Let us use the HR database dowloaded from kaggle
page.
An description of the
database is also available.
rm(list=ls())
adot <- read.csv("data/HRDataset_v14.csv")
smetny_kos <- attach(adot)
head(adot)
NA
Now, I want to make some experimental regression
attach(adot)
fit <- lm(Salary ~ +1 + Absences + EmpSatisfaction, data=adot)
library(broom)
library(knitr)
# fit linear regression model
# extract coefficients and standard errors
tidy_fit <- tidy(fit)
# create kable table
kable(tidy_fit, caption = "Summary of linear regression model")
Summary of linear regression model
(Intercept) |
59464.5707 |
6591.0625 |
9.0220007 |
0.0000000 |
Absences |
335.7299 |
244.3873 |
1.3737619 |
0.1705146 |
EmpSatisfaction |
1572.7169 |
1573.0701 |
0.9997755 |
0.3182040 |
NA
NA
NA
NA
NA
LS0tCnRpdGxlOiAiSFIgZGF0YWJhc2UiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KCgpMZXQgdXMgdXNlIHRoZSBIUiBkYXRhYmFzZSBkb3dsb2FkZWQgZnJvbSBba2FnZ2xlIHBhZ2VdKGh0dHBzOi8vd3d3LmthZ2dsZS5jb20vZGF0YXNldHMvcmh1ZWJuZXIvaHVtYW4tcmVzb3VyY2VzLWRhdGEtc2V0KS4gIApBbiBbZGVzY3JpcHRpb24gb2YgdGhlIGRhdGFiYXNlXShodHRwczovL3JwdWJzLmNvbS9yaHVlYm5lci9ocmRfY2JfdjE0KSBpcyBhbHNvIGF2YWlsYWJsZS4KCmBgYHtyIGxpYnJhcmllcywgZWNobz1UUlVFfQpybShsaXN0PWxzKCkpCgpgYGAKCgoKYGBge3IgQ2l0YW5pZSwgZWNobz1UUlVFLCB3YXJuaW5nPUZBTFNFLCBtZXNzYWdlPUZBTFNFfQphZG90IDwtIHJlYWQuY3N2KCJkYXRhL0hSRGF0YXNldF92MTQuY3N2IikKc21ldG55X2tvcyA8LSBhdHRhY2goYWRvdCkKaGVhZChhZG90KQoKYGBgCgoqTm93LCBJIHdhbnQqIHRvIG1ha2Ugc29tZSBleHBlcmltZW50YWwgcmVncmVzc2lvbgoKYGBge3IgcmVncmVzc2lvbixtZXNzYWdlPUZBTFNFLGVycm9yPUZBTFNFfQphdHRhY2goYWRvdCkKZml0IDwtIGxtKFNhbGFyeSB+ICsxICsgQWJzZW5jZXMgKyBFbXBTYXRpc2ZhY3Rpb24sIGRhdGE9YWRvdCkKCgpsaWJyYXJ5KGJyb29tKQpsaWJyYXJ5KGtuaXRyKQoKIyBmaXQgbGluZWFyIHJlZ3Jlc3Npb24gbW9kZWwKCgojIGV4dHJhY3QgY29lZmZpY2llbnRzIGFuZCBzdGFuZGFyZCBlcnJvcnMKdGlkeV9maXQgPC0gdGlkeShmaXQpCgojIGNyZWF0ZSBrYWJsZSB0YWJsZQprYWJsZSh0aWR5X2ZpdCwgY2FwdGlvbiA9ICJTdW1tYXJ5IG9mIGxpbmVhciByZWdyZXNzaW9uIG1vZGVsIikKCgoKCgpgYGAKCg==