Two Sample t-test
data: cogbehav and control
t = 1.676, df = 53, p-value = 0.09963
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.680137 7.593930
sample estimates:
mean of x mean of y
3.006897 -0.450000
t.test(cogbehav,control)
Welch Two Sample t-test
data: cogbehav and control
t = 1.6677, df = 50.971, p-value = 0.1015
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.7044632 7.6182563
sample estimates:
mean of x mean of y
3.006897 -0.450000
Quick Summarization
## Bayesian Comparison of Therapy and Control Groupsfit<-lm(after-before~factor(therapy), data=Anor[-(30:46),]) #deletingobs's30-46summary(fit)
Call:
lm(formula = after - before ~ factor(therapy), data = Anor[-(30:46),
])
Residuals:
Min 1Q Median 3Q Max
-12.107 -4.678 -1.307 3.500 17.893
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.450 1.498 -0.300 0.7650
factor(therapy)cb 3.457 2.063 1.676 0.0996 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 7.637 on 53 degrees of freedom
Multiple R-squared: 0.05033, Adjusted R-squared: 0.03241
F-statistic: 2.809 on 1 and 53 DF, p-value: 0.09963
library(MCMCpack)
Loading required package: coda
Loading required package: MASS
##
## Markov Chain Monte Carlo Package (MCMCpack)
## Copyright (C) 2003-2024 Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park
##
## Support provided by the U.S. National Science Foundation
## (Grants SES-0350646 and SES-0350613)
##
fit.bayes<-MCMCregress(after-before ~factor(therapy), mcmc=10000000, b0=0, B0=10^{-15}, c0=10^{-15}, d0=10^{-15}, data=Anor[-(30:46),])# mean has normal prior dist. with mean b0=0, variance 1/B0(std.dev.>31million)# variance has highly disperse inverse gamma prior distribution (tiny c0 and d0)summary(fit.bayes)
Iterations = 1001:10001000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 1e+07
1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:
Mean SD Naive SE Time-series SE
(Intercept) -0.4494 1.526 0.0004827 0.0004824
factor(therapy)cb 3.4564 2.102 0.0006647 0.0006647
sigma2 60.6091 12.242 0.0038714 0.0040186
2. Quantiles for each variable:
2.5% 25% 50% 75% 97.5%
(Intercept) -3.4514 -1.467 -0.4501 0.5676 2.553
factor(therapy)cb -0.6794 2.056 3.4562 4.8565 7.591
sigma2 41.2108 51.924 59.0672 67.5765 88.874
mean(fit.bayes[,2]<=0)
[1] 0.049846
Significance Tests Comparing Proportions
Example: Comparing Prayer and Non-Prayer Surgery Patients
prop.test(c(315,304),c(604,597),correct=FALSE)
2-sample test for equality of proportions without continuity correction
data: c(315, 304) out of c(604, 597)
X-squared = 0.18217, df = 1, p-value = 0.6695
alternative hypothesis: two.sided
95 percent confidence interval:
-0.04421536 0.06883625
sample estimates:
prop 1 prop 2
0.5215232 0.5092127
# Bayesian Inference for Comparing Two Proportionspi1=rbeta(10000000,316,290); pi2 =rbeta(10000000,305,294)quantile(pi1-pi2,c(0.025,0.975))
Happy<-read.table("http://stat4ds.rwth-aachen.de/data/Happy.dat", header=TRUE)# To construct contingency tables, define variables as factorsHappiness<-factor(Happy$happiness);Marital<-factor(Happy$marital)levels(Happiness)<-c("Veryhappy","Prettyhappy","Not too happy")levels(Marital)<-c("Married","Divorced/Separated","Nevermarried")table(Marital,Happiness) # forms contingency table
Happiness
Marital Veryhappy Prettyhappy Not too happy
Married 432 504 61
Divorced/Separated 92 282 103
Nevermarried 124 409 135
prop.table(table(Marital,Happiness),1) # proportions within rows (each row total=1)
Happiness
Marital Veryhappy Prettyhappy Not too happy
Married 0.43329990 0.50551655 0.06118355
Divorced/Separated 0.19287212 0.59119497 0.21593291
Nevermarried 0.18562874 0.61227545 0.20209581
chisq.test(Marital,Happiness)$expected # expected frequencies under H0: independence
Happiness
Marital Veryhappy Prettyhappy Not too happy
Married 301.6134 556.2162 139.17040
Divorced/Separated 144.3025 266.1134 66.58403
Nevermarried 202.0840 372.6704 93.24556
chisq.test(Marital,Happiness) # chi-squared test of independence
Pearson's Chi-squared test
data: Marital and Happiness
X-squared = 197.41, df = 4, p-value < 2.2e-16
Quick Summarization
Standardized Residuals: Describing the Nature of an Association