Parameters
suffix = ""
data_to_read = "./Data/acc_tpm_nCount_mito_no146_15k_cancercells.rds"
functions
library(stringi)
source_from_github(repositoy = "DEG_functions",version = "0.2.24")
Data
acc = readRDS(file = data_to_read)
acc_primary = readRDS(file = "./Data/acc_cancer_no146_primaryonly15k_cancercells.rds")
(message("reading '" %>% paste0(data_to_read %>% basename()) %>% paste0("'")))
reading 'acc_tpm_nCount_mito_no146_15k_cancercells.rds'
NULL
pathways_scores = fread(file = "./Data/ACC_Canonical_Pathway_Scores.txt",sep = ",") %>% as.matrix(rownames=1) %>% t() %>% as.data.frame()
hallmark_scores = fread(file = "./Data/ACC_Hallmark_Pathway_Scores.txt",sep = ",") %>% as.matrix(rownames=1) %>% t() %>% as.data.frame()
ln_list = c("ACC22.LN.P11", "ACC22.P12.LN","ACC7.P13")
ln_plates = FetchData(object = acc,vars = "orig.ident") %>% mutate(
tumor_type = if_else(condition = orig.ident %in% ln_list
,true = "LN"
,false = "primary"))
ln_plates["orig.ident"] <-NULL
acc= AddMetaData(object = acc,metadata = ln_plates)
pathways_scores = cbind(pathways_scores,hallmark_scores)
pathways_scores = pathways_scores[ , colSums(is.na(pathways_scores))==0] #remove cols with NA
pathways_scores = pathways_scores [rownames(pathways_scores) %in% colnames(acc),] #remove cells not in dataset
pathways_scores = pathways_scores[order(row.names(pathways_scores)),] #order cells like dataset
Dim reduction
# run-dim-reduction on genes:
acc <- FindVariableFeatures(acc, selection.method = "vst", nfeatures = 2000)
acc <- ScaleData(acc)
acc <- RunPCA(acc,verbose = F)
ElbowPlot(acc)

acc <- RunUMAP(acc, dims = 1:5)
pathway_scores_assay <- CreateAssayObject(counts = pathways_scores %>% t()) #create an assay
Warning: Feature names cannot have underscores ('_'), replacing with dashes ('-')
acc[["pathway_scores"]] = pathway_scores_assay
Warning: Keys should be one or more alphanumeric characters followed by an underscore, setting key from pathway_scores_ to pathwayscores_
# run-dim-reduction:
acc <- FindVariableFeatures(acc, selection.method = "vst", nfeatures = 2000,assay = "pathway_scores")
acc <- ScaleData(acc,assay = "pathway_scores",features = rownames(acc[["pathway_scores"]]))
acc <- RunPCA(acc, features = rownames(acc[["pathway_scores"]]),assay = "pathway_scores",reduction.name = "PCA_pathway_scores",verbose = F)
ElbowPlot(acc,reduction = "PCA_pathway_scores")

acc <- RunUMAP(acc, dims = 1:5,reduction ="PCA_pathway_scores",reduction.name = "pathway_scores_umap",verbose = F)
Warning: Cannot add objects with duplicate keys (offending key: UMAP_), setting key to 'pathway_scores_umap_'
acc umaps
print_tab(plt = DimPlot(acc,group.by = "patient.ident"),title = "gene expression")
gene expression

print_tab(plt = DimPlot(acc,reduction = "pathway_scores_umap",group.by = "patient.ident"),title = "pathways scores")
pathways scores

NA
gs=acc@assays$RNA@var.features
myoscore=apply(acc@assays$RNA@scale.data[intersect(c("TP63","TP73","CAV1","CDH3","KRT5","KRT14","ACTA2","TAGLN","MYLK","DKK3"),gs),],2,mean)
lescore=apply(acc@assays$RNA@scale.data[intersect(c("KIT","EHF","ELF5","KRT7","CLDN3","CLDN4","CD24","LGALS3","LCN2","SLPI"),gs),],2,mean)
acc=AddMetaData(acc,lescore-myoscore,"luminal_over_myo")
#set lum_or_myo metadata
luminal_over_myo = FetchData(object = acc,vars = "luminal_over_myo")
luminal_over_myo$lum_or_myo = case_when(luminal_over_myo$luminal_over_myo >1~"lum",luminal_over_myo$luminal_over_myo <(-1)~"myo",TRUE~"NA")
luminal_over_myo$luminal_over_myo <-NULL
acc=AddMetaData(object = acc,metadata = luminal_over_myo,col.name = "lum_or_myo")
print_tab(plt = FeaturePlot(object = acc,features = "luminal_over_myo",reduction = "pathway_scores_umap"),title = "luminal_over_myo")
luminal_over_myo

print_tab(plt = DimPlot(acc,group.by = "lum_or_myo",cols = c("red","green","grey"),reduction = "pathway_scores_umap"),title = "cell type")
cell type

NA
Genes
print_tab(plt =
FeaturePlot(object = acc,features = c("FGF1","FGF2","FGF11","FGF12"),reduction = "pathway_scores_umap")
,title = "FGF")
FGF

print_tab(plt =
FeaturePlot(object = acc,features = c("FGF18","FGF20","FGF15","FGF23"),reduction = "pathway_scores_umap")
,title = "FGF")
FGF
Warning in FetchData.Seurat(object = object, vars = c(dims, “ident”,
features), : The following requested variables were not found: FGF15

print_tab(plt =
FeaturePlot(object = acc,features = c("EGF"),reduction = "pathway_scores_umap")
,title = "EGF")
EGF

print_tab(plt =
FeaturePlot(object = acc,features = c("NOTCH1","NOTCH2","NOTCH3","NOTCH4"),reduction = "pathway_scores_umap")
,title = "NOTCH")
NOTCH

NA
All PC’s
for (i in 1:8) {
print_tab(plt = VizDimLoadings(acc, dims = i, reduction = "PCA_pathway_scores"),title = paste("PC", i))
}
PC 1

PC 2

PC 3

PC 4

PC 5

PC 6

PC 7

PC 8

NA
cycling cells clustring
hallmark_name = "HALLMARK_G2M_CHECKPOINT"
genesets =GSEABase::getGmt("./Data/h.all.v7.0.symbols.pluscc.gmt")
var_features=acc@assays$RNA@var.features
geneIds= genesets[[hallmark_name]]@geneIds
score <- apply(acc@assays$RNA@data[intersect(geneIds,var_features),],2,mean)
acc=AddMetaData(acc,score,hallmark_name)
print_tab(plt = FeaturePlot(acc, reduction = "umap",features = "HALLMARK_G2M_CHECKPOINT"),title = "by genes")
by genes

print_tab(plt = FeaturePlot(acc, reduction = "pathway_scores_umap",features = "HALLMARK_G2M_CHECKPOINT"),title = "by genes")
by genes

NA
UMAP clusters
acc <- FindNeighbors(acc, dims = 1:10,reduction = "PCA_pathway_scores")
Computing nearest neighbor graph
Computing SNN
acc <- FindClusters(acc, resolution = 0.1,graph.name = "pathway_scores_snn")
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
Number of nodes: 951
Number of edges: 33164
Running Louvain algorithm...
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.9052
Number of communities: 2
Elapsed time: 0 seconds
DimPlot(acc,reduction = "pathway_scores_umap")

pathways DEG
pathway_markers = FindMarkers(object = acc,ident.1 = "0",ident.2 = "1",assay = "pathway_scores",min.cells.feature = 10,logfc.threshold = 0,densify = T)
print_tab(plt = pathway_markers,title = "all deg")
all deg
print_tab(plt = pathway_markers %>% dplyr::filter(grepl('GTPASE', rownames(pathway_markers) )),title = "RHO deg")
genes DEG
acc = SetIdent(object = acc,value = "pathway_scores_snn_res.0.1")
genes_markers = FindMarkers(object = acc,ident.1 = "0",ident.2 = "1",assay = "RNA",min.cells.feature = 10,logfc.threshold = 0,densify = T)
acc_deg = genes_markers %>% mutate(fdr = p.adjust(p_val,method = "fdr"))%>% #add fdr
dplyr::filter((avg_log2FC>1 & fdr<0.05) | (avg_log2FC< (-1) & fdr<0.05)) #filter significant
# enrichment_analysis(Differential_expression_genes = genes_markers,background = rownames(acc),fdr_Cutoff = 0.05,ident.1 = "0",ident.2 = "1")
cp_genes = msigdbr(species = "Homo sapiens", category = "C2") %>% dplyr::filter(gs_subcat != "CGP") %>% dplyr::distinct(gs_name, gene_symbol) %>% as.data.frame()
down = acc_deg %>%
dplyr::filter((avg_log2FC>1.5 & fdr<0.05)) %>%
rownames()
genes_vec_enrichment(genes = down,background = rownames(acc),homer = T,title = "test",custom_pathways = cp_genes)
up = acc_deg %>%
dplyr::filter((avg_log2FC<1.5 & fdr<0.05)) %>%
rownames()
genes_vec_enrichment(genes = up,background = rownames(acc),homer = T,title = "test",custom_pathways = cp_genes)
# genes = msigdbr(species = "Homo sapiens", category = "C2") %>% dplyr::filter(gs_subcat != "CGP" & grepl('REACTOME_RHO_GTPASE_CYCLE', gs_name)) %>% pull("gene_symbol") %>% unique()
rho_genes = c("CDC42",
"RHOQ",
"RHOJ",
"RHOUV",
'RHOU',
"RHOV",
"RAC1",
"RAC2",
"RAC3",
"RHOG",
"RHOBTB1",
'RHOBTB2',
'RHOBTB3',
'RHOH',
'RHOA',
'RHOB',
'RHOC',
'RND1',
'RND2',
'RND3',
'RHOF',
'RHOD',
'RHOF')
notch_genes = c("JAG1","JAG2","NOTCH3","NOTCH2","NOTCH1","DLL1","MYB")
print_tab(plt = acc_deg,title = "all DEG")
all DEG
print_tab(plt = acc_deg[rownames(acc_deg) %in% rho_genes,] ,title = "Rho genes in DEG")
Rho genes in DEG
print_tab(plt = acc_deg[rownames(acc_deg) %in% notch_genes,] ,title = "NOTCH genes in DEG")
NOTCH genes in DEG
NA
cor(genes_expression)
REACTOME-RHO-GTPASE-CYCLE WP-HEAD-AND-NECK-SQUAMOUS-CELL-CARCINOMA
REACTOME-RHO-GTPASE-CYCLE 1.0000000 0.6592794
WP-HEAD-AND-NECK-SQUAMOUS-CELL-CARCINOMA 0.6592794 1.0000000
#UMAPS
print_tab(plt =
FeaturePlot(object = acc,features = "NOTCH2",reduction = "pathway_scores_umap")
,title = "NOTCH2 UMAP")
NOTCH2 UMAP

print_tab(plt =
FeaturePlot(object = acc,features = "RND3",reduction = "pathway_scores_umap")
,title = "RND3 UMAP")
RND3 UMAP

NA
HEAD-AND-NECK-SQUAMOUS
FeaturePlot(object = acc,features = "WP-HEAD-AND-NECK-SQUAMOUS-CELL-CARCINOMA",reduction = "pathway_scores_umap")

ACC1/2
ACC1_genes = c("MYC", "SOX6", "SOX8", "CTNND2", "NOTCH3","BCL2")
ACC2_genes = c("TP63","COL17A1","PDGFA", "DKK3","EGFR", "AXL","PDGFRA")
gs=acc@assays$RNA@var.features
acc1_score=apply(acc@assays$RNA@data[ACC1_genes,],2,mean)
acc2_score=apply(acc@assays$RNA@data[ACC2_genes,],2,mean)
acc=AddMetaData(acc,acc1_score-acc2_score,"acc1_over_acc2")
FeaturePlot(object = acc,features = "acc1_over_acc2",reduction = "pathway_scores_umap")

More clusters
print_tab(plt = DimPlot(acc,reduction = "pathway_scores_umap"),title = "UMAP")
UMAP

NA
for (i in 0:4) {
print_tab(plt = all_markers %>% dplyr::filter(cluster == i),title = paste("cluster",i))
}
LS0tCnRpdGxlOiAnYHIgcnN0dWRpb2FwaTo6Z2V0U291cmNlRWRpdG9yQ29udGV4dCgpJHBhdGggJT4lIGJhc2VuYW1lKCkgJT4lIGdzdWIocGF0dGVybiA9ICJcXC5SbWQiLHJlcGxhY2VtZW50ID0gIiIpYCcgCmF1dGhvcjogIkF2aXNoYWkgV2l6ZWwiCmRhdGU6ICdgciBTeXMuRGF0ZSgpYCcKb3V0cHV0OiAKICBodG1sX25vdGVib29rOiAKICAgIGNvZGVfZm9sZGluZzogaGlkZQogICAgdG9jOiB5ZXMKICAgIHRvY19jb2xsYXBzZTogeWVzCiAgICB0b2NfZmxvYXQ6IAogICAgICBjb2xsYXBzZWQ6IEZBTFNFCi0tLQoKIyBQYXJhbWV0ZXJzCgpgYGB7ciB3YXJuaW5nPUZBTFNFfQpzdWZmaXggPSAiIgpkYXRhX3RvX3JlYWQgPSAiLi9EYXRhL2FjY190cG1fbkNvdW50X21pdG9fbm8xNDZfMTVrX2NhbmNlcmNlbGxzLnJkcyIKYGBgCgoKIyBmdW5jdGlvbnMKCmBgYHtyIHdhcm5pbmc9RkFMU0V9CmxpYnJhcnkoc3RyaW5naSkKc291cmNlX2Zyb21fZ2l0aHViKHJlcG9zaXRveSA9ICJERUdfZnVuY3Rpb25zIix2ZXJzaW9uID0gIjAuMi4yNCIpCmBgYAoKIyBEYXRhCgpgYGB7cn0KYWNjID0gcmVhZFJEUyhmaWxlID0gZGF0YV90b19yZWFkKQphY2NfcHJpbWFyeSA9IHJlYWRSRFMoZmlsZSA9ICIuL0RhdGEvYWNjX2NhbmNlcl9ubzE0Nl9wcmltYXJ5b25seTE1a19jYW5jZXJjZWxscy5yZHMiKQoKKG1lc3NhZ2UoInJlYWRpbmcgJyIgJT4lIHBhc3RlMChkYXRhX3RvX3JlYWQgJT4lIGJhc2VuYW1lKCkpICU+JSBwYXN0ZTAoIiciKSkpCnBhdGh3YXlzX3Njb3JlcyA9IGZyZWFkKGZpbGUgPSAiLi9EYXRhL0FDQ19DYW5vbmljYWxfUGF0aHdheV9TY29yZXMudHh0IixzZXAgPSAiLCIpICU+JSBhcy5tYXRyaXgocm93bmFtZXM9MSkgJT4lIHQoKSAlPiUgIGFzLmRhdGEuZnJhbWUoKQpoYWxsbWFya19zY29yZXMgPSBmcmVhZChmaWxlID0gIi4vRGF0YS9BQ0NfSGFsbG1hcmtfUGF0aHdheV9TY29yZXMudHh0IixzZXAgPSAiLCIpICU+JSBhcy5tYXRyaXgocm93bmFtZXM9MSkgJT4lIHQoKSAlPiUgIGFzLmRhdGEuZnJhbWUoKQpgYGAKCmBgYHtyfQpsbl9saXN0ID0gYygiQUNDMjIuTE4uUDExIiwgIkFDQzIyLlAxMi5MTiIsIkFDQzcuUDEzIikKbG5fcGxhdGVzID0gRmV0Y2hEYXRhKG9iamVjdCA9IGFjYyx2YXJzID0gIm9yaWcuaWRlbnQiKSAlPiUgbXV0YXRlKAogIHR1bW9yX3R5cGUgPSBpZl9lbHNlKGNvbmRpdGlvbiA9IG9yaWcuaWRlbnQgJWluJSBsbl9saXN0CiAgICAgICAgICAgICAgICAgICAgICAgLHRydWUgPSAiTE4iCiAgICAgICAgICAgICAgICAgICAgICAgLGZhbHNlID0gInByaW1hcnkiKSkKCmxuX3BsYXRlc1sib3JpZy5pZGVudCJdIDwtTlVMTAphY2M9IEFkZE1ldGFEYXRhKG9iamVjdCA9IGFjYyxtZXRhZGF0YSA9IGxuX3BsYXRlcykKYGBgCgoKYGBge3J9CnBhdGh3YXlzX3Njb3JlcyA9IGNiaW5kKHBhdGh3YXlzX3Njb3JlcyxoYWxsbWFya19zY29yZXMpCnBhdGh3YXlzX3Njb3JlcyA9IHBhdGh3YXlzX3Njb3Jlc1sgLCBjb2xTdW1zKGlzLm5hKHBhdGh3YXlzX3Njb3JlcykpPT0wXSAjcmVtb3ZlIGNvbHMgd2l0aCBOQQpwYXRod2F5c19zY29yZXMgPSBwYXRod2F5c19zY29yZXMgW3Jvd25hbWVzKHBhdGh3YXlzX3Njb3JlcykgJWluJSBjb2xuYW1lcyhhY2MpLF0gI3JlbW92ZSBjZWxscyBub3QgaW4gZGF0YXNldApwYXRod2F5c19zY29yZXMgPSAgcGF0aHdheXNfc2NvcmVzW29yZGVyKHJvdy5uYW1lcyhwYXRod2F5c19zY29yZXMpKSxdICNvcmRlciBjZWxscyBsaWtlIGRhdGFzZXQKYGBgCgojIERpbSByZWR1Y3Rpb24KYGBge3Igd2FybmluZz1GQUxTRSwgcmVzdWx0cz0naGlkZScsZWNobz1UUlVFfQojIHJ1bi1kaW0tcmVkdWN0aW9uIG9uIGdlbmVzOgphY2MgPC0gRmluZFZhcmlhYmxlRmVhdHVyZXMoYWNjLCBzZWxlY3Rpb24ubWV0aG9kID0gInZzdCIsIG5mZWF0dXJlcyA9IDIwMDApCmFjYyA8LSBTY2FsZURhdGEoYWNjKQphY2MgPC0gUnVuUENBKGFjYyx2ZXJib3NlID0gRikKRWxib3dQbG90KGFjYykKYGBgCgoKYGBge3J9CmFjYyA8LSBSdW5VTUFQKGFjYywgZGltcyA9IDE6NSkKYGBgCgoKCmBgYHtyfQpwYXRod2F5X3Njb3Jlc19hc3NheSA8LSBDcmVhdGVBc3NheU9iamVjdChjb3VudHMgPSBwYXRod2F5c19zY29yZXMgJT4lIHQoKSkgI2NyZWF0ZSBhbiBhc3NheQphY2NbWyJwYXRod2F5X3Njb3JlcyJdXSA9IHBhdGh3YXlfc2NvcmVzX2Fzc2F5CmBgYApgYGB7ciB3YXJuaW5nPUZBTFNFLCByZXN1bHRzPSdoaWRlJyxlY2hvPVRSVUV9CiMgcnVuLWRpbS1yZWR1Y3Rpb246CmFjYyA8LSBGaW5kVmFyaWFibGVGZWF0dXJlcyhhY2MsIHNlbGVjdGlvbi5tZXRob2QgPSAidnN0IiwgbmZlYXR1cmVzID0gMjAwMCxhc3NheSA9ICJwYXRod2F5X3Njb3JlcyIpCmFjYyA8LSBTY2FsZURhdGEoYWNjLGFzc2F5ID0gInBhdGh3YXlfc2NvcmVzIixmZWF0dXJlcyA9IHJvd25hbWVzKGFjY1tbInBhdGh3YXlfc2NvcmVzIl1dKSkKYWNjIDwtIFJ1blBDQShhY2MsIGZlYXR1cmVzID0gcm93bmFtZXMoYWNjW1sicGF0aHdheV9zY29yZXMiXV0pLGFzc2F5ID0gInBhdGh3YXlfc2NvcmVzIixyZWR1Y3Rpb24ubmFtZSA9ICJQQ0FfcGF0aHdheV9zY29yZXMiLHZlcmJvc2UgPSBGKQpFbGJvd1Bsb3QoYWNjLHJlZHVjdGlvbiA9ICAiUENBX3BhdGh3YXlfc2NvcmVzIikKYGBgCgoKYGBge3J9CmFjYyA8LSBSdW5VTUFQKGFjYywgZGltcyA9IDE6NSxyZWR1Y3Rpb24gPSJQQ0FfcGF0aHdheV9zY29yZXMiLHJlZHVjdGlvbi5uYW1lID0gInBhdGh3YXlfc2NvcmVzX3VtYXAiLHZlcmJvc2UgPSBGKQpgYGAKCgojIGFjYyB1bWFwcyB7LnRhYnNldH0KCmBgYHtyIGVjaG89VFJVRSwgcmVzdWx0cz0nYXNpcyd9CnByaW50X3RhYihwbHQgPSBEaW1QbG90KGFjYyxncm91cC5ieSA9ICJwYXRpZW50LmlkZW50IiksdGl0bGUgPSAiZ2VuZSBleHByZXNzaW9uIikKcHJpbnRfdGFiKHBsdCA9IERpbVBsb3QoYWNjLHJlZHVjdGlvbiA9ICJwYXRod2F5X3Njb3Jlc191bWFwIixncm91cC5ieSA9ICJwYXRpZW50LmlkZW50IiksdGl0bGUgPSAicGF0aHdheXMgc2NvcmVzIikKCmBgYApgYGB7cn0KZ3M9YWNjQGFzc2F5cyRSTkFAdmFyLmZlYXR1cmVzCgpteW9zY29yZT1hcHBseShhY2NAYXNzYXlzJFJOQUBzY2FsZS5kYXRhW2ludGVyc2VjdChjKCJUUDYzIiwiVFA3MyIsIkNBVjEiLCJDREgzIiwiS1JUNSIsIktSVDE0IiwiQUNUQTIiLCJUQUdMTiIsIk1ZTEsiLCJES0szIiksZ3MpLF0sMixtZWFuKQoKbGVzY29yZT1hcHBseShhY2NAYXNzYXlzJFJOQUBzY2FsZS5kYXRhW2ludGVyc2VjdChjKCJLSVQiLCJFSEYiLCJFTEY1IiwiS1JUNyIsIkNMRE4zIiwiQ0xETjQiLCJDRDI0IiwiTEdBTFMzIiwiTENOMiIsIlNMUEkiKSxncyksXSwyLG1lYW4pCmFjYz1BZGRNZXRhRGF0YShhY2MsbGVzY29yZS1teW9zY29yZSwibHVtaW5hbF9vdmVyX215byIpCmBgYAoKYGBge3J9CiNzZXQgbHVtX29yX215byBtZXRhZGF0YQpsdW1pbmFsX292ZXJfbXlvID0gRmV0Y2hEYXRhKG9iamVjdCA9IGFjYyx2YXJzID0gImx1bWluYWxfb3Zlcl9teW8iKQpsdW1pbmFsX292ZXJfbXlvJGx1bV9vcl9teW8gID0gY2FzZV93aGVuKGx1bWluYWxfb3Zlcl9teW8kbHVtaW5hbF9vdmVyX215byA+MX4ibHVtIixsdW1pbmFsX292ZXJfbXlvJGx1bWluYWxfb3Zlcl9teW8gPCgtMSl+Im15byIsVFJVRX4iTkEiKQpsdW1pbmFsX292ZXJfbXlvJGx1bWluYWxfb3Zlcl9teW8gPC1OVUxMCmFjYz1BZGRNZXRhRGF0YShvYmplY3QgPSBhY2MsbWV0YWRhdGEgPSBsdW1pbmFsX292ZXJfbXlvLGNvbC5uYW1lID0gImx1bV9vcl9teW8iKQpgYGAKCmBgYHtyIHdhcm5pbmc9RkFMU0UscmVzdWx0cz0nYXNpcyd9CnByaW50X3RhYihwbHQgPSBGZWF0dXJlUGxvdChvYmplY3QgPSBhY2MsZmVhdHVyZXMgPSAibHVtaW5hbF9vdmVyX215byIscmVkdWN0aW9uID0gInBhdGh3YXlfc2NvcmVzX3VtYXAiKSx0aXRsZSA9ICJsdW1pbmFsX292ZXJfbXlvIikKcHJpbnRfdGFiKHBsdCA9IERpbVBsb3QoYWNjLGdyb3VwLmJ5ID0gImx1bV9vcl9teW8iLGNvbHMgPSBjKCJyZWQiLCJncmVlbiIsImdyZXkiKSxyZWR1Y3Rpb24gPSAicGF0aHdheV9zY29yZXNfdW1hcCIpLHRpdGxlID0gImNlbGwgdHlwZSIpCmBgYAojIEdlbmVzIHsudGFic2V0fQoKYGBge3IgIHJlc3VsdHM9J2FzaXMnfQpwcmludF90YWIocGx0ID0gCiAgICAgICAgICAgIEZlYXR1cmVQbG90KG9iamVjdCA9IGFjYyxmZWF0dXJlcyA9IGMoIkZHRjEiLCJGR0YyIiwiRkdGMTEiLCJGR0YxMiIpLHJlZHVjdGlvbiA9ICJwYXRod2F5X3Njb3Jlc191bWFwIikKICAgICAgICAgICx0aXRsZSA9ICJGR0YiKQoKcHJpbnRfdGFiKHBsdCA9IApGZWF0dXJlUGxvdChvYmplY3QgPSBhY2MsZmVhdHVyZXMgPSBjKCJGR0YxOCIsIkZHRjIwIiwiRkdGMTUiLCJGR0YyMyIpLHJlZHVjdGlvbiA9ICJwYXRod2F5X3Njb3Jlc191bWFwIikKICAgICAgICAgICx0aXRsZSA9ICJGR0YiKQoKcHJpbnRfdGFiKHBsdCA9IApGZWF0dXJlUGxvdChvYmplY3QgPSBhY2MsZmVhdHVyZXMgPSBjKCJFR0YiKSxyZWR1Y3Rpb24gPSAicGF0aHdheV9zY29yZXNfdW1hcCIpCiAgICAgICAgICAsdGl0bGUgPSAiRUdGIikKCnByaW50X3RhYihwbHQgPSAKRmVhdHVyZVBsb3Qob2JqZWN0ID0gYWNjLGZlYXR1cmVzID0gYygiTk9UQ0gxIiwiTk9UQ0gyIiwiTk9UQ0gzIiwiTk9UQ0g0IikscmVkdWN0aW9uID0gInBhdGh3YXlfc2NvcmVzX3VtYXAiKQogICAgICAgICAgLHRpdGxlID0gIk5PVENIIikKCgpgYGAKCiMgQWxsIFBDJ3Mgey50YWJzZXR9CgpgYGB7ciBlY2hvPVRSVUUsIGZpZy5oZWlnaHQ9OCwgZmlnLndpZHRoPTE0LCByZXN1bHRzPSdhc2lzJ30KZm9yIChpIGluIDE6OCkgewpwcmludF90YWIocGx0ID0gVml6RGltTG9hZGluZ3MoYWNjLCBkaW1zID0gaSwgcmVkdWN0aW9uID0gIlBDQV9wYXRod2F5X3Njb3JlcyIpLHRpdGxlID0gcGFzdGUoIlBDIiwgaSkpCn0KYGBgCgoKCiMgY3ljbGluZyBjZWxscyBjbHVzdHJpbmcgey50YWJzZXR9CmBgYHtyIHdhcm5pbmc9RkFMU0UscmVzdWx0cz0nYXNpcyd9CmhhbGxtYXJrX25hbWUgPSAiSEFMTE1BUktfRzJNX0NIRUNLUE9JTlQiCmdlbmVzZXRzICA9R1NFQUJhc2U6OmdldEdtdCgiLi9EYXRhL2guYWxsLnY3LjAuc3ltYm9scy5wbHVzY2MuZ210IikKdmFyX2ZlYXR1cmVzPWFjY0Bhc3NheXMkUk5BQHZhci5mZWF0dXJlcwpnZW5lSWRzPSBnZW5lc2V0c1tbaGFsbG1hcmtfbmFtZV1dQGdlbmVJZHMKc2NvcmUgPC0gYXBwbHkoYWNjQGFzc2F5cyRSTkFAZGF0YVtpbnRlcnNlY3QoZ2VuZUlkcyx2YXJfZmVhdHVyZXMpLF0sMixtZWFuKQphY2M9QWRkTWV0YURhdGEoYWNjLHNjb3JlLGhhbGxtYXJrX25hbWUpCgpwcmludF90YWIocGx0ID0gRmVhdHVyZVBsb3QoYWNjLCByZWR1Y3Rpb24gPSAidW1hcCIsZmVhdHVyZXMgPSAiSEFMTE1BUktfRzJNX0NIRUNLUE9JTlQiKSx0aXRsZSA9ICJieSBnZW5lcyIpCnByaW50X3RhYihwbHQgPSBGZWF0dXJlUGxvdChhY2MsIHJlZHVjdGlvbiA9ICJwYXRod2F5X3Njb3Jlc191bWFwIixmZWF0dXJlcyA9ICJIQUxMTUFSS19HMk1fQ0hFQ0tQT0lOVCIpLHRpdGxlID0gImJ5IGdlbmVzIikKCmBgYAoKIyBVTUFQIGNsdXN0ZXJzCmBgYHtyfQphY2MgPC0gRmluZE5laWdoYm9ycyhhY2MsIGRpbXMgPSAxOjEwLHJlZHVjdGlvbiA9ICJQQ0FfcGF0aHdheV9zY29yZXMiKQphY2MgPC0gRmluZENsdXN0ZXJzKGFjYywgcmVzb2x1dGlvbiA9IDAuMSxncmFwaC5uYW1lID0gInBhdGh3YXlfc2NvcmVzX3NubiIpCmBgYAoKYGBge3J9CkRpbVBsb3QoYWNjLHJlZHVjdGlvbiA9ICJwYXRod2F5X3Njb3Jlc191bWFwIikKYGBgCiMgcGF0aHdheXMgREVHICB7LnRhYnNldH0KCmBgYHtyfQpwYXRod2F5X21hcmtlcnMgPSBGaW5kTWFya2VycyhvYmplY3QgPSBhY2MsaWRlbnQuMSA9ICIwIixpZGVudC4yID0gIjEiLGFzc2F5ID0gInBhdGh3YXlfc2NvcmVzIixtaW4uY2VsbHMuZmVhdHVyZSA9IDEwLGxvZ2ZjLnRocmVzaG9sZCA9IDAsZGVuc2lmeSA9IFQpCgpgYGAKPGRpdiBzdHlsZT0nd2lkdGg6MTMwMHB4O21hcmdpbjogMCBhdXRvOyc+CgpgYGB7ciByZXN1bHRzPSdhc2lzJ30KCnByaW50X3RhYihwbHQgPSBwYXRod2F5X21hcmtlcnMsdGl0bGUgPSAiYWxsIGRlZyIpCnByaW50X3RhYihwbHQgPSBwYXRod2F5X21hcmtlcnMgJT4lIGRwbHlyOjpmaWx0ZXIoZ3JlcGwoJ0dUUEFTRScsIHJvd25hbWVzKHBhdGh3YXlfbWFya2VycykgKSksdGl0bGUgPSAiUkhPIGRlZyIpCgpgYGAKCgo8L2Rpdj4KIyBnZW5lcyBERUcgey50YWJzZXR9CgoKCmBgYHtyfQphY2MgPSBTZXRJZGVudChvYmplY3QgPSBhY2MsdmFsdWUgPSAicGF0aHdheV9zY29yZXNfc25uX3Jlcy4wLjEiKQpnZW5lc19tYXJrZXJzID0gRmluZE1hcmtlcnMob2JqZWN0ID0gYWNjLGlkZW50LjEgPSAiMCIsaWRlbnQuMiA9ICIxIixhc3NheSA9ICJSTkEiLG1pbi5jZWxscy5mZWF0dXJlID0gMTAsbG9nZmMudGhyZXNob2xkID0gMCxkZW5zaWZ5ID0gVCkKYWNjX2RlZyAgPSBnZW5lc19tYXJrZXJzICU+JSBtdXRhdGUoZmRyID0gcC5hZGp1c3QocF92YWwsbWV0aG9kID0gImZkciIpKSU+JSAjYWRkIGZkcgogICAgZHBseXI6OmZpbHRlcigoYXZnX2xvZzJGQz4xICYgZmRyPDAuMDUpIHwgKGF2Z19sb2cyRkM8ICgtMSkgJiBmZHI8MC4wNSkpICAjZmlsdGVyIHNpZ25pZmljYW50CgpgYGAKCmBgYHtyfQojIGVucmljaG1lbnRfYW5hbHlzaXMoRGlmZmVyZW50aWFsX2V4cHJlc3Npb25fZ2VuZXMgPSBnZW5lc19tYXJrZXJzLGJhY2tncm91bmQgPSByb3duYW1lcyhhY2MpLGZkcl9DdXRvZmYgPSAwLjA1LGlkZW50LjEgPSAiMCIsaWRlbnQuMiA9ICIxIikKCgpjcF9nZW5lcyA9IG1zaWdkYnIoc3BlY2llcyA9ICJIb21vIHNhcGllbnMiLCBjYXRlZ29yeSA9ICJDMiIpICU+JSBkcGx5cjo6ZmlsdGVyKGdzX3N1YmNhdCAhPSAiQ0dQIikgJT4lIGRwbHlyOjpkaXN0aW5jdChnc19uYW1lLCBnZW5lX3N5bWJvbCkgJT4lIGFzLmRhdGEuZnJhbWUoKQoKCmRvd24gPSAgYWNjX2RlZyAlPiUgCiAgICBkcGx5cjo6ZmlsdGVyKChhdmdfbG9nMkZDPjEuNSAmIGZkcjwwLjA1KSkgJT4lIAogICAgICAgICAgICAgICAgICAgIHJvd25hbWVzKCkKCmdlbmVzX3ZlY19lbnJpY2htZW50KGdlbmVzID0gZG93bixiYWNrZ3JvdW5kID0gcm93bmFtZXMoYWNjKSxob21lciA9IFQsdGl0bGUgPSAidGVzdCIsY3VzdG9tX3BhdGh3YXlzID0gY3BfZ2VuZXMpCgp1cCA9ICBhY2NfZGVnICU+JSAKICAgIGRwbHlyOjpmaWx0ZXIoKGF2Z19sb2cyRkM8MS41ICYgZmRyPDAuMDUpKSAlPiUgCiAgICAgICAgICAgICAgICAgICAgcm93bmFtZXMoKQoKZ2VuZXNfdmVjX2VucmljaG1lbnQoZ2VuZXMgPSB1cCxiYWNrZ3JvdW5kID0gcm93bmFtZXMoYWNjKSxob21lciA9IFQsdGl0bGUgPSAidGVzdCIsY3VzdG9tX3BhdGh3YXlzID0gY3BfZ2VuZXMpCmBgYAoKCgpgYGB7ciByZXN1bHRzPSdhc2lzJ30KIyBnZW5lcyA9IG1zaWdkYnIoc3BlY2llcyA9ICJIb21vIHNhcGllbnMiLCBjYXRlZ29yeSA9ICJDMiIpICU+JSBkcGx5cjo6ZmlsdGVyKGdzX3N1YmNhdCAhPSAiQ0dQIiAmIGdyZXBsKCdSRUFDVE9NRV9SSE9fR1RQQVNFX0NZQ0xFJywgZ3NfbmFtZSkpICU+JSBwdWxsKCJnZW5lX3N5bWJvbCIpICU+JSB1bmlxdWUoKQoKCnJob19nZW5lcyA9IGMoIkNEQzQyIiwKIlJIT1EiLAoiUkhPSiIsCiJSSE9VViIsCidSSE9VJywKIlJIT1YiLAoiUkFDMSIsCiJSQUMyIiwKIlJBQzMiLAoiUkhPRyIsCiJSSE9CVEIxIiwKJ1JIT0JUQjInLAonUkhPQlRCMycsCidSSE9IJywKJ1JIT0EnLAonUkhPQicsCidSSE9DJywKJ1JORDEnLAonUk5EMicsCidSTkQzJywKJ1JIT0YnLAonUkhPRCcsCidSSE9GJykKCm5vdGNoX2dlbmVzID0gYygiSkFHMSIsIkpBRzIiLCJOT1RDSDMiLCJOT1RDSDIiLCJOT1RDSDEiLCJETEwxIiwiTVlCIikKCnByaW50X3RhYihwbHQgPSBhY2NfZGVnLHRpdGxlID0gImFsbCBERUciKQpwcmludF90YWIocGx0ID0gYWNjX2RlZ1tyb3duYW1lcyhhY2NfZGVnKSAlaW4lICByaG9fZ2VuZXMsXSAsdGl0bGUgPSAiUmhvIGdlbmVzIGluIERFRyIpCnByaW50X3RhYihwbHQgPSBhY2NfZGVnW3Jvd25hbWVzKGFjY19kZWcpICVpbiUgIG5vdGNoX2dlbmVzLF0gLHRpdGxlID0gIk5PVENIIGdlbmVzIGluIERFRyIpCgoKCgpgYGAKYGBge3J9CkRlZmF1bHRBc3NheShvYmplY3QgPSBhY2MpPC0gInBhdGh3YXlfc2NvcmVzIgpnZW5lc19leHByZXNzaW9uID0gRmV0Y2hEYXRhKG9iamVjdCA9IGFjYyx2YXJzID0gYygiUkVBQ1RPTUUtUkhPLUdUUEFTRS1DWUNMRSIsIldQLUhFQUQtQU5ELU5FQ0stU1FVQU1PVVMtQ0VMTC1DQVJDSU5PTUEiKSkKY29yKGdlbmVzX2V4cHJlc3Npb24pCgp0b3BfY29ycmVsYXRlZCA8LSBmdW5jdGlvbihkYXRhc2V0LCBnZW5lcywgdGhyZXNob2xkLGFudGlfY29yID0gRikgewogIG1hcmtlcnNfZXhwcmVzc2lvbiA9IEZldGNoRGF0YShvYmplY3QgPSBkYXRhc2V0LHZhcnMgPSBnZW5lcyxzbG90ID0gImRhdGEiKSAjZ2V0IGdlbmVzIGV4cHJlc3Npb24KICBtYXJrZXJzX2F2ZXJhZ2UgPSByb3dNZWFucyhtYXJrZXJzX2V4cHJlc3Npb24pICU+JSBhcy5kYXRhLmZyYW1lKCkgJT4lIHJlbmFtZSgiYXZlcmFnZSIgPSAxKSAjYXZlcmFnZSB0aGVtCiAgY29yX21hdCA9IGNvcihleHByZXNzaW9uICU+JSB0KCksIG1hcmtlcnNfYXZlcmFnZSklPiUgYXMuZGF0YS5mcmFtZSgpICNjb3Igd2l0aCBhbGwgZ2VuZXMKICBjb3JfbWF0ID0gY29yX21hdFtjb21wbGV0ZS5jYXNlcyhjb3JfbWF0KSwsZHJvcD1GXSAgJT4lIGFzLmRhdGEuZnJhbWUgJT4lICByZW5hbWUoImNvcnIiID0gMSkgI3JlbW92ZSByb3dzIHdpdGggTkEgaW4gYXQgbGVhc3Qgb25lIGNvbAogIGlmICh0aHJlc2hvbGQ8MSl7ICNpZiB0aHJlc2hvbGQgaXMgYmFzZWQgb24gcGVhcnNvbiBjb3JyZWxhdGlvbiAKICAgICAgaWYoYW50aV9jb3IgPT0gVCl7dG9wX2dlbmVzID0gICBjb3JfbWF0ICU+JSBhcy5kYXRhLmZyYW1lICU+JSBzZWxlY3QoMSkgJT4lIGRwbHlyOjpmaWx0ZXIoLjwgdGhyZXNob2xkKSAlPiUgcm93bmFtZXMoKX1lbHNlewogICAgICAgICAgdG9wX2dlbmVzID0gICBjb3JfbWF0ICU+JSBhcy5kYXRhLmZyYW1lICU+JSBzZWxlY3QoMSkgJT4lIGRwbHlyOjpmaWx0ZXIoLj4gdGhyZXNob2xkKSAlPiUgcm93bmFtZXMoKQogICAgICB9CiAgfWVsc2V7ICNpZiB0aHJlc2hvbGQgaXMgYmFzZWQgb24gdG9wIGNvcnJlbGF0ZWQgZ2VuZXMgCiAgICAgIGlmKGFudGlfY29yID09IFQpe3RocmVzaG9sZCAgPSB0aHJlc2hvbGQqKC0xKX0KICAgICAgdG9wX2dlbmVzID0gICBjb3JfbWF0ICU+JSAgdG9wX24odGhyZXNob2xkLGNvcnIpICU+JSByb3duYW1lcygpCiAgICAgIH0KICByZXR1cm4odG9wX2dlbmVzKQp9CmV4cHJlc3Npb24gPSBHZXRBc3NheURhdGEob2JqZWN0ID0gYWNjLGFzc2F5ID0gIlJOQSIsc2xvdCA9ICJkYXRhIikgJT4lIGFzLmRhdGEuZnJhbWUoKQoKdG9wX2NvcnJlbGF0ZWQoZGF0YXNldCA9IGFjYyxnZW5lcyA9ICJSTkQzIix0aHJlc2hvbGQgPSAyMCkKYGBgCgojVU1BUFMKYGBge3IgcmVzdWx0cz0nYXNpcyd9CnByaW50X3RhYihwbHQgPSAKICAgICAgICAgICAgRmVhdHVyZVBsb3Qob2JqZWN0ID0gYWNjLGZlYXR1cmVzID0gIk5PVENIMiIscmVkdWN0aW9uID0gInBhdGh3YXlfc2NvcmVzX3VtYXAiKQogLHRpdGxlID0gIk5PVENIMiBVTUFQIikKCnByaW50X3RhYihwbHQgPSAKICAgICAgICAgICAgRmVhdHVyZVBsb3Qob2JqZWN0ID0gYWNjLGZlYXR1cmVzID0gIlJORDMiLHJlZHVjdGlvbiA9ICJwYXRod2F5X3Njb3Jlc191bWFwIikKICx0aXRsZSA9ICJSTkQzIFVNQVAiKQoKCmBgYAoKCgojIEhFQUQtQU5ELU5FQ0stU1FVQU1PVVMKYGBge3Igd2FybmluZz1GQUxTRX0KRmVhdHVyZVBsb3Qob2JqZWN0ID0gYWNjLGZlYXR1cmVzID0gIldQLUhFQUQtQU5ELU5FQ0stU1FVQU1PVVMtQ0VMTC1DQVJDSU5PTUEiLHJlZHVjdGlvbiA9ICJwYXRod2F5X3Njb3Jlc191bWFwIikKYGBgCgoKCiMgQUNDMS8yCmBgYHtyfQpBQ0MxX2dlbmVzID0gYygiTVlDIiwgIlNPWDYiLCAiU09YOCIsICJDVE5ORDIiLCAiTk9UQ0gzIiwiQkNMMiIpCkFDQzJfZ2VuZXMgPSBjKCJUUDYzIiwiQ09MMTdBMSIsIlBER0ZBIiwgIkRLSzMiLCJFR0ZSIiwgIkFYTCIsIlBER0ZSQSIpCgpncz1hY2NAYXNzYXlzJFJOQUB2YXIuZmVhdHVyZXMKCmFjYzFfc2NvcmU9YXBwbHkoYWNjQGFzc2F5cyRSTkFAZGF0YVtBQ0MxX2dlbmVzLF0sMixtZWFuKQoKYWNjMl9zY29yZT1hcHBseShhY2NAYXNzYXlzJFJOQUBkYXRhW0FDQzJfZ2VuZXMsXSwyLG1lYW4pCmFjYz1BZGRNZXRhRGF0YShhY2MsYWNjMV9zY29yZS1hY2MyX3Njb3JlLCJhY2MxX292ZXJfYWNjMiIpCgpGZWF0dXJlUGxvdChvYmplY3QgPSBhY2MsZmVhdHVyZXMgPSAiYWNjMV9vdmVyX2FjYzIiLHJlZHVjdGlvbiA9ICJwYXRod2F5X3Njb3Jlc191bWFwIikKYGBgCgojIE1vcmUgY2x1c3RlcnMgIHsudGFic2V0fQoKCgpgYGB7cn0KYWNjIDwtIEZpbmROZWlnaGJvcnMoYWNjLCBkaW1zID0gMToxMCxyZWR1Y3Rpb24gPSAiUENBX3BhdGh3YXlfc2NvcmVzIikKYWNjIDwtIEZpbmRDbHVzdGVycyhhY2MsIHJlc29sdXRpb24gPSAwLjUsZ3JhcGgubmFtZSA9ICJwYXRod2F5X3Njb3Jlc19zbm4iKQpgYGAKCmBgYHtyICByZXN1bHRzPSdhc2lzJ30KcHJpbnRfdGFiKHBsdCA9IERpbVBsb3QoYWNjLHJlZHVjdGlvbiA9ICJwYXRod2F5X3Njb3Jlc191bWFwIiksdGl0bGUgPSAiVU1BUCIpCmBgYApgYGB7cn0KYWxsX21hcmtlcnMgPSBGaW5kQWxsTWFya2VycyhvYmplY3QgPSBhY2MsbG9nZmMudGhyZXNob2xkID0gMCxkZW5zaWZ5ID0gVCxhc3NheSA9ICJwYXRod2F5X3Njb3JlcyIpCmBgYAoKYGBge3IgIHJlc3VsdHM9J2FzaXMnfQpmb3IgKGkgaW4gMDo0KSB7CnByaW50X3RhYihwbHQgPSBhbGxfbWFya2VycyAlPiUgZHBseXI6OmZpbHRlcihjbHVzdGVyID09IGkpLHRpdGxlID0gcGFzdGUoImNsdXN0ZXIiLGkpKQogIH0KYGBgCgo=