The objectives of this problem set is to orient you to a number of
activities in R and to conduct a thoughtful exercise in
appreciating the importance of data visualization. For each question
enter your code or text response in the code chunk that
completes/answers the activity or question requested. To submit this
homework you will create the document in Rstudio, using the knitr
package (button included in Rstudio) and then submit the document to
your Rpubs account. Once uploaded you
will submit the link to that document on Canvas. Please make sure that
this link is hyper linked and that I can see the visualization and the
code required to create it. Each question is worth 5 points.
anscombe data that is part of the
library(datasets) in R. And assign that data
to a new object called data.data <- anscombe
dplyr package!)library(dplyr)
sapply(data, mean)
## x1 x2 x3 x4 y1 y2 y3 y4
## 9.000000 9.000000 9.000000 9.000000 7.500909 7.500909 7.500000 7.500909
sapply(data, var)
## x1 x2 x3 x4 y1 y2 y3 y4
## 11.000000 11.000000 11.000000 11.000000 4.127269 4.127629 4.122620 4.123249
cor(data[,1:4],data[,5:8])
## y1 y2 y3 y4
## x1 0.8164205 0.8162365 0.8162867 -0.3140467
## x2 0.8164205 0.8162365 0.8162867 -0.3140467
## x3 0.8164205 0.8162365 0.8162867 -0.3140467
## x4 -0.5290927 -0.7184365 -0.3446610 0.8165214
library(gridExtra)
##
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
## combine
p1 <- ggplot(data=anscombe, aes(x=x1, y=y1)) +
geom_point() +
labs(title="Pair 1")
p2 <- ggplot(data=anscombe, aes(x=x2, y=y2)) +
geom_point() +
labs(title="Pair 2")
p3 <-ggplot(data=anscombe, aes(x=x3, y=y3)) +
geom_point() +
labs(title="Pair 3")
p4 <- ggplot(data=anscombe, mapping=aes(x=x4, y=y4)) +
geom_point() +
labs(title="Pair 4")
grid.arrange(p1, p2, p3, p4, nrow = 2, ncol = 2)
p1 <- ggplot(data=anscombe, aes(x=x1, y=y1)) +
geom_point(color = "blue") +
labs(title="Pair 1")
p2 <- ggplot(data=anscombe, aes(x=x2, y=y2)) +
geom_point(color = "blue") +
labs(title="Pair 2")
p3 <-ggplot(data=anscombe, aes(x=x3, y=y3)) +
geom_point(color = "blue") +
labs(title="Pair 3")
p4 <- ggplot(data=anscombe, mapping=aes(x=x4, y=y4)) +
geom_point(color = "blue") +
labs(title="Pair 4")
grid.arrange(p1, p2, p3, p4, nrow = 2, ncol = 2)
lm()
function.lm1 = lm(data$y1~data$x1)
lm2 = lm(data$y2~data$x2)
lm3 = lm(data$y3~data$x3)
lm4 = lm(data$y4~data$x4)
p1 <- ggplot(data=anscombe, aes(x=x1, y=y1)) +
geom_point(color = "blue") +
labs(title="Pair 1") +
geom_smooth(method="lm", color = "red",se=FALSE)
p2 <- ggplot(data=anscombe, aes(x=x2, y=y2)) +
geom_point(color = "blue") +
labs(title="Pair 2") +
geom_smooth(method="lm", color = "red",se=FALSE)
p3 <-ggplot(data=anscombe, aes(x=x3, y=y3)) +
geom_point(color = "blue") +
labs(title="Pair 3") +
geom_smooth(method="lm", color = "red",se=FALSE)
p4 <- ggplot(data=anscombe, mapping=aes(x=x4, y=y4)) +
geom_point(color = "blue") +
labs(title="Pair 4") +
geom_smooth(method="lm", color = "red",se=FALSE)
grid.arrange(p1, p2, p3, p4, nrow = 2, ncol = 2)
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
anova(lm1)
Analysis of Variance Table
Response: data\(y1 Df Sum Sq Mean Sq F
value Pr(>F) data\)x1 1 27.510 27.5100 17.99 0.00217 **
Residuals 9 13.763 1.5292
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05
‘.’ 0.1 ’ ’ 1
anova(lm2)
Analysis of Variance Table
Response: data\(y2 Df Sum Sq Mean Sq F
value Pr(>F) data\)x2 1 27.500 27.5000 17.966 0.002179 **
Residuals 9 13.776 1.5307
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05
‘.’ 0.1 ’ ’ 1
anova(lm3)
Analysis of Variance Table
Response: data\(y3 Df Sum Sq Mean Sq F
value Pr(>F) data\)x3 1 27.470 27.4700 17.972 0.002176 **
Residuals 9 13.756 1.5285
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05
‘.’ 0.1 ’ ’ 1
anova(lm4)
Analysis of Variance Table
Response: data\(y4 Df Sum Sq Mean Sq F
value Pr(>F) data\)x4 1 27.490 27.4900 18.003 0.002165 **
Residuals 9 13.742 1.5269
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05
‘.’ 0.1 ’ ’ 1
#The quartet consists of four datasets, each containing eleven (x, y) pairs. When these datasets are analyzed using summary statistics, they appear to be nearly identical, with the same mean, variance, and correlation coefficient. However, when plotted graphically, each dataset exhibits a unique pattern, demonstrating the importance of visualizing data.
#The lesson of Anscombe's Quartet is that data visualization is a critical tool in data analysis, as it allows us to uncover patterns and relationships that might be missed by purely numerical analysis. In addition, visualization can help us to identify outliers, assess the validity of statistical assumptions, and communicate findings to others more effectively.
#By using data visualization, we can gain a deeper understanding of our data and make better-informed decisions. In short, Anscombe's Quartet reminds us that summary statistics alone cannot fully capture the complexity of data, and that data visualization is an essential tool in any data analysis toolkit.