub="Fuente: elaboración propia",
xlab="Eje x", ylab="Eje y", col="blue", type="o")
plot(dnbinom(0:10,3,0.8),type="h",xlab="k",ylab="P(X=k)",main="X ~ Bneg(3,0.8)")
\[Formula \ 1: f(5) \;=\; P(X=5) \;=\; {5+3-1\choose 3-1} 0.8^3\, (1-0.8)^{5}\;=0.00344 \]
dnbinom(5,3,0.8)
## [1] 0.00344064
\[Formula \ 2: f(x) \;=\; P(X=x) \;=\; {x-1\choose 3-1} 0.8^3\, (1-0.8)^{x-3} \qquad x\geq r, r=1,2, \ldots \] #### \(\blacksquare\) ¿cuál es la probabilidad de que ocurran 5 reacciones “negativas” antes de la tercera positiva?
\[Formula \ 2: f(8) \;=\; P(X=8) \;=\; {8-1\choose 3-1} 0.8^3\, (1-0.8)^{8-3}\;=0.00344 \]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\[ f(x) \;=\; P(X=x) \;=\; \frac{{M\choose x}{N-M\choose n-x}}{{N\choose n}}\;, \qquad x =1,2, \dots, min\{n, M\}. \]
Con \[E(X)= n\frac{M}{N}\; y \; V(X)=n\frac{M}{N}(1-\frac{M}{N})\frac{N-n}{N-1} \]
\[ f(x) \;=\; P(X=x) \;=\; \frac{{5\choose x}{20-5\choose 10-x}}{{20\choose 10}}\;, \qquad x =1,2, \dots, 5. \]
x<-0:5
fx<-choose(5,x)*choose(15,10-x)/choose(20,10)
plot(x,fx)
x<-0:5
plot(dhyper(x,10,10,5))
dhyper(2,10,10,5)
## [1] 0.3482972
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
embed_youtube("cl-k7-mYXxk")
\[X\sim P\{\lambda\}\] \[ f(k,\lambda) = exp(-\lambda)*\lambda^k/k!, \qquad k=0,1,2, \ldots, \infty\]
\[ E(X)=\lambda, \qquad Var(X)=\lambda\]
# Ejemplo 1. Gráfico de una variable de Poisson de parametro lamda = 10
plot(dpois(0:20,10),xlab="k",ylab="P(X=k)",main="Distribución de Poisson - X ~ P(10)", type = "h", lwd = 5, col = 1:10)
# Ejemplo 1. Gráfico de una variable de Poisson de parametro lamda = 5
plot(dpois(0:15,5),xlab="k",ylab="P(X=k)",main="Distribución de Poisson - X ~ P(5)", type = "h", lwd = 5, col = 1:10)
# Rejilla de valores del eje X
x <- 0:50
#-----------
# lambda: 5
#-----------
lambda <- 5
plot(dpois(x, lambda), type = "h", lwd = 2,
main = "Distribución de Poisson",
ylab = "P(X = x)", xlab = "Número de eventos")
#-----------
# lambda: 10
#-----------
lambda <- 10
lines(dpois(x, lambda), type = "h", lwd = 2, col = rgb(1,0,0, 0.7))
#-----------
# lambda: 20
#-----------
lambda <- 20
lines(dpois(x, lambda), type = "h", lwd = 2, col = rgb(0, 1, 0, 0.7))
# Leyenda
legend("topright", legend = c("Cartagena, 5", " Santa Marta, 10", "Barranquilla, 20"),
title = expression(lambda), title.adj = 0.75,
lty = 1, col = 1:3, lwd = 2, box.lty = 0)
# Rejilla de valores del eje X
x <- 0:50
#-----------
# lambda: 5
#-----------
lambda <- 25
plot(dpois(x, lambda), type = "h", lwd = 2,
main = "Distribución de Poisson",
ylab = "P(X = x)", xlab = "Número de eventos")
#-----------
# lambda: 10
#-----------
lambda <- 20
lines(dpois(x, lambda), type = "h", lwd = 2, col = rgb(1,0,0, 0.7))
#-----------
# lambda: 20
#-----------
lambda <- 30
lines(dpois(x, lambda), type = "h", lwd = 2, col = rgb(0, 1, 0, 0.7))
# Leyenda
legend("topright", legend = c("Cartagena, 25", " Santa Marta, 20", "Barranquilla, 30"),
title = expression(lambda), title.adj = 0.75,
lty = 1, col = 1:3, lwd = 2, box.lty = 0)
dpois(10:15, 10)
## [1] 0.12511004 0.11373640 0.09478033 0.07290795 0.05207710 0.03471807
sum(dpois(10:15, 10))
## [1] 0.4933299
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\[Formula \ 1: f(k) \;=\; P(X=k) \;=\; {k+r-1\choose r-1} p^r\, (1-p)^{k}\;, \qquad k\geq0, r=1,2, \ldots \]
plot(dnbinom(0:10,3,0.8),type="h",xlab="k",ylab="P(X=k)",main="X ~ Bneg(3,0.8)")
dnbinom(5,3,0.8)
## [1] 0.00344064
\[ f(x) \;=\; P(X=x) \;=\; \frac{{M\choose x}{N-M\choose n-x}}{{N\choose n}}\;, \qquad x =1,2, \dots, min\{n, M\}. \]
x<-0:5
plot(dhyper(x,10,10,5))
#Resolviendo la pregunta
dhyper(2,10,10,5)
## [1] 0.3482972
# Rejilla de valores del eje X
x <- 1:50
# n = 50, p = 0.2
plot(dbinom(x, size = 50, prob = 0.2), type = "h", lwd = 2,
main = "Función de probabilidad binomial",
ylab = "P(X = x)", xlab = "Número de goles de Julio, Alberto y Jorge")
# n = 50, p = 0.3
lines(dbinom(x, size = 50, prob = 0.3), type = "h",
lwd = 2, col = rgb(1,0,0, 0.7))
# n = 50, p = 0.4
lines(dbinom(x, size = 50, prob = 0.4), type = "h",
lwd = 2, col = rgb(0, 1, 0, 0.7))
# Añadimos una leyenda
legend("topright", legend = c("50 0.2 Julio", "50 0.3 Alberto", "50 0.4 Jorge"),
title = "n p", title.adj = 0.85,
lty = 1, col = 1:3, lwd = 2, box.lty = 0)
medias<-rnorm(30, mean = 70, sd = 5)
medias
## [1] 73.98100 72.49664 73.60896 66.67108 65.83046 77.56491 69.54543 72.31324
## [9] 62.34330 69.20030 67.65189 76.72643 65.79134 64.52354 69.82482 68.22607
## [17] 69.28268 65.93789 76.29203 78.53867 57.36126 62.68711 66.54712 67.02681
## [25] 71.02607 80.56221 71.32871 71.01471 79.38627 71.79978
round(medias)
## [1] 74 72 74 67 66 78 70 72 62 69 68 77 66 65 70 68 69 66 76 79 57 63 67 67 71
## [26] 81 71 71 79 72
# Rejilla de valores del eje X
x <- round(medias)
hist(x, lwd = 2,
main = "Función densidad de probabilidad", ylim=c(0,20),
ylab = "Numero de Estudiantes", xlab = "Puntaje obtenido", col = 1:10)
# P(X<=66) dado que X ~ N (70, 3): Usando RStudio
pnorm(66, mean = 70, sd = 3)
## [1] 0.09121122
# Usando Rstudio para graficar la región
regionX=seq(60,66,0.01) # Intervalo a sombrear
xP <- c(50,regionX,66) # Base de los poligonos que crean el efecto "sombra"
yP <- c(0,dnorm(regionX,70,3),0) # Altura de los poligonos sombreados
curve(dnorm(x,70,3),xlim=c(60,80),yaxs="i",ylim=c(0,0.15),ylab="f(x)",
main='Densidad N(70,3)')
polygon(xP,yP,col="orange1")
box()
legend("topright", legend = round(pnorm(66, 70, 3),5),
title = expression("P(X<=66)"), title.adj = 0.75,
lty = 1, col = "orange1", lwd = 2, box.lty = 0)
# P(X≥66) dado que X ~ N (70, 3):
pnorm(66, mean = 70, sd = 3, lower.tail = FALSE)
## [1] 0.9087888
regionX=seq(66,90,0.01) # Intervalo a sombrear
xP <- c(66,regionX,90) # Base de los poligonos que crean el efecto "sombra"
yP <- c(0,dnorm(regionX,70,3),0) # Altura de los poligonos sombreados
curve(dnorm(x,70,3),xlim=c(60,80),yaxs="i",ylim=c(0,0.15),ylab="f(x)",
main='Densidad N(70,3)')
polygon(xP,yP,col="orange1")
box()
legend("topright", legend = round(pnorm(66, 70, 3, lower.tail = F),3),
title = expression("P(X≥66)"), title.adj = 0.75,
lty = 1, col = "orange1", lwd = 2, box.lty = 0)
# P(64 < X < 76)
pnorm(76,70,3)-pnorm(64,70,3)
## [1] 0.9544997
sum(pnorm(64:76,70,3))
## [1] 6.5
# Usando RStudio
regionX=seq(64,76,0.01) # Intervalo a sombrear
xP <- c(64,regionX,76) # Base de los poligonos que crean el efecto "sombra"
yP <- c(0,dnorm(regionX,70,3),0) # Altura de los poligonos sombreados
curve(dnorm(x,70,3),xlim=c(60,80),yaxs="i",ylim=c(0,0.15),ylab="f(x)",
main='Densidad N(70,3)')
polygon(xP,yP,col="orange1")
box()
legend("topright", legend = round(pnorm(76, 70, 3, lower.tail = T)- pnorm(64, 70, 3, lower.tail = T),3),
title = expression("P(64 < X < 76)"), title.adj = 0.75,
lty = 1, col = "orange1", lwd = 2, box.lty = 0)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
embed_youtube("8XrP_TjXTbY")
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\[ f(x;\mu, \sigma) = \dfrac{1}{\sqrt{2\pi\sigma^2}}exp(-\dfrac{(x-\mu)^2}{2\sigma^2}), \qquad 0<x<\infty\] \[ E(X)=\mu, \qquad Var(X)=\sigma^2\]
plot(dnorm(20:40,30, 2),xlab="k",ylab="P(X=k)",main="X ~ N(10,2)", type = "b", lwd = 10, col = 1:10)
x<-2:20 # rango de la variable
m<-10 # valor de lambda
sd<-2
pi<-3.1416
fx<-exp(-(x-m)^2/(2*sd^2))/sqrt(2*pi*sd^2)
plot(x,fx, main="Distribución normal", sub="Fuente: elaboración propia",
xlab="Eje x", ylab="Eje y", type="b", lwd = 10, col = 1:10)
\[X\sim N(\mu, \sigma)\]
# Rejilla de valores del eje X
x <- 20:100
m <- 60
sd<-5
plot(dnorm(x, m,sd), type = "l", lwd = 2,
main = "Función densidad de probabilidad", ylim=c(0,0.08),
ylab = "P(X = x)", xlab = "Número de eventos")
m <- 60
sd<-10
lines(dnorm(x, m,sd), type = "l", lwd = 2, col = rgb(1,0,0, 0.7))
m <- 60
sd<-15
lines(dnorm(x, m,sd), type = "l", lwd = 2, col = rgb(0, 1, 0, 0.7))
# Leyenda
legend("topright", legend = c("Psicologia", " C. Social", "Derecho"),
title = expression(Programa), title.adj = 0.75,
lty = 1, col = 1:3, lwd = 2, box.lty = 0)
# Rejilla de valores del eje X
x <- 20:100
m <- 50
sd<-10
plot(dnorm(x, m,sd), type = "l", lwd = 2,
main = "Función densidad de probabilidad", ylim=c(0,0.05),
ylab = "P(X = x)", xlab = "Número de eventos")
m <- 55
sd<-10
lines(dnorm(x, m,sd), type = "l", lwd = 2, col = rgb(1,0,0, 0.7))
m <- 60
sd<-10
lines(dnorm(x, m,sd), type = "l", lwd = 2, col = rgb(0, 1, 0, 0.7))
# Leyenda
legend("topright", legend = c("Psicologia", " C. Social", "Derecho"),
title = expression(Programa), title.adj = 0.75,
lty = 1, col = 1:3, lwd = 2, box.lty = 0)
par(mfrow=c(1,2), pty="s")
plot(20:100, dnorm(20:100,60, 12), type="o", xlab="x", ylab="f(x)", xlim=c(20,100),main ="Distribución Normal", col = 1:10)
plot(20:100, pnorm(20:100,60, 12), type="o", xlab="x", ylab="F(x)", xlim=c(20,100),ylim=c(0,1), main="Distribución acumulada", col = 1:10)
rnorm(5)
## [1] 0.5220305 -0.9333197 0.2835993 -1.8499191 -2.0233147
rnorm(30, mean = 5, sd = 4)
## [1] 3.69548904 2.84048179 4.26745674 2.10186414 -0.08439067 6.20614270
## [7] 11.60404142 4.35509469 10.47220401 0.03903620 2.62317251 0.90032532
## [13] 3.33836560 7.25463497 4.88890640 2.02738451 -0.37436490 2.85289380
## [19] 4.75775640 8.96966257 -1.23195908 5.25530366 0.89789322 4.38685415
## [25] 4.86658749 5.76781532 12.21420348 14.28871946 -0.26446217 5.06681921
rnorm(10, mean = c(-10, 5, +10), sd = 3)
## [1] -8.397032 7.027134 12.413972 -7.548252 9.177346 12.459094
## [7] -13.791530 7.664125 8.686422 -11.680335
rnorm(4, mean = c(2, 4, 6), sd = 1)
## [1] 0.1095863 4.5536441 4.5713378 2.1010004
rnorm(3, mean = c(2, 4, -6), sd = c(0.2, 1))
## [1] 2.008275 4.682740 -6.034396
rnorm(3, mean = c(2, 4, -6), sd = c(0.2, 1, -1))
## Warning in rnorm(3, mean = c(2, 4, -6), sd = c(0.2, 1, -1)): NAs produced
## [1] 2.157563 2.923842 NaN
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
medias<-rnorm(30, mean = 70, sd = 5)
round(medias)
## [1] 75 59 64 71 64 69 70 78 68 64 62 68 64 75 68 69 73 72 70 74 83 71 75 68 78
## [26] 71 77 66 63 65
# Rejilla de valores del eje X
x <- round(medias)
hist(x, lwd = 2,
main = "Función densidad de probabilidad", ylim=c(0,20),
ylab = "Numero de Estudiantes", xlab = "Puntaje obtenido", col = 1:10)
rnorm(30, mean = round(medias), sd =1)
## [1] 76.01679 58.54976 64.97271 70.22644 64.01843 68.11569 70.05604 78.13422
## [9] 68.62752 64.84237 60.95914 66.96258 63.87348 73.92459 65.72506 67.78016
## [17] 72.27262 72.68067 70.21693 75.72681 83.08343 72.25565 74.04362 68.40541
## [25] 77.99463 71.08923 76.76610 66.86450 63.29384 64.21499
# Rejilla de valores del eje X
x <- rnorm(30, mean = round(medias), sd =1)
hist(x, lwd = 2,
main = "Función densidad de probabilidad", ylim=c(0,20),
ylab = "Numero de Estudiantes", xlab = "Puntaje obtenido", col = 1:10)
set.seed(42) # Or use any other positive integer...
# Rejilla de valores del eje X
x <- rnorm(30, mean = round(medias), sd =1)
hist(x, lwd = 2,
main = "Función densidad de probabilidad", ylim=c(0,20),
ylab = "Numero de Estudiantes", xlab = "Puntaje obtenido", col = 1:10)
set.seed(28) # Or use any other positive integer...
# Rejilla de valores del eje X
x <- rnorm(30, mean = round(medias), sd =1)
hist(x, lwd = 2,
main = "Función densidad de probabilidad", ylim=c(0,20),
ylab = "Numero de Estudiantes", xlab = "Puntaje obtenido", col = 1:10)
set.seed(28)
rnorm(5)
## [1] -1.90215722 -0.06429479 -1.33116707 -1.81999167 0.16266969
set.seed(28)
rnorm(5)
## [1] -1.90215722 -0.06429479 -1.33116707 -1.81999167 0.16266969
# P(X<=66) dado que X ~ N (70, 3):
pnorm(66, mean = 70, sd = 3)
## [1] 0.09121122
regionX=seq(60,66,0.01) # Intervalo a sombrear
xP <- c(50,regionX,66) # Base de los poligonos que crean el efecto "sombra"
yP <- c(0,dnorm(regionX,70,3),0) # Altura de los poligonos sombreados
curve(dnorm(x,70,3),xlim=c(60,80),yaxs="i",ylim=c(0,0.15),ylab="f(x)",
main='Densidad N(70,3)')
polygon(xP,yP,col="orange1")
box()
curve(dnorm(x,70,3),xlim=c(60,80),col="blue",lwd=2,
xlab="x",ylab="f(x)",main="Funcion de Densidad N(70,3)")
curve(pnorm(x,70,3),xlim=c(60,80),col="red",lwd=2,
xlab="x",ylab="f(x)",main="Funcion de Densidad N(70,3)")
# P(X≥66) dado que X ~ N (70, 3):
pnorm(66, mean = 70, sd = 3, lower.tail = FALSE)
## [1] 0.9087888
regionX=seq(66,90,0.01) # Intervalo a sombrear
xP <- c(66,regionX,90) # Base de los poligonos que crean el efecto "sombra"
yP <- c(0,dnorm(regionX,70,3),0) # Altura de los poligonos sombreados
curve(dnorm(x,70,3),xlim=c(60,80),yaxs="i",ylim=c(0,0.15),ylab="f(x)",
main='Densidad N(70,3)')
polygon(xP,yP,col="orange1")
box()
legend("topright", legend = round(pnorm(66, 70, 3, lower.tail = F),3),
title = expression("P(X≥66)"), title.adj = 0.75,
lty = 1, col = "orange1", lwd = 2, box.lty = 0)
pnorm(76,70,3)-pnorm(64,70,3)
## [1] 0.9544997
sum(pnorm(64:76,70,3))
## [1] 6.5
regionX=seq(64,76,0.01) # Intervalo a sombrear
xP <- c(64,regionX,76) # Base de los poligonos que crean el efecto "sombra"
yP <- c(0,dnorm(regionX,70,3),0) # Altura de los poligonos sombreados
curve(dnorm(x,70,3),xlim=c(60,80),yaxs="i",ylim=c(0,0.15),ylab="f(x)",
main='Densidad N(70,3)')
polygon(xP,yP,col="orange1")
box()
legend("topright", legend = round(pnorm(76, 70, 3, lower.tail = T)- pnorm(64, 70, 3, lower.tail = T),3),
title = expression("P(64 < X < 76)"), title.adj = 0.75,
lty = 1, col = "orange1", lwd = 2, box.lty = 0)
"P(64 < X < 76)" =function(x)
dnorm(x,70,3)
integrate("P(64 < X < 76)",64,76)
## 0.9544997 with absolute error < 1.8e-11
"P(65 < X < 68)" =function(x)
dnorm(x,70,3)
integrate("P(65 < X < 68)",65,68)
## 0.2047022 with absolute error < 2.3e-15
regionX=seq(65,68,0.01) # Intervalo a sombrear
xP <- c(65,regionX,68) # Base de los poligonos que crean el efecto "sombra"
yP <- c(0,dnorm(regionX,70,3),0) # Altura de los poligonos sombreados
curve(dnorm(x,70,3),xlim=c(60,80),yaxs="i",ylim=c(0,0.15),ylab="f(x)",
main='Densidad N(70,3)')
polygon(xP,yP,col="orange1")
box()
legend("topright", legend = round(pnorm(68, 70, 3, lower.tail = T)- pnorm(65, 70, 3, lower.tail = T),3),
title = expression("P(65 < X < 68)"), title.adj = 0.75,
lty = 1, col = "orange1", lwd = 2, box.lty = 0)
#z~0.95~=#
qnorm(0.95,70,3)
## [1] 74.93456
qnorm(0.975,70,3)
## [1] 75.87989
qnorm(0.025,70,3)
## [1] 64.12011
qnorm(c(0.025,0.975), 70,3)
## [1] 64.12011 75.87989
qnorm(c(0.025,0.975))
## [1] -1.959964 1.959964
#set.seed(28)
X=rnorm(10000, 50, 2)
hist(X,freq=FALSE,main="Histograma",sub="Datos simulados de una N(70,3)", col=1:10)
curve(dnorm(x,50,2),xlim=c(40,60), ylim=c(0,1),col="blue",lwd=2,add=TRUE)
plot(ecdf(X))
curve(pnorm(x,50,2),xlim=c(40,60),col="red",lwd=2,lty=2,add=TRUE)
legend("topleft",lty=c(1,2),lwd=c(1,2),col=c("blue2","red"),legend=c("Distribucion empirica","Distribucion teorica"))
library(readxl)
datos <- read_excel("BASE2021ACT3.xlsx")
borrar <- c("ESTUDIANTE", "EMAIL", "CODIGO", "Celular")
datos<- datos[ , !(names(datos) %in% borrar)]
datos
datos$PESO
## [1] 76 62 60 64 80 57 80 45 57 45 50 72 56 48 48 42 54 68 73 60 63 82 64 45 50
## [26] 49 50 88 48 57 50 44 56 60 51 56 44 55 50 53 48 84 56 65 60 85 60 86 47 51
## [51] 58 64 53 50 57 60 66
sample(datos$PESO, 30)
## [1] 68 51 84 60 64 44 55 60 56 63 80 50 54 60 56 85 60 60 47 48 82 57 48 64 76
## [26] 51 62 48 50 50
sample(datos$ESTATURA, 50)
## [1] 165 170 164 186 162 158 169 158 167 163 160 171 165 156 176 161 162 158 172
## [20] 158 165 160 155 161 179 177 171 159 181 167 158 174 166 165 156 164 158 168
## [39] 161 170 170 170 158 161 156 160 150 180 177 150
mean(sample(datos$ESTATURA, 30))
## [1] 165.1
sd(sample(datos$ESTATURA, 30))
## [1] 9.037661
X=sample(datos$ESTATURA, 50)
hist(X,freq=FALSE,col="lightsalmon",main="Histograma",sub="Datos simulados de una N(170,8)")
curve(dnorm(x,165,8.4),xlim=c(150,190), ylim=c(0,1),col="blue",lwd=2,add=TRUE)
X=sample(datos$ESTATURA, 50)
hist(X,freq=FALSE,col="lightsalmon",main="Histograma Estatura",sub="Datos simulados de una N(165,8)")
curve(dnorm(x,166,7.7),xlim=c(150,200), ylim=c(0,10),col="blue",lwd=2,add=TRUE)
set.seed(21)
X=sample(datos$ESTATURA, 50)
hist(X,freq=FALSE,col="lightsalmon",main="Histograma Estatura",sub="Datos simulados de una N(165,8)")
curve(dnorm(x,165,8.0),xlim=c(150,200), ylim=c(0,10),col="blue",lwd=2,add=TRUE)
X=sample(datos$PESO, 50)
mean(X)
## [1] 59.6
sd(X)
## [1] 12.43103
X=sample(datos$PESO, 50)
hist(X,freq=FALSE,col="lightsalmon",main="Histograma Peso ",sub="Datos simulados de una N(58,12)")
curve(dnorm(x,58,12),xlim=c(30,100), ylim=c(0,10),col="blue",lwd=2,add=TRUE)