We must find the difference between the two probabilities
P(Y=y) = P(Y≤y) - P(Y≤y-1) = [(k-y+1)/k]^n - [(k-y)/k]^n
Thus: P(Y=y) = [(k-y+1)^n - (k-y)^n]/k^n
cat("Prob not failing 8 yrs geometric=", (9/10)^8, "\n",
"Expected=", 10, "\n",
"SD",sqrt((1-1/10)/(1/10)^2) )
## Prob not failing 8 yrs geometric= 0.4304672
## Expected= 10
## SD 9.486833
cat("Prob not failing 8 yrs exponential=", exp(-8/10), "\n",
"Expected=", 10, "\n",
"SD",10)
## Prob not failing 8 yrs exponential= 0.449329
## Expected= 10
## SD 10
cat("Prob not failing 8 yrs exponential=", dbinom(0,8,0.1), "\n",
"Expected=",0.1*8 , "\n",
"SD",sqrt(0.8*0.9))
## Prob not failing 8 yrs exponential= 0.4304672
## Expected= 0.8
## SD 0.8485281
#2d
cat("Prob not failing 8 yrs exponential=", ppois(0,lambda = 0.8), "\n",
"Expected=", 0.8, "\n",
"SD",sqrt(8/10))
## Prob not failing 8 yrs exponential= 0.449329
## Expected= 0.8
## SD 0.8944272