\[ \begin{align*} \text{Max }U(x,y) & = x^{\frac{1}{4}}y^{\frac{3}{4}}, \\ \text{ subject to } & P_{x}x+P_{y}y = I, \\ I & = 120 \\ P_{x} & = 8 \\ P_{y} & = 12 \end{align*} \]
px <- 8
py <- 12
I <- 120
y <- function(x) {
I/py - (px/py)*x
}
u <- function(x) {
(x^0.25)*(I/py - (px/py)*x)^(0.75)
}
optimize(u,interval = c(0,12),maximum = TRUE)
## $maximum
## [1] 3.750017
##
## $objective
## [1] 6.306723
y(3.75)
## [1] 7.5
\[\begin{align*} x & = 3.75 \\ y & = 7.5 \end{align*}\]
Objective function:
\[\begin{align*} f(x) & = \frac{12,800}{x} + 32x \end{align*}\]
f <- function(x) {
12800/x + 32*x
}
optimize(f,interval = c(0,800),maximum = FALSE)
## $minimum
## [1] 20
##
## $objective
## [1] 1280
\[\begin{align*} x & = 20 \\ y & = 40 \end{align*}\]
\[\begin{align*} ln(L) & = ln(A) + 8ln(p) + 92ln(1-p) \end{align*}\]
\[\begin{align*} \frac{d ln(L)}{d p} & = \frac{8}{p} - \frac{92}{1-p} \\ 0 & = \frac{8}{p} - \frac{92}{1-p} \\ \frac{8}{p} & = \frac{92}{1-p} \\ (1-p)8 & = 92p \\ 8 - 8p & = 92p \\ 8 & = 100p \\ p & = \frac{8}{100} \end{align*}\]
\[\begin{align*} p & = \frac{x}{n} \end{align*}\]
answer the following questions.
\[\begin{align*} \epsilon & = -1.5\frac{P}{Q} \end{align*}\]
Price | Quantity | Elasticity | Characterize |
---|---|---|---|
50 | 55 | -1.364 | Elastic |
43.33 | 65.0 | -1.000 | Unit Elastic |
25 | 92.5 | -0.405 | Inelastic |