406_Conflict_db_analyses3

Analyses after meeting 23rd March 2023, taking into account comments of 8th March

  • Proximate drivers
    • Most common drivers
    • How do drivers vary spatially?
    • Which drivers co-occur?
    • How are drivers and conflict types related?
    • Drivers -> conflict number - with an eye towards potential lumping
      (Devlin et al. -> drivers of conflict)
  • Distal drivers
    • Most common drivers
    • How do drivers vary spatially?
    • Which drivers co-occur?
    • How are drivers and conflict types related?
  • Approach:
    • Focus (so far in this doc): proximate drivers to conflict types, and how

    • Alternative to the clustering approach:

      1. Calculate number of occurences for combinations of proximate drivers and conflict types

      2. Make a “Sankey” plot to show connections drivers -> conflict types

      3. Doesn’t work as well for actors - there are many combinations (even after lumping different ‘government’ and ‘ngo’ groups together). Perhaps rather use these as predictors for the different confict types directly (not as combinations)

      4. Will try same approach for violence/illegality and for resolution

Data

Main data (ce)

[1] 1089  111

Checking data

[1] 235
[1] 49
$`Article title (article_titl)`
[1] "Coast Guard Arrests 'Notorious' Toothfish Poacher, Minister Ziankahn Confirms"

$`Author (author) \r\nIf no author, leave blank.`
[1] "-999"

$`Source (source)`
[1] "AllAfrica"

$`Year (yr)`
[1] 2018

$`Month (month)`
[1] 3

$`Day\r\n(day)`
[1] 22

$`Language (lang)`
[1] "E"

$`ISO3 country code (iso3_code)`
[1] "LBR"

Extract short names

Make ID column

  • conf_event_id has some duplicates
  • make a new version
==== conf_event_id ==== 
The following numbers should be 0 if there are no duplicates: 
[1] 0.02159624
[1] 23
==== conf_event_id2 ==== 
The following numbers should be 0 if there are no duplicates: 
[1] 0
[1] 0

Get relatively binary variables

Plot tables

Pick columns

  • Not including ‘Resolution’ variables
  • Data ‘ce2’

Make violence binary

Remove rows with piracy

Type = piracy: 
137 rows will be removed 
Actor = pirates: 
4 rows will be removed 

Function for summarizing columns

Proximate drivers

Pick variables

 [1] "conf_event_id2"       "benef_dist_driv"      "acut_food_short"     
 [4] "nat_dis"              "trad_v_new"           "bord_disp_prox"      
 [7] "inad_gov_prox"        "lack_reg_prox"        "pol_insta_prox"      
[10] "res_cond_hum_prox"    "res_cond_nonhum_prox" "ill_res_use_prox"    
[13] "iuu_fish_prox"        "piracy_prox"          "plan_dev"            

Summarize combinations

  • Summarise the number of rows with a given variable or combination of variables (drivers in this case)
    • I.e., the number of cases where the value of that variable equals 1
  • Sort from the most common to least common combination of variables
  • Make a new text variable which summarizes the names of the variables
  • Make new data set with the new text variable and number of rows, add cumulative percentage

Plot

[1] "benef_dist_driv: Distribution of benefits (benef_dist_driv)"                                                                                                   
[2] "bord_disp_prox: New or recent border dispute with neighbors (bord_disp_prox)"                                                                                  
[3] "inad_gov_prox: Recent change resulting in inadequate governance or enforcement due to a lack of capacity or resources or to a dispute (inad_gov_prox)"         
[4] "lack_reg_prox: Recent change resulting in inadequate, lacking, or conflicting regulation (lack_reg_prox)"                                                      
[5] "res_cond_hum_prox: Recent change resulting in poor resource condition due to human activity (e.g. recent bout of overfishing or pollution) (res_cond_hum_prox)"
[6] "res_cond_nonhum_prox: Recent change resulting in poor resource condition due to non-human factors, excluding natural disasters (res_cond_nonhum_prox)"         
[7] "ill_res_use_prox: Specific instance(s) of illegal use of a resource (e.g. illegal mangrove harvesting), excluding IUU fishing (ill_res_use_prox)"              
[8] "iuu_fish_prox: Specific instance(s) of IUU fishing (iuu_fish_prox)"                                                                                            
[9] "plan_dev: Planned development (plan_dev)"                                                                                                                      

Summarize columns but not rows

Distal drivers

Pick variables

 [1] "conf_event_id2"       "poverty"              "soc_eco_ineq"        
 [4] "food_insec_dist"      "clim_chang"           "bord_disp_dist"      
 [7] "ethnic_div_dist"      "cons_dem"             "pop_inc"             
[10] "inad_gov_dist"        "pol_insta_dist"       "poor_res_hum_dist"   
[13] "poor_res_no_hum_dist" "marit_crime_dist"     "ill_res_use_dist"    
[16] "iuu_fish_dist"       

Summarize combinations

  • Summarise the number of rows with a given variable or combination of variables (drivers in this case)
    • I.e., the number of cases where the value of that variable equals 1
  • Sort from the most common to least common combination of variables
  • Make a new text variable which summarizes the names of the variables
  • Make new data set with the new text variable and number of rows, add cumulative percentage

Plot

 [1] "poverty: Poverty (poverty)"                                                                                                                 
 [2] "clim_chang: Climate change (clim_chang)"                                                                                                    
 [3] "bord_disp_dist: Ongoing border dispute with neighbors (bord_disp_dist)"                                                                     
 [4] "inad_gov_dist: Ongoing inadequate governance or enforcement (inad_gov_dist)"                                                                
 [5] "pol_insta_dist: Ongoing political instability (pol_insta_dist)"                                                                             
 [6] "poor_res_hum_dist: Poor resource condition due to human activity, ongoing (poor_res_hum_dist)"                                              
 [7] "poor_res_no_hum_dist: Poor resource condition due to non-human factors, ongoing (poor_res_no_hum_dist)"                                     
 [8] "marit_crime_dist: Ongoing illegal activity or maritime crime, excluding piracy, illegal use of resources, or IUU fishing (marit_crime_dist)"
 [9] "ill_res_use_dist: Systemic illegal use of a resource (e.g. illegal mangrove harvesting), excluding IUU fishing (ill_res_use_dist)"          
[10] "iuu_fish_dist: Systematically occurring IUU fishing (iuu_fish_dist)"                                                                        

Conflict types

Pick variables

[1] "conf_event_id2"  "access_space"    "use_space"       "access_res"     
[5] "use_res"         "benef_dist_type" "piracy"         

Summarize combinations

  • Summarise the number of rows with a given variable or combination of variables (drivers in this case)
    • I.e., the number of cases where the value of that variable equals 1
  • Sort from the most common to least common combination of variables
  • Make a new text variable which summarizes the names of the variables
  • Make new data set with the new text variable and number of rows, add cumulative percentage

Most common co-occurences

column_comb n percent cumul_percent
access_space_plus 238 25.1 25.1
access_space_only 212 22.4 47.5
access_res_only 182 19.2 66.7
use_space_only 132 13.9 80.6
use_res_only 75 7.9 88.5
access_res_plus 53 5.6 94.1
other 44 4.6 98.7
use_space_plus 12 1.3 100.0

Plot

character(0)

Summarize columns but not rows

Sankey diagram, prox + type

NOTE: This plot doesn’t plot well in pdf

Including “None” group of prox

Static plot
sankey plot, prox to conflict type

Excluding ‘none’ group

addNA(from)
                benef_dist_driv benef_dist_driv + lack_reg_prox 
                             91                              28 
                  iuu_fish_prox                   lack_reg_prox 
                            263                              52 
                           None                      other_prox 
                            272                             162 
                       plan_dev               res_cond_hum_prox 
                             28                              52 
                           <NA> 
                              0 

Actors - combinations

Pick variables

 [1] "conf_event_id2"  "local_ngo"       "natl_ngo"        "intl_ngo"       
 [5] "loc_govt"        "intl_govt"       "subs_fisher"     "ind_fishers"    
 [9] "fish_trad"       "subs_living_res" "ind_living_res"  "ind_non_liv"    
[13] "develop"         "comm_org"        "worker_union"    "pirates"        
[17] "state_enf"       "intl_multi_bod" 

Summarize combinations

  • Summarise the number of rows with a given variable or combination of variables (drivers in this case)
    • I.e., the number of cases where the value of that variable equals 1
  • Sort from the most common to least common combination of variables
  • Make a new text variable which summarizes the names of the variables
  • Make new data set with the new text variable and number of rows, add cumulative percentage

Check ‘intl_govt + fishers’

  • Percentages
      local_ngo        natl_ngo        intl_ngo        loc_govt       intl_govt 
            0.0             0.0             0.0             0.0           100.0 
    subs_fisher     ind_fishers       fish_trad subs_living_res  ind_living_res 
           70.7            60.7             8.3             2.7             0.3 
    ind_non_liv         develop        comm_org    worker_union         pirates 
            4.7             0.0             2.7            31.7             0.0 
      state_enf  intl_multi_bod             ngo     column_comb 
           36.1             8.9             0.0             0.0 

Most common co-occurences

column_comb n percent
intl_govt + fishers 338 35.7
intl_govt 131 13.8
subs_fisher 79 8.3
intl_govt + fishers + ngo 75 7.9
intl_govt + ngo 59 6.2
ind_fishers 52 5.5
other 42 4.4
loc_govt + fishers 41 4.3
intl_govt + loc_govt + fishers 30 3.2
loc_govt 21 2.2
subs_fisher + ind_fishers 18 1.9
intl_govt + loc_govt 16 1.7
ind_fishers + ngo 14 1.5
intl_govt + loc_govt + ngo 8 0.8
subs_fisher + ngo 7 0.7
loc_govt + ngo 6 0.6
intl_govt + loc_govt + fishers + ngo 5 0.5
loc_govt + fishers + ngo 3 0.3
subs_fisher + ind_fishers + ngo 3 0.3

Plot

 [1] "local_ngo: Local NGO (local_ngo)"                                                                                  
 [2] "natl_ngo: National NGO (natl_ngo)"                                                                                 
 [3] "intl_ngo: International NGO (intl_ngo)"                                                                            
 [4] "loc_govt: Local or regional government (loc_govt)"                                                                 
 [5] "intl_govt: National government (intl_govt)"                                                                        
 [6] "subs_fisher: Small-scale, subsistence, or artisanal fishers (subs_fisher)"                                         
 [7] "ind_fishers: Industrial fishers (ind_fishers)"                                                                     
 [8] "fish_trad: Fish traders, wholesalers, and retailers  (fish_trad)"                                                  
 [9] "subs_living_res: Small-scale, subsistence, or recreational living resource users, except fishers (subs_living_res)"
[10] "ind_living_res: Industrial living resource users, except fishers (ind_living_res)"                                 
[11] "ind_non_liv: Industrial non-living resource users (ind_non_liv)"                                                   
[12] "develop: Development actors (develop)"                                                                             
[13] "comm_org: Community organization (comm_org)"                                                                       
[14] "worker_union: Worker union or association (worker_union)"                                                          
[15] "pirates: Pirates (pirates)"                                                                                        
[16] "state_enf: State enforcement agents (state_enf)"                                                                   
[17] "intl_multi_bod: International multilateral bodies (intl_multi_bod)"                                                

Summarize columns but not rows

Actors - simple statistics

actor n percent
intl_govt 662 21.7
subs_fisher 457 15.0
ind_fishers 385 12.6
state_enf 351 11.5
ngo 195 6.4
worker_union 157 5.1
loc_govt 130 4.3
subs_living_res 125 4.1
intl_multi_bod 108 3.5
natl_ngo 105 3.4
ind_non_liv 90 2.9
intl_ngo 87 2.8
fish_trad 68 2.2
comm_org 62 2.0
local_ngo 36 1.2
develop 25 0.8
ind_living_res 10 0.3

Actors rel. to each other

  • For each row (actor), the percentage of cases of each actor
  • First column = number of cases
  Prox_driver   N ...3 ...4 ...5 ...6 ...7 ...8 ...9 ...10 ...11 ...12 ...13
1         All 948 20.6 13.7 69.8 48.2 40.5  7.2 13.2   1.1   9.5   2.6   6.5
  ...14 ...15 ...16
1  16.6    37  11.4
       Prox_driver   N  ngo loc_govt intl_govt subs_fisher ind_fishers
1              All 948 20.6     13.7      69.8        48.2        40.5
2              ngo 195  100     11.3      75.4        34.4        36.9
3         loc_govt 130 16.9      100      45.4        47.7        29.2
4        intl_govt 662 22.2      8.9       100        48.2        41.5
5      subs_fisher 457 14.7     13.6      69.8         100        38.5
6      ind_fishers 384 18.8      9.9      71.6        45.8         100
7        fish_trad  68 10.3     16.2      70.6        72.1        23.5
8  subs_living_res 125 26.4     25.6        64          24         2.4
9   ind_living_res  10   20       30        50          20          20
10     ind_non_liv  90 26.7     13.3      76.7        37.8        13.3
11         develop  25   60       28        68          12           0
12        comm_org  62 40.3     32.3      75.8        37.1         8.1
13    worker_union 157  8.3      9.6      89.8        82.8        49.7
14       state_enf 351 12.3     11.7      52.7          49          47
15  intl_multi_bod 108 19.4     14.8      82.4        32.4        44.4
   fish_trad subs_living_res ind_living_res ind_non_liv develop comm_org
1        7.2            13.2            1.1         9.5     2.6      6.5
2        3.6            16.9              1        12.3     7.7     12.8
3        8.5            24.6            2.3         9.2     5.4     15.4
4        7.3            12.1            0.8        10.4     2.6      7.1
5       10.7             6.6            0.4         7.4     0.7        5
6        4.2             0.8            0.5         3.1       0      1.3
7        100             5.9            2.9         2.9       0      2.9
8        3.2             100            4.8        16.8     7.2     19.2
9         20              60            100          10      10        0
10       2.2            23.3            1.1         100     1.1       20
11         0              36              4           4     100       44
12       3.2            38.7              0          29    17.7      100
13      15.9             5.1            1.3         3.8     0.6      3.2
14       5.1             8.8            1.4           6     1.1      2.3
15       6.5             2.8              0         9.3     0.9      5.6
   worker_union state_enf intl_multi_bod
1          16.6        37           11.4
2           6.7      22.1           10.8
3          11.5      31.5           12.3
4          21.3      27.9           13.4
5          28.4      37.6            7.7
6          20.3        43           12.5
7          36.8      26.5           10.3
8           6.4      24.8            2.4
9            20        50              0
10          6.7      23.3           11.1
11            4        16              4
12          8.1      12.9            9.7
13          100      17.8              7
14            8       100            6.6
15         10.2      21.3            100

Actors rel. to prox drivers

  • For each row (proximate driver), the percentage of cases of each actor
  • First column = number of cases, last column = overall p-value for chi-sq. test of that row
            Prox_driver   N     ngo loc_govt intl_govt subs_fisher ind_fishers
1                   All 948    20.6     13.7      69.8        48.2        40.5
2       benef_dist_driv 160    16.9     11.2      81.9      66.2**        48.8
3       acut_food_short  10      20       30        90          90          30
4               nat_dis   1       0     100*         0           0           0
5            trad_v_new   6    16.7       50      83.3         100          0*
6        bord_disp_prox  20      0*       25        80          35          15
7         inad_gov_prox  35    11.4     22.9        60       74.3*        37.1
8         lack_reg_prox 100      20       12      91**        67**          37
9        pol_insta_prox   1       0        0       100           0           0
10    res_cond_hum_prox  85  36.5**    25.9*      67.1       38.8*       20***
11 res_cond_nonhum_prox   7       0     14.3      71.4        71.4        28.6
12     ill_res_use_prox  26    15.4    30.8*      42.3       19.2*       7.7**
13        iuu_fish_prox 301 11.6***     10.6   52.5***        46.2     68.1***
14             plan_dev  64   35.9*     18.8      87.5       35.9*     17.2***
   fish_trad subs_living_res ind_living_res ind_non_liv develop comm_org
1        7.2            13.2            1.1         9.5     2.6      6.5
2     13.1**           6.2**            0.6         15*     3.1      8.8
3      40***               0              0           0       0       10
4          0            100*              0           0       0        0
5       16.7            16.7              0           0       0    33.3*
6          0               0              0          10       0       15
7    25.7***            17.1              0         2.9       0      2.9
8         12              6*              2         1**       0        2
9          0               0              0           0       0        0
10       4.7         35.3***           3.5*       40*** 14.1***  23.5***
11      14.3            14.3              0        14.3   14.3*        0
12     19.2*         57.7***        11.5***         7.7     7.7     15.4
13        4*            2***             0*      0.7***   0.3**   1.3***
14        0*            17.2              0     45.3***   25***  26.6***
   worker_union state_enf intl_multi_bod p_value
1          16.6        37           11.4    <NA>
2       28.7***   14.4***           15.6 <0.0001
3            40        10             10   0.045
4             0       100              0    0.34
5          16.7        50           33.3    0.35
6            10        20          60*** <0.0001
7          25.7      31.4            8.6  0.0038
8         41***      7***              9 <0.0001
9             0         0         100***    0.43
10        5.9**    23.5**          2.4** <0.0001
11         14.3      14.3              0    0.71
12          7.7        50            3.8 <0.0001
13       7.6***   69.8***            8.6 <0.0001
14         10.9    20.3**           4.7* <0.0001

Actors rel. to conflict types

  • For each row (conflict type), the percentage of cases of each actor
  • First column = number of cases, last column = overall p-value for chi-sq. test of that row
      Prox_driver   N     ngo loc_govt intl_govt subs_fisher ind_fishers
1             All 946    20.6     13.6      69.9        48.2        40.5
2    access_space 450 15.6***     13.1      71.8       54.4*     50.4***
3       use_space 195 33.8***       19      77.4     29.7***     16.4***
4      access_res 416    20.7     13.5      65.9      55.8**     53.1***
5         use_res 229    21.4     16.2      74.2        51.5       62***
6 benef_dist_type 129   16.3*     12.4      83.7     75.2***        50.4
  fish_trad subs_living_res ind_living_res ind_non_liv develop comm_org
1       7.2            13.2            1.1         9.5     2.6      6.6
2    3.3***            8***            0.7      5.6***     3.1     4.7*
3      3.6*         36.9***            1.5     33.3*** 10.8***  23.1***
4    10.3**          7.5***            0.5        1***  0.2***   2.6***
5       9.2           8.3**            1.7      1.7***    0.9*      4.4
6   20.2***             7**            1.6        10.1     3.1      4.7
  worker_union state_enf intl_multi_bod p_value
1         16.6      36.9           11.4    <NA>
2         18.2     46***           12.2 <0.0001
3        11.3*   14.4***          5.1** <0.0001
4         19.2      38.7             12 <0.0001
5         18.8    28.8**           14.8 <0.0001
6      38.8***    9.3***           10.9 <0.0001

    Pearson's Chi-squared test

data:  M
X-squared = 30.07, df = 2, p-value = 2.954e-07
      party
gender Democrat Independent Republican
     F      762         327        468
     M      484         239        477
      party
gender Democrat Independent Republican
     F 703.6714    319.6453   533.6834
     M 542.3286    246.3547   411.3166
      party
gender   Democrat Independent Republican
     F  2.1988558   0.4113702 -2.8432397
     M -2.5046695  -0.4685829  3.2386734
      party
gender   Democrat Independent Republican
     F  4.5020535   0.6994517 -5.3159455
     M -4.5020535  -0.6994517  5.3159455

Actors rel. to conflict types (one table per driver)

Actors rel. to conflict types involving iuu_fish_prox

  • For proximate driver = ‘iuu_fish_prox’ only
  • For each row (conflict type), the percentage of cases of each actor
  • First column = number of cases, last column = overall p-value for chi-sq. test of that row
      Prox_driver   N  ngo loc_govt intl_govt subs_fisher ind_fishers fish_trad
1             All 300 11.7     10.7      52.3        46.3          68         4
2    access_space 191   12      9.4      53.9        48.2        71.2      1***
3       use_space  15 13.3     13.3      86.7        53.3        73.3         0
4      access_res 145  8.3     12.4     43.4*        48.3        70.3       4.8
5         use_res 102 16.7    16.7*     66.7*        43.1        78.4       5.9
6 benef_dist_type  15   20     26.7      66.7         100        73.3       20*
  subs_living_res ind_living_res ind_non_liv develop comm_org worker_union
1               2              0         0.7     0.3      1.3          7.7
2            0.5*              0         0.5       0        1          8.9
3             6.7              0           0  6.7***      6.7         13.3
4             3.4              0         0.7       0      2.1          8.3
5               1              0           0       0        2          7.8
6           20***              0           0       0        0        40***
  state_enf intl_multi_bod p_value
1      69.7            8.7    <NA>
2      75.4            7.9      NA
3    26.7**             20      NA
4      70.3            6.9      NA
5   45.1***          14.7*      NA
6   13.3***           13.3      NA

Actors rel. to conflict types involving lack_reg_prox

  • For proximate driver = ‘lack_reg_prox’ only
  • For each row (conflict type), the percentage of cases of each actor
  • First column = number of cases, last column = overall p-value for chi-sq. test of that row
      Prox_driver   N   ngo loc_govt intl_govt subs_fisher ind_fishers
1             All 100    20       12        91          67          37
2    access_space  63 12.7*      7.9      98.4        76.2        42.9
3       use_space   5    20    60***        60          20           0
4      access_res  53  24.5     15.1      86.8          66        49.1
5         use_res  20    25       10       100          75          50
6 benef_dist_type  23  17.4       13      82.6        69.6        34.8
  fish_trad subs_living_res ind_living_res ind_non_liv develop comm_org
1        12               6              2           1       0        2
2       9.5             3.2            1.6         1.6       0      3.2
3         0           40***              0           0       0    20***
4      13.2             7.5              0           0       0      3.8
5        10               0              0           0       0        0
6     26.1*           17.4*            4.3           0       0        0
  worker_union state_enf intl_multi_bod p_value
1           41         7              9    <NA>
2         42.9      11.1            9.5      NA
3            0         0             20      NA
4         45.3      1.9*           11.3      NA
5           35         0             15      NA
6         60.9         0              0      NA

Actors rel. to conflict types involving res_cond_hum_prox

  • For proximate driver = ‘res_cond_hum_prox’ only
  • For each row (conflict type), the percentage of cases of each actor
  • First column = number of cases, last column = overall p-value for chi-sq. test of that row
      Prox_driver  N  ngo loc_govt intl_govt subs_fisher ind_fishers fish_trad
1             All 85 36.5     25.9      67.1        38.8          20       4.7
2    access_space 20   65       30        75          40          25         0
3       use_space 59 40.7     30.5      64.4      27.1**      11.9**       3.4
4      access_res 19 21.1     21.1      73.7      73.7**        31.6    15.8**
5         use_res 21 23.8     23.8      57.1       61.9*     47.6***         0
6 benef_dist_type  7 71.4     57.1      85.7        42.9        28.6      14.3
  subs_living_res ind_living_res ind_non_liv develop comm_org worker_union
1            35.3            3.5          40    14.1     23.5          5.9
2              25              5          30     35*       30            5
3            35.6            1.7       49.2*   20.3*     28.8          5.1
4            21.1            5.3         0**       0     10.5       21.1**
5            33.3         14.3**       9.5**     4.8     14.3          9.5
6            14.3           14.3        14.3   57.1*     42.9            0
  state_enf intl_multi_bod p_value
1      23.5            2.4    <NA>
2        30              0    0.29
3        22             0* 0.00086
4      26.3         10.5** <0.0001
5      33.3            4.8 0.00024
6      14.3              0    0.22

Illegal activity

Pick variables

 [1] "conf_event_id2" "iuu_fish"       "ill_spa_acc"    "ill_spa_use"   
 [5] "ill_res_acc"    "ill_res_use"    "gear_destr"     "infrast_destr" 
 [9] "ill_mar_crime"  "ill_none"      

Summarize combinations

  • Summarise the number of rows with a given variable or combination of variables (drivers in this case)
    • I.e., the number of cases where the value of that variable equals 1
  • Sort from the most common to least common combination of variables
  • Make a new text variable which summarizes the names of the variables
  • Make new data set with the new text variable and number of rows, add cumulative percentage

Most common co-occurences

column_comb n percent
ill_none 470 49.6
iuu_fish 333 35.1
ill_spa_use 45 4.7
ill_res_use 19 2.0
ill_res_acc 19 2.0
ill_spa_acc 14 1.5
iuu_fish + gear_destr 9 0.9
iuu_fish + ill_mar_crime 5 0.5
None 4 0.4
ill_spa_acc + ill_spa_use 4 0.4
iuu_fish + infrast_destr 3 0.3
gear_destr 2 0.2
ill_res_acc + infrast_destr 2 0.2
iuu_fish + ill_none 2 0.2
iuu_fish + ill_res_use 2 0.2
iuu_fish + ill_spa_use 2 0.2
iuu_fish + ill_spa_acc 2 0.2
ill_mar_crime 1 0.1
infrast_destr 1 0.1
ill_res_acc + ill_res_use 1 0.1

Plot

[1] "iuu_fish: IUU fishing  (iuu_fish)"                                             
[2] "ill_spa_acc: Illegal access to a space, excluding IUU fishing (ill_spa_acc)"   
[3] "ill_spa_use: Illegal use of a space, excluding IUU fishing (ill_spa_use)"      
[4] "ill_res_acc: Illegal access to a resource, excluding IUU fishing (ill_res_acc)"
[5] "ill_res_use: Illegal use of a resource, excluding IUU fishing (ill_res_use)"   

Summarize columns but not rows

column_comb
   gear_destr ill_mar_crime      ill_none   ill_res_acc   ill_res_use 
           12             6           474            21            19 
  ill_spa_acc   ill_spa_use infrast_destr      iuu_fish 
           14            52             6           344 

Sankey diagram driver - type - illegality

Including “None” group of prox

Excluding ‘None’ group

Resolution

Pick variables


  N   Y 
911  37 
            ev_res
ev_stalemate   N   Y
           N 618 293
           Y  37   0
, , ev_unres = N

            ev_res
ev_stalemate   N   Y
           N   2 292
           Y  20   0

, , ev_unres = Y

            ev_res
ev_stalemate   N   Y
           N 616   1
           Y  17   0
        ev_unres_inab_cons
ev_unres -999   0   1
       N   50 264   0
       Y  304   8 322
        ev_unres_inab_cons
ev_unres -999   0   1
       N   50 264   0
       Y  304   8 322
        unres_inab_gov
ev_unres -999   0   1
       N   50 264   0
       Y  430  12 192
        ev_unres_soc_facts
ev_unres -999   0   1
       N   50 264   0
       Y  583  15  36
 [1] "conf_event_id2"     "ev_res_conf_med"    "ev_res_inc_gov"    
 [4] "ev_leg_court_res"   "ransom"             "ev_unres_inab_cons"
 [7] "unres_inab_gov"     "ev_unres_soc_facts" "stalemate_other"   
[10] "resolved_other"     "unresolved_other"  

Summarize combinations

  • Summarise the number of rows with a given variable or combination of variables (drivers in this case)
    • I.e., the number of cases where the value of that variable equals 1
  • Sort from the most common to least common combination of variables
  • Make a new text variable which summarizes the names of the variables
  • Make new data set with the new text variable and number of rows, add cumulative percentage

Most common co-occurences

column_comb n percent
ev_unres_inab_cons 268 28.3
ev_res_inc_gov 194 20.5
unresolved_other 157 16.6
unres_inab_gov 127 13.4
ev_unres_inab_cons + unres_inab_gov 37 3.9
ev_leg_court_res 37 3.9
stalemate_other 28 3.0
resolved_other 21 2.2
ev_res_inc_gov + ev_leg_court_res 19 2.0
unres_inab_gov + ev_unres_soc_facts 15 1.6
ev_unres_inab_cons + unres_inab_gov + ev_unres_soc_facts 13 1.4
ev_res_conf_med 12 1.3
ev_res_conf_med + ev_leg_court_res 6 0.6
ev_unres_soc_facts 4 0.4
ev_unres_inab_cons + ev_unres_soc_facts 4 0.4
ev_res_conf_med + ev_res_inc_gov 4 0.4
None 2 0.2

Plot

[1] "ev_res_inc_gov: Increased governance or enforcement (ev_res_inc_gov)"                      
[2] "ev_leg_court_res: Legal or court resolution (ev_leg_court_res)"                            
[3] "ev_unres_inab_cons: Inability to reach consensus (ev_unres_inab_cons)"                     
[4] "unres_inab_gov: Inability to increase or change governance or enforcement (unres_inab_gov)"

Summarize columns but not rows

Sankey diagram driver - type - illegality - resolution

Including “None” group of prox

Excluding ‘None’ group

Sankey diagram driver - type - resolution

Including “None” group of prox

Excluding ‘None’ group

Sankey diagram type - driver - resolution

Including “None” group of prox

Excluding ‘None’ group