Licença

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

License: CC BY-SA 4.0

Citação

Sugestão de citação: FIGUEIREDO, Adriano Marcos Rodrigues. Exemplo Séries Temporais: PIB Brasileiro. Campo Grande-MS, Brasil: RStudio/Rpubs, 2023. Disponível em https://rpubs.com/amrofi/exemplo_pib_brasil.

1 Dados e plot inicial

Os dados vem do software. O pacote ecoseries foi removido do CRAN, e portanto, tentaremos com rbcb ou sidrar. Neste exemplo utiliza-se a série n. 22109 do PIB a preços de mercado (SCN-2010, Trimestral, (1995=100), dados dessazonalizados ), de 1996T01 até 2022T04.

library(rbcb)
bacen<-rbcb::get_series(22109)
bacen<-bacen[,2]
attach(bacen)
pib.ts<-ts(bacen, start = c(1996,1),frequency=4)
plot(pib.ts,main="PIB a preços de mercado 
     SCN-2010 (Trimestral) (1995=100)",
     sub="BCB série 22109",type = "o",col="black",lwd=2,lty=1, 
     ylab = "Índice 1995=100",xlab="trimestre")

2 No pacote lattice

library(lattice)
xyplot.ts(pib.ts,
          xlab = "Datas - Anos", ylab = "Índice (1995=100)",
          main = "PIB a preços de mercado - Série dessazonalizada",
          sub="Fonte: BCB, 2023. Utilizando o pacote rbcb.")

3 No ggplot2:

library(ggplot2)
datas <- seq(as.Date(paste(c(start(pib.ts),1), collapse="/")), 
             by = "quarter", length.out = length(pib.ts))
dados.df <- data.frame(datas, bacen) # dataframe 
colnames(dados.df)<-c("datas","PIB")
## plot
ggplot(dados.df) +
  aes(x = datas, y = PIB) +
  geom_line(colour = "#112446") +
  labs(
    x = "Datas - Anos",
    y = "Índice (1995=100)",
    title = "PIB a preços de mercado - Série dessazonalizada",
    subtitle = "BCB série 22109, SCN-2010 (Trimestral) ",
    caption = "Fonte: BCB, 2023. Utilizando o pacote rbcb."
  ) +
  ggthemes::theme_stata()

4 No dygraphs

library(dygraphs)
dygraph(dados.df, 
        main = "PIB a preços de mercado - Série dessazonalizada BCB série 22109 <br> SCN-2010 (Trimestral)",
        xlab = "Datas - Anos", ylab = "Índice (1995=100)") %>% 
    dyAxis("x", drawGrid = TRUE) %>% 
    dyEvent("2008-07-01", "2008T3", labelLoc = "bottom") %>%
    dyEvent("2009-01-01", "2009T1", labelLoc = "bottom") %>% 
    dyEvent("2014-01-01", "2014T1", labelLoc = "bottom") %>% 
    dyEvent("2016-10-01", "2016T4", labelLoc = "bottom") %>% 
    dyEvent("2020-04-01", "2020T2", labelLoc = "bottom") %>% 
    dyOptions(drawPoints = TRUE, pointSize = 2)

5 Séries em diferenças

# PIB
dpib<-diff(pib.ts,1)
dpib2<-diff(pib.ts,2)
plot(dpib2,
     main="Séries de Diferenças do PIB",
     type = "o",col="black",lwd=2,lty=1, 
     ylab = "Indice",xlab="trimestre")
lines(dpib,type="o",col = "red",lwd=2,lty=2)
legend("bottomleft",c("d(PIB,2)", "d(PIB)"),
       cex=0.7,lwd=2,lty=1:2,col=c(1,2))

LS0tDQp0aXRsZTogIkV4ZW1wbG8gU8OpcmllcyBUZW1wb3JhaXM6IFBJQiBCcmFzaWxlaXJvIg0KYXV0aG9yOiAiQWRyaWFubyBNYXJjb3MgUm9kcmlndWVzIEZpZ3VlaXJlZG8sICplLW1haWw6IGFkcmlhbm8uZmlndWVpcmVkb0B1Zm1zLmJyKiINCmRhdGU6ICJgciBmb3JtYXQoU3lzLkRhdGUoKSwgJyVkICVCICVZJylgIg0Kb3V0cHV0Og0KICBodG1sX2RvY3VtZW50Og0KICAgIGNvZGVfZG93bmxvYWQ6IHllcw0KICAgIHRoZW1lOiBkZWZhdWx0DQogICAgbnVtYmVyX3NlY3Rpb25zOiB5ZXMNCiAgICB0b2M6IHllcw0KICAgIHRvY19mbG9hdDogbm8NCiAgICBkZl9wcmludDogcGFnZWQNCiAgICBmaWdfY2FwdGlvbjogeWVzDQotLS0NCg0KYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0V9DQprbml0cjo6b3B0c19jaHVuayRzZXQoZWNobyA9IFRSVUUpDQpgYGANCg0KIyBMaWNlbsOnYSB7I0xpY2Vuw6dhIC51bm51bWJlcmVkfQ0KDQpUaGlzIHdvcmsgaXMgbGljZW5zZWQgdW5kZXIgdGhlIENyZWF0aXZlIENvbW1vbnMgQXR0cmlidXRpb24tU2hhcmVBbGlrZSA0LjAgSW50ZXJuYXRpb25hbCBMaWNlbnNlLiBUbyB2aWV3IGEgY29weSBvZiB0aGlzIGxpY2Vuc2UsIHZpc2l0IDxodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1zYS80LjAvPiBvciBzZW5kIGEgbGV0dGVyIHRvIENyZWF0aXZlIENvbW1vbnMsIFBPIEJveCAxODY2LCBNb3VudGFpbiBWaWV3LCBDQSA5NDA0MiwgVVNBLg0KDQohW0xpY2Vuc2U6IENDIEJZLVNBIDQuMF0oaHR0cHM6Ly9taXJyb3JzLmNyZWF0aXZlY29tbW9ucy5vcmcvcHJlc3NraXQvYnV0dG9ucy84OHgzMS9wbmcvYnktc2EucG5nKXt3aWR0aD0iMjUlIn0NCg0KDQojIENpdGHDp8OjbyB7I0NpdGHDp8OjbyAudW5udW1iZXJlZH0NCg0KU3VnZXN0w6NvIGRlIGNpdGHDp8OjbzogRklHVUVJUkVETywgQWRyaWFubyBNYXJjb3MgUm9kcmlndWVzLiBFeGVtcGxvIFPDqXJpZXMgVGVtcG9yYWlzOiBQSUIgQnJhc2lsZWlyby4gQ2FtcG8gR3JhbmRlLU1TLCBCcmFzaWw6IFJTdHVkaW8vUnB1YnMsIDIwMjMuIERpc3BvbsOtdmVsIGVtIDxodHRwczovL3JwdWJzLmNvbS9hbXJvZmkvZXhlbXBsb19waWJfYnJhc2lsPi4NCg0KIyBEYWRvcyBlIHBsb3QgaW5pY2lhbA0KDQpPcyBkYWRvcyB2ZW0gZG8gc29mdHdhcmUuIE8gcGFjb3RlIGVjb3NlcmllcyBmb2kgcmVtb3ZpZG8gZG8gQ1JBTiwgZSBwb3J0YW50bywgdGVudGFyZW1vcyBjb20gcmJjYiBvdSBzaWRyYXIuIE5lc3RlIGV4ZW1wbG8gdXRpbGl6YS1zZSBhIHPDqXJpZSBuLiAyMjEwOSBkbyBQSUIgYSBwcmXDp29zIGRlIG1lcmNhZG8gKFNDTi0yMDEwLCBUcmltZXN0cmFsLCAoMTk5NT0xMDApLCBkYWRvcyBkZXNzYXpvbmFsaXphZG9zICksIGRlIDE5OTZUMDEgYXTDqSAyMDIyVDA0Lg0KDQpgYGB7ciwgbWVzc2FnZT1GQUxTRSx3YXJuaW5nPUZBTFNFfQ0KbGlicmFyeShyYmNiKQ0KYmFjZW48LXJiY2I6OmdldF9zZXJpZXMoMjIxMDkpDQpiYWNlbjwtYmFjZW5bLDJdDQphdHRhY2goYmFjZW4pDQpwaWIudHM8LXRzKGJhY2VuLCBzdGFydCA9IGMoMTk5NiwxKSxmcmVxdWVuY3k9NCkNCnBsb3QocGliLnRzLG1haW49IlBJQiBhIHByZcOnb3MgZGUgbWVyY2FkbyANCiAgICAgU0NOLTIwMTAgKFRyaW1lc3RyYWwpICgxOTk1PTEwMCkiLA0KICAgICBzdWI9IkJDQiBzw6lyaWUgMjIxMDkiLHR5cGUgPSAibyIsY29sPSJibGFjayIsbHdkPTIsbHR5PTEsIA0KICAgICB5bGFiID0gIsONbmRpY2UgMTk5NT0xMDAiLHhsYWI9InRyaW1lc3RyZSIpDQpgYGANCg0KIyBObyBwYWNvdGUgbGF0dGljZQ0KDQpgYGB7ciBsYXR0aWNlfQ0KbGlicmFyeShsYXR0aWNlKQ0KeHlwbG90LnRzKHBpYi50cywNCiAgICAgICAgICB4bGFiID0gIkRhdGFzIC0gQW5vcyIsIHlsYWIgPSAiw41uZGljZSAoMTk5NT0xMDApIiwNCiAgICAgICAgICBtYWluID0gIlBJQiBhIHByZcOnb3MgZGUgbWVyY2FkbyAtIFPDqXJpZSBkZXNzYXpvbmFsaXphZGEiLA0KICAgICAgICAgIHN1Yj0iRm9udGU6IEJDQiwgMjAyMy4gVXRpbGl6YW5kbyBvIHBhY290ZSByYmNiLiIpDQpgYGANCg0KIyBObyBnZ3Bsb3QyOg0KDQpgYGB7ciBnZ3Bsb3R9DQpsaWJyYXJ5KGdncGxvdDIpDQpkYXRhcyA8LSBzZXEoYXMuRGF0ZShwYXN0ZShjKHN0YXJ0KHBpYi50cyksMSksIGNvbGxhcHNlPSIvIikpLCANCiAgICAgICAgICAgICBieSA9ICJxdWFydGVyIiwgbGVuZ3RoLm91dCA9IGxlbmd0aChwaWIudHMpKQ0KZGFkb3MuZGYgPC0gZGF0YS5mcmFtZShkYXRhcywgYmFjZW4pICMgZGF0YWZyYW1lIA0KY29sbmFtZXMoZGFkb3MuZGYpPC1jKCJkYXRhcyIsIlBJQiIpDQojIyBwbG90DQpnZ3Bsb3QoZGFkb3MuZGYpICsNCiAgYWVzKHggPSBkYXRhcywgeSA9IFBJQikgKw0KICBnZW9tX2xpbmUoY29sb3VyID0gIiMxMTI0NDYiKSArDQogIGxhYnMoDQogICAgeCA9ICJEYXRhcyAtIEFub3MiLA0KICAgIHkgPSAiw41uZGljZSAoMTk5NT0xMDApIiwNCiAgICB0aXRsZSA9ICJQSUIgYSBwcmXDp29zIGRlIG1lcmNhZG8gLSBTw6lyaWUgZGVzc2F6b25hbGl6YWRhIiwNCiAgICBzdWJ0aXRsZSA9ICJCQ0Igc8OpcmllIDIyMTA5LCBTQ04tMjAxMCAoVHJpbWVzdHJhbCkgIiwNCiAgICBjYXB0aW9uID0gIkZvbnRlOiBCQ0IsIDIwMjMuIFV0aWxpemFuZG8gbyBwYWNvdGUgcmJjYi4iDQogICkgKw0KICBnZ3RoZW1lczo6dGhlbWVfc3RhdGEoKQ0KDQpgYGANCg0KIyAgTm8gZHlncmFwaHMNCg0KYGBge3IgZHlncmFwaHN9DQpsaWJyYXJ5KGR5Z3JhcGhzKQ0KZHlncmFwaChkYWRvcy5kZiwgDQogICAgICAgIG1haW4gPSAiUElCIGEgcHJlw6dvcyBkZSBtZXJjYWRvIC0gU8OpcmllIGRlc3Nhem9uYWxpemFkYSBCQ0Igc8OpcmllIDIyMTA5IDxicj4gU0NOLTIwMTAgKFRyaW1lc3RyYWwpIiwNCiAgICAgICAgeGxhYiA9ICJEYXRhcyAtIEFub3MiLCB5bGFiID0gIsONbmRpY2UgKDE5OTU9MTAwKSIpICU+JSANCiAgICBkeUF4aXMoIngiLCBkcmF3R3JpZCA9IFRSVUUpICU+JSANCiAgICBkeUV2ZW50KCIyMDA4LTA3LTAxIiwgIjIwMDhUMyIsIGxhYmVsTG9jID0gImJvdHRvbSIpICU+JQ0KICAgIGR5RXZlbnQoIjIwMDktMDEtMDEiLCAiMjAwOVQxIiwgbGFiZWxMb2MgPSAiYm90dG9tIikgJT4lIA0KICAgIGR5RXZlbnQoIjIwMTQtMDEtMDEiLCAiMjAxNFQxIiwgbGFiZWxMb2MgPSAiYm90dG9tIikgJT4lIA0KICAgIGR5RXZlbnQoIjIwMTYtMTAtMDEiLCAiMjAxNlQ0IiwgbGFiZWxMb2MgPSAiYm90dG9tIikgJT4lIA0KICAgIGR5RXZlbnQoIjIwMjAtMDQtMDEiLCAiMjAyMFQyIiwgbGFiZWxMb2MgPSAiYm90dG9tIikgJT4lIA0KICAgIGR5T3B0aW9ucyhkcmF3UG9pbnRzID0gVFJVRSwgcG9pbnRTaXplID0gMikNCmBgYA0KDQojIFPDqXJpZXMgZW0gZGlmZXJlbsOnYXMNCmBgYHtyfQ0KIyBQSUINCmRwaWI8LWRpZmYocGliLnRzLDEpDQpkcGliMjwtZGlmZihwaWIudHMsMikNCnBsb3QoZHBpYjIsDQogICAgIG1haW49IlPDqXJpZXMgZGUgRGlmZXJlbsOnYXMgZG8gUElCIiwNCiAgICAgdHlwZSA9ICJvIixjb2w9ImJsYWNrIixsd2Q9MixsdHk9MSwgDQogICAgIHlsYWIgPSAiSW5kaWNlIix4bGFiPSJ0cmltZXN0cmUiKQ0KbGluZXMoZHBpYix0eXBlPSJvIixjb2wgPSAicmVkIixsd2Q9MixsdHk9MikNCmxlZ2VuZCgiYm90dG9tbGVmdCIsYygiZChQSUIsMikiLCAiZChQSUIpIiksDQogICAgICAgY2V4PTAuNyxsd2Q9MixsdHk9MToyLGNvbD1jKDEsMikpDQpgYGANCg0K